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I. Network Design

Fig. 1 provides an easy-to-understand design of ReViSE.
In all of our experiments, GoogLeNet is pre-trained on Im-
ageNet [2] images. Without fine-tuning, we directly extract
the top layer activations (1024-dim) as our input image fea-
tures followed by a common log(1+v) pre-processing step.
For the textual attributes, we pre-process them through a
standard l2 normalization.

In ReViSE, we set α = 1.0 in eq. (11), so that we
place equal importance on supervised and unsupervised ob-
jectives. For the visual auto-encoder, we fix the parameter
of the contraction strength γ = 0.1 in eq. (2). In the fol-
lowing, we omit the bias term in each layer for simplicity.
The encoding of visual features is parameterized by a two-
hidden layer fully-connected neural network with architec-
ture dv1−dv2−dc, where dv1 = 1024 is the input dimension
of the visual features, dv2 = 500 is the intermediate layer,
and dc denotes the dimension of the visual codes ṽh. To
encode textual attributes, we consider a single-hidden layer
neural network dt1−dc, where dt1 is the input dimension of
the textual attributes. We choose dc = 100 when dt1 > 100
and dc = 75 when dt1 < 100. Furthermore, we do not
tie the weights to be learned between the decoding and en-
coding parts. Parameters for associating distributions of vi-
sual and textual codes (MMD Loss) in eqs. (5) (12), and
(6) are set as β = {0.1, 1.0} (chosen by cross-validation)
and κ = 32.0. For the remaining part of our model, we
set the architecture of visual and textual code mapping as
a single-hidden layer fully-connected neural network with
dimension dc − 50. We also adopt a dropout of 0.7.

During the first 100 iterations of training, we set λ = 0
so that no unsupervised-data adaptation is used while still
updating Î(ut)i,c . Note that Î(ut)i,c are the inferred labels for
unsupervised data, and not random at each iteration. Begin-
ning with the 101th iteration, we set λ = {0.1, 1.0} (cho-
sen by cross-validation), and the model typically converges
within 2000 to 5000 iterations.

We implement ReViSE in TensorFlow [1]. We use Adam
[3] for optimization with minibatches of size 1024. We
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Figure 1. Our designed architecture.

Table I. Value of β and λ.

Dataset AwA CUB
attributes att w2v glo att w2v glo

β 0.1 1.0 1.0 1.0 1.0 1.0
λ 1.0 1.0 1.0 1.0 0.1 0.1

choose tanh for all of our activation functions.

II. Parameters Choice

We have four parameters in our architecture: α, β, γ,
and κ. We fix α = 1.0, γ = 0.1, κ = 32.0 for all
the experiments. Then we set λ = 0.0 (no unsupervised-
data adaptation inference), and perform cross-validation
on the splitting set as suggested by [3,46] to determine β
from {0.1, 1.0}. Next, with chosen β, we perform cross-
validation to choose λ from {0.1, 1.0}. Table I lists the
statistics of β and λ.

Next, we study the power of unsupervised information.
We now take CUB dataset with att attributes to test the ad-
vantage of using unsupervised information, which can be
viewed as tuning the parameter α for the unsupervised ob-
jective in eq. (11). Originally, α was set to 1.0, which
equally weights the contribution of supervised and unsu-
pervised loss. We now alter α as follows: 0.1 to 1.0 by step
size of 0.1 and 0.5 to 5.0 by step size of 0.5. The results
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Figure 2. Varying α in two scales: 0.1 to 1.0 and 0.5 to 5.0. (a),(c) display plots for transductive zero-shot recognition and (b),(d) display plots for
transductive zero-shot retrieval. CUB dataset with att attributes are used in the experiments.
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Figure 3. MMD distance w.r.t. # of iterations for our method with and
without LMMD . The experiment is conducted on CUB dataset with att
attributes under transdutive zero-shot setting.

Figure 4. Precision-recall curve comparison for zero-shot retrieval
on CUB with human annotated attributes as textual attributes for
classes. Best viewed in color.

are shown in Fig. 2. We observe that when α increases
from 0.1 to 1.0, the performance increases; however, when
α increase from 1.0 to 5.0, the performance stays relatively
unchanged. Empirically, we find that ReViSE does not per-
form better when α > 1.0, which is expected, since we
should not view unsupervised information more important
than supervised information.

III. Precision-Recall Curve
Fig. 4 is the precision-recall curve for zero-shot retrieval

results on CUB dataset with att attributes.

IV. MMD Distance
MMD distance in eq. (5) can be viewed as the distribu-

tion measurement [13] between visual and textual code. For
CUB dataset with att attributes under transductive zero-shot
experiment, we calculate the MMD distance (on the test
codes) in our method with (ReViSE) and without (ReViSE†)

Table II. Inductive and transductive zero-shot recognition using top-1
classification accuracy (%).

Dataset AwA CUB average
attributes att w2v glo att w2v glo top-1 acc.

test data not available during training
SOC [30] 58.6 50.8 68.0 34.7 30.9 30.6 45.6

ConSE [29] 59.0 53.2 49.8 33.6 28.8 30.8 42.5
SSE [49] 63.8 58.6 65.8 31.8 27.9 25.4 45.6
SJE [2] 66.7 52.1 58.8 50.1 28.4 24.2 46.7

ESZSL [37] 76.8 62.2 67.7 50.3 33.4 34.1 54.1
JLSE [50] 71.8 64.0 68.0 33.7 28.0 27.1 48.8

LatEm [48] 71.9 61.1 62.9 45.5 31.8 32.5 51.0
Sync [7] 72.9 62.0 67.0 48.7 31.2 32.8 52.4
MTE [6] 77.3 - - 43.3 - - -

DeViSE [9] 67.4 67.0 66.7 40.8 28.8 25.6 49.3
CMT [41] 67.6 69.5 68.0 42.4 29.6 25.7 50.5

test data available during training
TMV [10] 89.0 69.0 88.7 51.2 32.5 38.9 61.6

SMSESZSL [12] 89.6 78.0 82.9 52.3 34.7 32.3 61.6
DeViSE* [9] 90.7 84.8 88.0 41.4 31.6 26.9 60.6
CMT* [41] 89.4 87.8 81.8 43.1 31.8 28.9 60.5
ReViSE†† 92.1 92.3 90.3 62.4 30.0 27.5 65.8
ReViSE† 92.8 92.6 91.7 62.7 31.8 28.9 66.8
ReViSEc 73.0 67.0 73.4 53.7 26.4 28.2 53.6
ReViSE 93.4 93.5 92.2 65.4 32.4 31.5 68.1

LMMD. The results of MMD distance w.r.t. the number of
iterations are shown in Fig. 3. We clearly observe that the
red curve (ReViSE) has consistently lower value than the
blue curve (ReViSE†). Moreover, based on the previous re-
sults, ReViSE always performs better than ReViSE†. Hence
aligning the distributions across visual and textual codes can
better associate cross-modal information and thus lead to
more robust visual-semantic embeddings.

V. Comparing with recent state-of-the-art
methods

In our main paper, we focus on comparing with deep-
embeddings methods. In Table II, we compare other meth-
ods for inductive and transductive zero-shot learning. Note
that SMSESZSL adopts ESZSL for its initialization.

VI. Remarks on Contractive Loss
We find that adding contractive loss to textual auto-

encoder doesn’t provide much benefit. One possible rea-
son may be the limited number of textual features (200 for
CUB). On the other hand, the number of visual features is
large (11, 786 for CUB).
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