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In this document, we report additional results and de-
tails concerning paper #893, ”Unsupervised Adaptation
for Deep Stereo”. section 1 shows qualitative results on
challenging stereo pairs from sequences belonging to the
dataset proposed in [4], while section 2 reports details
concerning implementation and off-the-shelf tools (i.e.,
trained Dispnet and CCNN architectures) deployed in our
work. Within the supplementary material we also enclose
videos showing the complete results on the sequences
considered in section 1.


1 Additional Qualitative Results


This section contains additional qualitative results on
frames taken from the dataset proposed in [4]. We focus
on these sequences because of the very challenging con-
ditions they address. In particular, the poor illumination
common to all these frames represents one of the hard-
est nuisance to any stereo algorithm. Moreover, as there
exists no ground-truth data available for this dataset, it
represents a perfect scenario to validate our unsupervised
adaptation technique.


Table 1 and Table 2 show on the first row the original
left stereo frame, on the second an equalized version of
the frame (to provide the reader with a a better perception
of the depicted scene, often hard to obtain due to poor
lighting), on the third the disparity map computed by the
original Dispnet [3] trained on synthetic data only, on the
fourth the prediction obtained using Dispnet fine tuned
suprevisedly on the KITTI 2012 training dataset [1], and,
finally, on the fifth, the disparity map inferred by Disp-


net after our unsupervised adaptation method using AD-
CENSUS [6] as stereo algorithm and CCNN [5] as confi-
dence estimator.


By analyzing the results in Table 1, we can observe
that in this challenging environment the original Dispnet
trained only on synthetic data fails to produces meaning-
ful disparity maps, thereby confirming the need for fur-
ther training when deploying this network in real envi-
ronments and challenging conditions. Fine tuning on a
similar real scenario with available ground truth (Dispnet
K12-GT) helps improving the performance, but the pre-
dicted disparity map remains noisy and with large mis-
takes. An example is given by the #0 frame from Rain-
Blur sequence (leftmost column of Table 1), where Disp-
net K12-GT fails on a large portion on the left side of the
image, while our unsupervised adaptation methodology
(ADAPTED DispNet) can predict much more correctly
the depth structure of the scene. Moving to the second
column, depicting the results concerning the WetAuto-
bahn sequence (in particular, frame #5), Dispnet hardly
identifies the car on the left part of the image and it al-
most does not notice the presence of the large truck in
the middle o the scene, which is more evident in the dis-
parity map depicted by ADAPTED Dispnet, which also
provides better detection of the car on the left. Moreover,
the entire street appears to be smoother. As for the third
column, depicting frame #11 from sequence RainFlares,
Dispnet K12-GT presents a blurred depth estimation on
the rightmost part of the image, this issue not affecting
the prediction obtained by ADAPTED DispNet.


Table 2 reports additional qualitative results from
sequences FlyingSnow, RainFlares and ReflectingCars,
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Table 1: From left to right qualitative result on: RainBlur (#0), WetAutobahn (#5), RainFlares (#11).
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Table 2: From left to right qualitative results on Flying Snow (#4), Rain Flares (#23), Reflecting Cars (#18).
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Table 3: Qualitative results of our adaptation method at different iterations on the Rain Flares sequence.
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from left to right, respectively. Similarly to Table 1, we
show here the left frame, the equalized left frame and the
disparity maps yielded by Dispnet, Dispnet K12-GT and
ADAPTED Dispnet, from top to bottom, respectively. On
each sequence, we focus on particular elements captured
by the scene, to highlight the benefits brought in by our
unsupervised adaptation approach. Thus, in the leftmost
column, we circle on frame #4 from FlyingSnow a wave
of snow raised by the car (more easily visible in the equal-
ized left image), which is better sensed by ADAPTED
Dispnet. In frame #23 from RainFlares, ADAPTED Disp-
net correctly reconstructs the traffic sign circled in the ref-
erence image, which is totally absent in the disparity map
computed by Dispnet K12-GT, which also present a large
error on the bottom-right corner of the image. Finally, in
the rightmost column, the ReflectingCars sequence deals
with a very challenging scene (hardly intelligible from the
original left frame before equalization). Here, Dispnet
K12-GT senses one blurred object in correspondence of
the two cars highlighted by the box in the original and
equalized images, whilst ADAPTED Dispnet allows for a
clearer detection of the two objects.


2 Implementation Details


We provide some more insights on the software used for
our method and on the timing performance achieved by
our adaptation techniques. For all our tests we rely on the
original code and weights made available by the authors
for both Dispnet[3]1 and CCNN [5]2. For CCNN we do
not modify the original implementation nor we re-trained
the network in any manner, instead we just used the pro-
vided test script and weights to compute a confidence
map for the disparities obtained using AD-CENSUS[6]
and SGM[2] on our train and tests datasets. Conversely
to achieve our adapted DispNet we modify the original
Caffe implementation to minimize our novel loss func-
tion. In particular, for all our training we perform fine-
tuning of the Dispnet-Corr1D model based on our loss
function starting from the weights of the network trained


1http://lmb.informatik.uni-freiburg.
de/resources/binaries/dispflownet/
dispflownet-release-1.1.tar.gz


2http://vision.disi.unibo.it/˜mpoggi/code/
BMVC2016_train_and_test.zip


on synthetic data provided by the authors. We will make
the code to perform fine-tuning based on our loss avail-
able to the scientific community.


As for the timing performance, our method does not
slow down in any way the original Dispnet either in train-
ing or testing. Running on a Titan X Pascal GPU, our
model requires for images at KITTI resolution respec-
tively 0.06s per image at inference time and 0.6s per
4 image batch at training time (assuming already avail-
able depth and confidence map). As for CCNN, comput-
ing a confidence map requires approximately 0.3s on a
GPU (i.e., Titan X) for the same KITTI resolution; AD-
CENSUS and SGM instead requires negligible time as
they can leverage on highly optimized (even hardware
based) implementation. As can be observed in Table 3,
our method allows for a quick adaptation of the network
to the new environment. After just 90 iterations the dis-
parity predicted on the road starts to be meaningful and at
around 200 iteration the network starts to identify the van
in front of the vehicle. More generally, our tests show that
usually within the first 200/300 iterations (∼2-3 minutes)
our adaptation can solve the biggest mistakes in the dis-
parity map initially predicted, while the subsequent steps
improve the overall definition and performs minor adjust-
ments. From this observation we think that, alternating
training and inference steps and with a careful tuning of
the hyper-parameters, it might be possible in the future to
use our method to create the first self adapting deep stereo
system.
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