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1. Back-propagation (BP)
We derive the BP formulations for the And-layer1. Re-

call its definition is

S∗u(wu) =
∑

v∈Vl(u)−1

max
w̄v∈Dv

λandu,v (w̄v) + λconu,v S
∗
v (wv) (1)

After each forward pass, the objective function J is com-
puted. Let Hu,wu

(v, w̄v) ∈ {0, 1} indicate whether w̄v

is the location with the maximum score in Eq. (1) for the
output unit (u,wu) and input channel v. It should satisfy:∑

w̄v∈Dv
Hu,wu

(v, w̄v) = 1. Then, the partial derivatives
of J w.r.t. the input units and parameters can be obtained as
follows:

∂J

∂S∗v (wv)
=

∑
u∈Vl(v)+1

w̄v∈Dv

∂J

∂S∗u(wu)
Hu,wu(v, w̄v)λconu,v (2)

∂J

∂λconu,v

=
∑
wu

∂J

∂S∗u(wu)

∑
w̄v∈Dv

Hu,wu
(v, w̄v)S∗v (wv) (3)

∂J

∂λandu,v (w̄v)
=

∑
wu

∂J

∂S∗u(wu)
Hu,wu

(v, w̄v) (4)

It should be clear that w̄v , wv and wu are related by w̄v ≡
wv − wu: knowing two of them will determine the other.

2. Extended model
As mentioned on Page 3 of the paper, by including extra

data potentials, we can associate the higher-level And-nodes
with the observations. Then, the score function of the AOG
becomes:

S(Ω) =
∑

u∈Vleaf

φleafu (wu, I) +
∑

u∈Vor

φoru (zu, wu)

+
∑

u∈Vand

[φextu (wu, I) +
∑

v∈ch(u)

φandu,v (wu, wv)] (5)

1The Primitive-layer is a CNN. The Or-layer is similar with the max-
pooling layer and Maxout layer [3]. So, we omit their BP derivations here.

where φextu (wu, I) denotes the data potentials for the And-
nodes. It is defined similarly with the Leaf-node potentials:

φextu (wu, I) = λextu · fu(wu, I; Θ) (6)

where λextu is the part classifier/filter; fu(wu, I; Θ) is CNN
features extracted at location wu of image I with Θ being
the collection of the CNN’s parameters.

Following the derivations in the paper, the extended
And-node model is:

Su(Ωu) = φextu (wu, I)

+
∑

v∈Vl(u)−1

[λandu,v (w̄v) + λconu,v Sv(Ωv)] (7)

Correspondingly, the And-layer becomes

S∗u(wu) = φextu (wu, I)

+
∑

v∈Vl(u)−1

max
w̄v∈Dv

[λandu,v (w̄v) + λconu,v S
∗
v (wv)] (8)

Thus, the extended And-layer is the summation of the basic
And-layer in Eq. (1) and the CNN activations.

3. Computational complexity and running time
Assume Hin, Win and Cin denote the height, width

and channel number of the input feature maps, respec-
tively; Hout, Wout and Cout denote the height, width
and channel number of the output feature maps, respec-
tively; K is the side length of a square kernel. The for-
ward pass of an And-layer, defined in Eq. (1), is of com-
putational complexity O(K2CinHoutWoutCout). For the
backward pass, the complexities of Eqs. (2)-(4) are the
same2: O(CinHoutWoutCout). In comparison, the com-
plexities of the forward and backward passes of a convo-
lution layer are both O(K2CinHoutWoutCout). The com-
putational complexity of an Or-layer is the same with that

2In our implementation of the backward pass, coordinates of the se-
lected locations w̄v , instead of the binary indicators Hu,wu (v, w̄v), are
stored to reduce computation and memory costs.



Figure 1. Node filters learned on the MNIST dataset. Only positive values of each filter are displayed. Each higher-level filter is
composed from the child filters using the learned parameters. Bottom row: 20 primitive filters. Top row: 10 Object-level filters. Middle
row: 80 Or-node filters. The 4 filters in a green (red) box are those most relevant (irrelevant) to the corresponding object filter, evaluated
by λcon

uv . Due to part sharing, some filters may occur in multiple columns.

of a Maxout layer: O(CinHinWin) for forward pass and
O(CoutHoutWout) for backward pass. For an architecture
with multiple layers, its computational complexity is just
the summation of the complexities of each layer. Com-
pared with our CompNet, the previous compositional mod-
els [5, 12, 10, 13, 14, 9] are less scalable. In the forward
pass (inference), they search the parts in the whole image
space instead of a local window. This leads to a complex-
ity O(CinH

2W 2Cout) for each composition level, where
H and W denote the image size, Cin and Cout denote the
child number of each parent and the parent number. Note
H and W are far larger than K. To estimate the parame-
ters, latent structural learning, based on the concave-convex
procedure (CCCP) [11], is usually exploited. Each iteration
contains two steps: i) Given the current parameter estima-
tion, infer the optimal values of the latent variables. This
is of the same complexity with the forward pass; ii) Solve
a standard structural SVM problem [6] without latent vari-
ables. The second step is an iterative process and computa-
tionally expensive for large training set and deep structures
[12]. In each sub-iteration, all latent states of all training
examples have to be checked to create/update a working set
[12]. Then, a SVM dual problem over this working set is
optimized via the Sequential Minimal Optimization (SMO)
[4].

Since our CompNet is trained via a GPU3 while previ-
ous compositional models are learned using CPUs, it is un-
fair to compare their running times directly. For example,
it takes the 3-layer model [12] 25 hours to train one object
class on the PASCAL VOC 2007 dataset; The training of
our deeper CompNet, as described in the paper, for all the
20 object classes takes less than 4 hours. Thus, we compare
the CompNet with its CNN and Maxout Network counter-

3NVIDIA TITAN X with 12 GB memory

parts. Specifically, in the ICDAR-03 character recognition
task, all the three networks have the same depth, width and
batch size, i.e. 128, as described in the paper. Using the
same GPU, they achieve the same efficiency: training 100
iterations costs 8 seconds and testing on all the 5400 sam-
ples costs 1 second. This agrees with our complexity anal-
ysis.

4. Experiments
Fig. 1 here is the same with Fig. 6 in the paper ex-

cept that only positive parts of the composed filters are dis-
played. We include it here for assistant visualization.

Tab. 1 supplements the experiment of object detection
on the PASCAL VOC 2007 dataset with the average preci-
sions (APs) of each method on the 20 object classes. We
also include the detection results obtained on the PASCAL
VOC 2012 dataset in Tab. 2. We can observe that the pro-
posed CompNet outperforms the baseline methods on both
datasets. However, the proposal-based approaches, i.e.,
CompNets and R-CNNs, fail to detect bottles well. This is
due to the bad localization of this object class by the adopted
object proposal method [7].

5. Discussion
For structure modeling, we explicitly parametrize and

learn the connections. As we observed in our experiments,
the learned connections are generally sparse. For example,
Fig. 2 shows the histogram of the learned connection pa-
rameters of the CompNet in the MNIST experiment. Since
most connections have strengths close to 0 and can be omit-
ted, the learned model corresponds to an AOG with sparse
connections.

In the experiments, we have tested both And-Or-And and



aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
CNN-DPM [2] 44.6 65.3 32.7 24.7 35.1 54.3 56.5 40.4 26.3 49.4 43.2 41 61 55.7 53.7 25.5 47 39.8 47.9 59.2 45.2
CNN-DPM [8] 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32 67.5 61.8 46.7 25.9 40.5 46 57.1 58.2 46.9

RCM [12] 29.4 55.8 14.3 28.6 44 51.3 38.4 36.8 9.4 21.3 19.3 12.5 50.4 19.7 36.6 15.1 20 25.2 25.1 39.3 29.6
R-CNN p5 [1] 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59 45.8 28.1 50.8 40.6 53.1 56.4 47.3

AOT [5] 35.3 60.2 16.6 29.5 53 57.1 49.9 48.5 11.0 23.0 27.7 13.1 58.9 22.4 41.4 16.0 22.9 28.6 37.2 42.4 34.7
Ours 61.5 62.3 47.3 37.6 17.9 62.8 67.3 68.8 23.3 55.7 53.8 57.5 68.4 62.3 53.6 22.3 47 53.1 64.4 52.4 52.0

Table 1. Detection average precision (in %) on Pascal VOC 2007.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
CNN-DPM [2] - - - - - - - - - - - - - - - - - - - - 41.6
CNN-DPM [8] 63.3 60.2 33.4 24.4 33.6 60 44.7 49.3 19.4 36.6 30.2 40.7 57.7 61.4 52.3 21.2 44.4 37.9 51.1 52.2 43.7

Ours 70.1 60.2 47.5 29.9 20.4 61.5 55.0 75.0 22.4 50.0 34.9 68.4 64.5 67.8 53.9 20.8 50.2 44.8 58.7 48.8 50.3

Table 2. Detection average precision (in %) on Pascal VOC 2012.
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Figure 2. Histogram of the learned connection parameters of the
CompNet in the MNIST experiment.

And-Or-And-Or architecture patterns. Intuitively, the latter
structure, which has one more Or-layer, can explicitly de-
couple the modes of patterns and increase the interpretabil-
ity. However, we observed negligible differences between
their practical performances in all the experiments. This can
be explained for several reasons. (1) As discussed in Sec.
3.2 in the paper, our nonparametric And-node can model
multimodal distributions. (2) For characters, there is no
viewpoint or articulation variations. (3) For object detec-
tion, deep CNNs have captured some invariance to the pat-
tern variations. We chose the And-Or-And structure since it
is the simplest one without degradation in performance.

6. Codes and more visualization results
The codes and more visualization results can be found at

the project web: http://www.ece.northwestern.
edu/˜wtt450/project/ICCV17_CompNet.html.
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