
0862-video-abstract.mp4

0862-supp.pdf

Click Here: Human-Localized Keypoints as Guidance for Viewpoint Estimation
Supplementary Material

Ryan Szeto and Jason J. Corso
Electrical Engineering and Computer Science

University of Michigan
{szetor,jjcorso}@umich.edu

1. Introduction
This document constitutes the written portion of the supplementary material for Click Here: Human-Localized Keypoints

as Guidance for Viewpoint Estimation. It is organized as follows:

• Section 2 provides details for our CH-CNN architecture, including layer sizes and training parameters.

• Section 3 describes how we collected and verified the CAD model keypoint annotations in our dataset.

• Section 4 provides additional quantitative analysis. We analyze the Accπ/6 and MedErr evaluation metrics on our
model and R4CNN [6] in multiple ways, such as comparing performance by keypoint class and comparing accuracy
over a range of thresholds. Additionally, we list the evaluation metrics on variations of our model that use different
types of keypoint maps.

• Section 5 provides additional qualitative results. First, we visualize challenging instances in which occlusion, trunca-
tion, and/or symmetry occur. Then, we visualize the weight maps produced by instances from each object class.

2. CH-CNN Architecture and Training Details
CH-CNN takes three inputs that are generated from instance tuple (I, x, y, ckp, co): I , mkp, and vkp. I is a 227 × 227 ×

3 RGB image subtracted by the ImageNet image mean [2]; mkp is a 227 × 227 grayscale image whose values are produced
by any method described in Section 4; and vkp is a 34-length vector (corresponding to 12 bus, 12 car, and 10 motorcycle
keypoint classes) with value 1 at keypoint class index ckp and zero elsewhere. The image stream of CH-CNN is implemented
with the first seven layers from AlexNet [5] using the reference architecture available in Caffe [3].

To obtain am, the keypoint map is first downsampled with a max pooling layer with a stride and kernel size of 5. Then,
the result is flattened and multiplied by the learned 2116 × 2116 matrix Wm. To obtain ackp

, the one-hot keypoint class
vector vkp is multiplied by the learned 34× 34 matrix Wckp

. The concatenated vector [a>ma
>
ckp

]> is multiplied by the learned
169 × 2150 weight matrix Wkpc to get akpc, to which a softmax and reshaping is applied to obtain a 13 × 13 weight map
whose entries sum to 1 (13 × 13 comes from the height and width of the conv4 activation tensor, and 169 comes from their
product). For the inference layers, the hidden activations aim,kp are obtained with a learned non-linear fully-connected layer
with 4096 outputs and ReLU as the non-linear activation function. Finally, the angle prediction layer for each angle θj and
object class co takes aim,kp and multiplies it by the learned 360 × 4096 matrix Wθj ,co .

The entire CH-CNN architecture is trained end-to-end with the Adam algorithm [4] while training on synthetic and real
instances. In both cases, the batch size, base learning rate, first momentum rate, and second momentum rate are set to 192,
10−4, 0.9, and 0.999 respectively. It takes about 3 days on an NVIDIA Titan X Pascal GPU to train CH-CNN.

3. Keypoint Annotation Collection Details
Collecting a large number of keypoint annotations efficiently requires a scalable and easily-accessible interface. To this

end, we extended the open-source project cad.js1, a web-based interface and server for viewing 3D CAD models, to support
1https://github.com/ghemingway/cad.js

https://github.com/ghemingway/cad.js

(a) Edit mode (b) Save mode

Figure 1: Screenshots of our CAD model annotation interface. Figure best viewed zoomed-in on a monitor.

keypoint annotation. Figure 1 shows screenshots of our keypoint annotation interface. When a CAD model is loaded, the
user can navigate around the object via rotate, pan, and zoom operations with the mouse. At the bottom of the screen is a
panel that describes the requested keypoint with visual examples and text. In order to label the keypoint, the user enters edit
mode and drags a small sphere onto the appropriate location. The user cycles through and labels all keypoints for the model’s
object class, then enters save mode to preview the annotations before saving them to the server. The preview displays all
keypoints at once, with a line drawn from the textual label to the keypoint location; users can view individual keypoints by
mousing over the textual label.

To obtain the 3D CAD models, we downloaded the bus, car, and motorcycle models from ShapeNet [1]. We restricted
ourselves to these three vehicle classes from PASCAL 3D+ due to cost constraints; however, we note that our methods extend
naturally to any number of object classes. After filtering out models that did not capture realistic appearance (e.g. models
without wheels, cars without bodies, etc.), which comprised about 1.8% of ShapeNet vehicle models, we were left with 918
bus, 7,377 car, and 320 motorcycle models to annotate.

We hired 10 student annotators over the course of one month to label the 3D CAD models with the semantic keypoints
identified in the PASCAL 3D+ dataset [7]. Although Xiang et al. [7] identified keypoints meant to broadly describe the
corresponding object classes, we found that not all CAD models contained all semantic keypoints (e.g. convertible cars do
not have rear windows, so the “rear windshield corner” keypoints have no meaning for these models). In these cases, the
annotators were instructed to not label those keypoints; as a result, some CAD models do not have an annotation for every
keypoint for their object class.

To improve the quality and consistency of annotations, each CAD model was viewed by one annotator and one verifier—
the annotator placed the labels, and the verifier checked that the labels were placed appropriately. The verifier sent the model
back to the annotator if he/she disagreed with the locations; if they could not reach a mutual agreement on keypoint locations,
we annotated the model ourselves.

4. Additional Quantitative Results
We begin by exploring the impact of using four different types of keypoint mapsmkp on viewpoint estimation performance

for CH-CNN. We produce unnormalized keypoint maps m̂kp defined by the following four procedures:

• Gaussian keypoint map. Given keypoint location (x, y), the unnormalized keypoint map m̂kp is given by a 2D
Gaussian whose mean is [x, y]> and whose standard deviation is about 10% of the image (23 pixels for our 227 × 227
images).

• Euclidean distance transform keypoint map. Given keypoint location (x, y), each entry in the keypoint map m(i,j)
kp

is given as
m

(i,j)
kp =

√
(i− x)2 + (j − y)2 .

Accπ/6 MedErr
bus car motor mean bus car motor mean

CH-CNN (Gaussian) 88.9 82.2 82.1 84.4 2.92 6.05 11.5 6.81
CH-CNN (Euclidean) 94.5 89.6 84.9 89.7 2.93 5.00 11.0 6.31
CH-CNN (Manhattan) 95.4 90.8 83.1 89.8 2.99 4.97 11.5 6.50
CH-CNN (Chebyshev) 96.8 90.2 85.2 90.7 2.64 4.98 11.4 6.35

Table 1: PASCAL 3D+ performance for our CH-CNN model with different keypoint maps. CH-CNN (Gaussian) refers to
our model using a Gaussian centered around the keypoint location as the keypoint map. The remaining three rows correspond
to our model using distance transform keypoint maps with Euclidean, Manhattan, and Chebyshev distance respectively. The
best performance in each column (highest value for Accπ/6, lowest value for MedErr) is bolded.

• Manhattan distance transform keypoint map. Given keypoint location (x, y), each entry in the keypoint map m(i,j)
kp

is given as
m

(i,j)
kp = |i− x|+ |j − y| .

• Chebyshev distance transform keypoint map. Given keypoint location (x, y), each entry in the keypoint map m(i,j)
kp

is given as
m

(i,j)
kp = max(|i− x|, |j − y|) .

We produce the final keypoint mapmkp from an unnormalized keypoint map m̂kp by dividing m̂kp by the maximum possible
value over all possible m̂kp (note that this is not necessarily the maximum value of the given m̂kp). The performance of CH-
CNN with each type of keypoint map is shown in Table 1.

Table 2 lists the performance of fine-tuned R4CNN [6] and CH-CNN on each keypoint type, as well as the relative im-
provement of our model over fine-tuned R4CNN. From the overall relative improvement for all three object classes under
both evaluation metrics, we observe that providing keypoint information generally increases viewpoint estimation perfor-
mance over R4CNN. However, we also note that in the motorcycle class, some keypoint classes appear to confuse CH-CNN
and yield a relative decrease in performance.

In Table 3, we compare the errors made by CH-CNN and R4CNN based on per-instance performance rather than aggregate
performance. To do this, we compute the error ∆(Rpr, Rgt) for one instance from R4CNN, and subtract the corresponding
value from CH-CNN. The values in Table 3 are the means of the resulting difference in errors stratified by keypoint class.
From this table, we see that across most keypoint classes, CH-CNN predicts an angle closer to the ground truth than R4CNN
for any particular instance. We see the same general trends as those seen in Table 2, such as performance varying depending
on keypoint class and decreased performance for certain motorcycle keypoint classes.

In Figure 2, we plot the value of AccThresh, defined as the fraction of test instances where ∆(Rpr, Rgt) < Thresh
in radians, across multiple values of Thresh between 0 and π/4. We also report the normalized area under the curve
(nAUC), which is the percentage of the plotted area that falls under a given curve. From this graph, we notice that the gap
in performance between CH-CNN and R4CNN widens considerably with a large enough threshold. However, performance
between the two models is similar at very small values of Thresh, which suggests the need to focus on improvements at
strict threshold values.

5. Additional Qualitative Results
In this section, we present additional qualitative results. Figure 3 visualizes additional instances where a high degree of

occlusion, truncation, or object symmetry is present. Figure 4 shows the attention maps Wconv4 that are generated from a
test instance from each object class.

Accπ/6 MedErr
Keypoint R4CNN f.t. CH-CNN % ↑ R4CNN f.t. CH-CNN % ↑

Back left lower corner 86.0 94.6 10.0 2.93 2.34 20.1
Back left upper corner 81.0 91.4 12.8 3.87 2.99 22.7

Back right lower corner 86.7 93.9 8.30 3.32 2.92 12.1
Back right upper corner 80.9 93.0 15.0 3.66 3.01 17.8
Front left lower corner 94.8 97.4 2.74 2.64 2.55 3.41
Front left upper corner 93.3 97.1 4.07 2.66 2.61 1.88

Front right lower corner 94.4 98.0 3.81 2.83 2.55 9.89
Front right upper corner 88.2 98.6 11.8 2.83 2.66 6.01

Left back wheel 93.1 97.1 4.3 2.80 2.45 12.5
Left front wheel 90.6 100.0 10.4 3.12 2.92 6.41

Right back wheel 96.2 98.7 2.60 3.09 2.66 13.9
Right front wheel 91.5 100.0 9.29 3.08 2.99 2.92

Overall 90.7 96.8 6.73 2.93 2.64 9.90

(a) Bus

Accπ/6 MedErr
Keypoint R4CNN f.t. CH-CNN % ↑ R4CNN f.t. CH-CNN % ↑

Left front wheel 86.9 89.5 2.99 5.63 5.33 5.33
Left back wheel 80.6 89.0 10.4 5.81 5.70 1.89

Right front wheel 89.4 91.2 2.01 5.73 5.70 0.52
Right back wheel 85.9 90.8 5.70 5.84 5.70 2.40

Left front light 90.5 94.5 4.42 4.53 4.24 6.40
Right front light 93.2 95.5 2.47 4.50 4.27 5.11

Left front windshield 87.3 91.0 4.24 5.39 4.78 11.3
Right front windshield 88.9 91.7 3.15 5.00 4.62 7.60

Left back trunk 76.8 89.5 16.5 5.87 4.70 19.9
Right back trunk 72.8 88.0 20.9 5.91 4.99 15.6

Left back windshield 72.1 84.7 17.5 7.22 5.18 28.3
Right back windshield 70.8 87.6 23.7 7.61 5.34 29.8

Overall 78.5 90.2 14.9 5.63 4.98 11.6

(b) Car

Accπ/6 MedErr
Keypoint R4CNN f.t. CH-CNN % ↑ R4CNN f.t. CH-CNN % ↑
Seat back 84.2 84.7 0.59 12.6 12.5 0.79
Seat front 84.3 82.6 -2.02 12.4 13.7 -10.5

Head center 80.8 81.3 0.62 13.1 12.7 3.05
Headlight center 90.5 90.5 0.00 10.8 10.4 3.70

Back wheel, left side 77.5 86.5 11.6 12.3 12.3 0.00
Front wheel, left side 91.1 91.9 0.88 9.46 9.30 1.69

Left handle end 81.8 80.3 -1.83 11.5 11.7 -1.74
Back wheel, right side 71.3 80.2 12.5 14.7 12.6 14.3
Front wheel, right side 87.4 91.6 4.81 11.5 10.2 11.3

Right handle end 84.6 83.7 -1.06 11.5 11.2 2.61
Overall 84.1 85.2 1.40 11.7 11.4 2.56

(c) Motorcycle

Table 2: Comparison of fine-tuned R4CNN [6] and CH-CNN performance stratified by keypoint class. The % ↑ column lists
relative increase in performance of CH-CNN over R4CNN. The worst value in each column (lowest for Accπ/6 and % ↑,
highest for MedErr) is italicized, and the best value (highest for Accπ/6 and % ↑, lowest for MedErr) is bolded.

References
[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, and others. Shapenet:

An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015. 2

Keypoint Mean difference
Back left lower corner 0.1590
Back left upper corner 0.1987

Back right lower corner 0.1418
Back right upper corner 0.2324
Front left lower corner 0.0478
Front left upper corner 0.0713

Front right lower corner 0.0675
Front right upper corner 0.0966

Left back wheel 0.1401
Left front wheel 0.1871

Right back wheel 0.0540
Right front wheel 0.1665

Overall 0.1140

(a) Bus

Keypoint Mean difference
Left front wheel 0.0701
Left back wheel 0.1389

Right front wheel 0.0306
Right back wheel 0.0777

Left front light 0.0862
Right front light 0.0625

Left front windshield 0.0715
Right front windshield 0.0467

Left back trunk 0.2601
Right back trunk 0.2949

Left back windshield 0.2681
Right back windshield 0.3110

Overall 0.1532

(b) Car

Keypoint Mean difference
Seat back 0.0062
Seat front -0.0091

Head center 0.0151
Headlight center 0.0223

Back wheel, left side 0.1653
Front wheel, left side 0.0187

Left handle end -0.0353
Back wheel, right side 0.1739
Front wheel, right side 0.0660

Right handle end -0.0268
Overall 0.0240

(c) Motorcycle

Table 3: Mean difference in absolute error for individual instances (R4CNN - CH-CNN) stratified by keypoint class.

0 π/12 π/6 π/4

Threshold

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

CH-CNN (nAUC=0.782)
R4CNN (nAUC=0.740)

Figure 2: The metric AccThresh of R4CNN and CH-CNN for values of Thresh from 0 to π/4. For a given curve, nAUC is
the area under the curve divided by the total plotted area (π/4 in this graph).

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference
on Computer Vision and Pattern Recognition. 1

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional Architecture
for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014. 1

[4] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 1
[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems, 2012. 1
[6] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3d

Model Views. In IEEE International Conference on Computer Vision, 2015. 1, 3, 4, 6
[7] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection in the wild. In IEEE Winter Conference

on Applications of Computer Vision. IEEE, 2014. 2

(a) Occlusion

(b) Truncation

(c) Symmetry

Figure 3: Qualitative comparison of R4CNN [6] and CH-CNN on additional challenging instances.

(a) Bus

(b) Car

(c) Motorcycle

Figure 4: The weight maps visualized on test instances from each object class. In each cell, the real image and keypoint
visualization is on the left, the learned weight map is in the middle, and a visualization of the weight map overlaid on the
image is on the right. The overlay is generated by upsampling the weight map to the original image resolution and applying
a Gaussian filter to the result. The light masks and orange stars are for visualizing the keypoint location in this figure only,
and are not part of the input to any network.

