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1. More Denoising Results
We first illustrate an example of color video denoising,

using a simple extension of the proposed SALT video de-
noising. Besides, we report both the denoised peak signal-
to-noise ratio (PSNR) and the structural similarity (SSIM)
[1], which are objective measures commonly used to assess
video quality, obtained by the proposed SALT method over
both ASU [2] and TUT [3] datasets, and comparing to state-
of-the-art competing methods.

1.1. Extension to Color Video Denoising

This work focuses on proposing a novel and effective
video denoising method, thus only the gray-scale video de-
noising algorithm is discussed in details. Prior work on
online transform learning [4] provided a simple extension
from gray-scale to color image denoising using transform
learning. Similarly, here we extend our gray-scale SALT
video denoising algorithm to color video denoising, by
learning a 4D sparsifying transform for the extracted 4D
tensors.

Figure 1 illustrates the visual comparison of the denois-
ing results, by showing one frame of the denoised color Ste-
fan at σ = 20 (the clean and noisy frames are shown in Fig.
1(a) and (b)), obtained by color extension of SALT (see Fig.
1(c)) and RGB color independent VBM3D (see Fig. 1(d)).
The denoised frame by color SALT clearly preserves more
local structures and details, while RGB color independent
VBM3D generates blurry regions, e.g., the zoomed-in re-
gion in the red box. It is also evident that the denoised frame
y SALT exhibits much lower reconstruction error (see Fig.
1(e) and (f)).

Such simple extension to color video denoising using
SALT may not be optimal. Besides, there are other possi-
ble extensions to the proposed SALT method. For example,
this work demonstrates Gaussian noise removal, which has
been extensively studied [4–10]. Similar approaches can be
generalized to remove other types of noise. Moreover, the
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Figure 1. Denoising result: (a) One frame of the color video Stefan,
(b) Frame corrupted with noise at σ = 20 (PSNR = 22.10 dB),
(c) Denoised frame using the color video denoising extension of
SALT (PSNR = 31.97 dB). (d) Denoised frame using single RGB
channel VBM3D (PSNR = 28.76 dB). (e) Magnitude of error in
(c). (f) Magnitude of error in (d).

noise standard deviation is normally assumed to be known.
Prior works [11,12] provided approaches for noise level es-
timation, which can be combined with the proposed SALT
method. We leave the similar extensions of SALT to future
work.
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Methods
Local Sparse Model

Block Temporal
Non-local Method

Fixed Adaptive
Online

Matching Correlation
Wienner Low-Rank

Update Filtering Approximation

fBM3D 3 3 3

sKSVD 3 3

VIDOSAT 3 3 3

VBM3D /
3 3 3 3

VBM4D

BM-DCT 3 3 3

BM-LR 3 3 3

BM-TL 3 3 3 3

SALT 3 3 3 3 3

Table 1. Comparison between the proposed SALT denoising and the competing methods.

1.2. Complete PSNR and SSIM tables

Table 2 and 3 list the denoised PSNR and SSIM values
over the 28 videos in ASU dataset [2], and Table 4 and 5 list
the denoised PSNR and SSIM values over the 8 videos in
TUT dataset [3], which are obtained by our proposed SALT
video denoising method, as well as VBM3D, VBM4D, and
VIDOSAT, which are the major competing methods 1. The
SSIM values of the denoised results using SALT also show
an average improvement over those using competing meth-
ods. SALT consistently provides the highest PSNRs for
most videos and noise levels. There are only few cases in
which SALT does not outperform VBM3D, but still pro-
vides comparable denoised results.

1.3. Denoised Video Generation

We generate the denoised video of Gbicycle, and both
gray-scale and color Stefan, which are compressed using
MPEG-4, using Matlab 2015b function VideoWriter on the
Windows 10 operating system.

2. Selected Competing Methods
As discussed in the paper, there is a significant differ-

ence between denoising videos and other multi-frame im-
age data, such as volumetric data or hyperspectral data.
Thus, we restrict our investigation of competing denoising
methods to those which are developed for video denoising
and have publicly available implementations. Table 1 pro-
vides a more comprehensive comparison of the different at-
tributes of the proposed SALT denoising and the selected

1We observe that VBM3D generates denoised results with very low
PSNR for several videos at σ = 5. We conjecture that there are some
errors in VBM3D publicly available implementation.

competing methods. It would be interesting to extend the
comparison to additional recent algorithms [13–15] when
their implementations become publicly available.

Recent works have demonstrated that iterative process-
ing schemes [6, 16, 17] can often enhance denoising algo-
rithms and improve their average denoised PSNRs, sub-
ject to careful parameter tuning. For the sake of computa-
tional efficiency and fair comparison we did not apply any
of the similar schemes in the SALT algorithm or the com-
peting methods. We leave the study of combining iterative
schemes with SALT denoising to future work.

3. Choice of Parameters

We provide a simple analysis and intuition to justify the
choice of parameters used in our numerical experiments.

3.1. Thresholds ρ and θ

We choose ρ = 3σ and θ = 1.1σ(
√
K +

√
ns) as the

thresholds for sparse codes and singular values respectively.
The following analysis is under the assumption that the
clean vectorized and matricized tensors are exactly sparse
under the adaptive transform and low-rank, respectively.

Sparse code threshold ρ: Suppose the clean vector-
ized tensor is u = WTα ∈ Rn, the noisy observation is
ũ = u+e, where α is a sparse vector and e ∼ N(0, σ2In) is
additive Gaussian white noise, and the residual in the trans-
form domain is Wũ− α = We ∼ N(0, σ2In) and follows
the same Gaussian distribution. In order to suppress the
Gaussian noise in Wũ and make α̂ = Hρ(Wũ) close to the
true sparse code α, one can choose a threshold ρ that is pro-
portional to σ. Empirically, we observe that ρ = 3σ yields
good final reconstruction results. Since the threshold is 3



standard deviations, the probability that a zero element in α
becomes nonzero in α̂ is very low (0.27%).

Singular value threshold θ: Similarly, we assume that
U ∈ Rns×K has rank r and its compact SVD is U =
ΛΩ∆T , where Λ ∈ Rns×r, Ω ∈ Rr×r, and ∆ ∈ RK×r.
The noisy observation is Ũ = U + E, where E is additive
Gaussian white noise of variance σ2. When the noise level
is low, the full SVD of Ũ is approximately

Ũ ≈
[
Λ Λ̃

] [Ω̃1 0

0 Ω̃2

] [
∆ ∆̃

]T
,

i.e., the first r singular vectors remain the same after adding
the noise. Then the (r + 1)-th singular value of Ũ is
approximately ‖Λ̃T Ũ∆̃‖ = ‖Λ̃TE∆̃‖, where Λ̃TE∆̃ ∈
R(ns−r)×(K−r) is also Gaussian white noise of variance σ2.
By a well-known result in random matrix theory, the above
spectral norm is approximately σ(

√
ns − r+

√
K − r) (see,

e.g., [18]). In practice, one can set the singular value thresh-
old θ between the r-th and (r + 1)-th singular value of Ũ .
Numerical experiments show that θ = 1.1σ(

√
ns +

√
K)

achieves good denoising performance (note that the true
rank r is unknown).

3.2. Weights γl, γs, and γf

When we combine the sparse and low-rank approxima-
tions to form the final reconstruction, the weights are chosen
such that the residual noise level is minimized.

Suppose we have two noisy copies ũ1, ũ2 of u, where
ũ1 = u + e1, ũ2 = u + e2, and e1, e2 are Gaussian white
noises of variances σ2

1 and σ2
2 . Then the best convex combi-

nation of ũ1 and ũ2 that minimizes the residual noise vari-
ance is (σ2

2ũ1 + σ2
1ũ2)/(σ2

1 + σ2
2), i.e., the weights are in-

versely proportional to the variances.
Admittedly, the residual noise in the sparse and low-rank

approximations are no longer Gaussian white noise. How-
ever, we find that choosing weights inversely proportional to
the mean squared errors yields good reconstruction results.
For example, the residual error in a sparse approximation
has energy proportional to its sparsity level s. Therefore, the
weight of sparse approximation is chosen as γs,i = 60/si,
inversely proportional to sparsity level si. The choices of γl
and γf are based on similar observations.

3.3. Other parameters

As the noise standard deviation increases from σ = 5
to σ = 50, we decrease the spatial search window size
from h = 30 to h = 16 since running KNN over imper-
fect measurements within a larger window is more likely to
cause mismatches, especially when the measurements are
more corrupted (i.e., with higher σ). Assuming the neighbor
patches are similar, using a smaller window size is equiva-
lent to performing a more regularized matching and reduces
mismatches. We also use a larger tensor size K for noisy

videos with higher σ so that each patch is denoised and ag-
gregated more times to obtain better reconstruction result.

Though hyperparameter tuning is required, the pro-
posed SALT denoising is an unsupervised approach, as it
learns the transform model directly from the corrupted data,
without training over a clean corpus. All the parameters
are fixed for our denoising experiment after tuning, and
SALT consistently outperforms all competitors in different
datasets. Recent work proposed automatic parameter tuning
for transform learning [19], which can be combined with
the proposed SALT method for even better reconstruction
performance.
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σ Akiyo (C) Akiyo (Q) Bus (C) Carphone (Q) Claire (Q) Coastguard (C) Coastguard (Q)

5
45.52 45.14 45.75 45.21 37.61 37.66 38.66 41.15 45.98 45.91 38.33 38.93 38.32 39.12

45.67 46.29 45.80 46.50 37.85 39.38 40.90 42.54 46.17 47.11 39.38 39.79 39.59 40.19

10
42.57 41.98 42.08 41.15 33.39 33.40 37.36 37.43 42.58 42.09 34.62 35.14 34.82 35.37

42.17 43.14 41.55 42.55 33.51 35.11 36.89 38.56 42.06 43.35 35.47 35.95 35.73 36.23

15
40.73 39.96 39.84 38.61 31.10 31.09 35.38 35.30 40.58 39.55 32.68 33.04 33.03 33.23

39.92 41.01 38.98 40.13 31.17 32.62 34.66 36.29 39.64 40.99 33.30 33.85 33.57 34.15

20
39.23 38.39 37.95 36.65 29.58 29.53 34.05 33.83 39.00 37.51 31.37 31.61 31.73 31.71

38.37 39.44 37.18 38.28 29.57 30.98 33.21 34.77 38.00 39.22 31.82 32.42 32.04 32.58

50
33.26 31.99 31.13 30.07 24.91 24.55 29.14 28.33 33.10 29.56 26.95 26.91 26.90 26.71

32.81 33.46 31.51 32.36 25.05 26.16 28.93 30.00 32.59 33.14 27.41 28.04 27.53 28.07
σ Container (C) Container (Q) Flower (C) Foreman (C) Foreman (Q) Grandma (Q) Hall (C)

5
42.05 42.18 43.05 42.87 38.31 38.10 39.83 39.98 35.26 40.37 43.56 43.63 41.66 41.49

43.08 43.17 43.88 43.92 38.74 40.34 40.20 41.68 40.67 42.25 43.92 44.50 41.83 41.98

10
38.82 38.39 39.42 38.74 34.19 33.92 36.54 36.60 36.62 36.79 39.77 39.21 39.43 38.88

39.37 39.57 39.65 39.87 34.31 35.87 36.58 37.96 36.68 38.11 39.64 40.33 39.27 39.76

15
36.87 36.22 37.31 36.49 32.00 31.66 34.72 34.72 34.65 34.70 37.50 36.40 38.06 37.08

37.12 37.47 37.23 37.60 31.73 33.38 34.46 35.78 34.40 35.86 37.19 37.91 37.61 38.23

20
35.37 34.66 35.72 34.85 30.48 29.99 33.39 33.37 33.20 33.14 35.65 34.51 36.92 35.57

35.57 35.83 35.58 35.82 29.89 31.43 32.95 34.27 32.75 34.20 35.60 36.14 36.34 36.99

50
29.80 28.70 29.34 28.23 24.27 23.32 28.79 28.39 28.05 27.72 30.26 28.69 31.32 29.33

30.39 30.54 30.10 30.21 24.40 25.66 28.50 29.47 27.93 29.24 30.82 31.31 31.35 31.93
σ Hall (Q) Mobile (C) Mobile (Q) Mother (C) Mother (Q) News (C) News (Q)

5
43.03 42.64 38.07 37.80 37.30 37.43 43.65 44.14 43.34 43.66 44.14 43.83 43.73 43.36

43.10 43.33 39.41 40.08 39.40 39.84 44.17 45.05 43.82 44.96 44.24 44.91 43.71 44.35

10
40.05 39.15 34.17 33.72 33.37 33.43 40.58 40.76 39.80 39.62 40.82 40.29 39.81 39.14

39.78 40.11 35.19 35.90 35.05 35.45 40.60 41.80 39.73 40.97 40.36 41.31 39.21 40.07

15
38.06 36.77 32.00 31.47 31.27 31.19 38.81 38.60 37.79 37.13 38.78 38.05 37.50 36.60

37.52 38.05 32.70 33.55 32.49 32.96 38.41 39.59 37.43 38.61 37.97 38.98 36.60 37.59

20
36.42 34.88 30.41 29.81 29.73 29.55 37.47 37.07 36.27 35.41 37.19 36.37 35.76 34.75

35.82 36.30 30.90 31.72 30.62 30.97 36.97 38.03 35.93 36.97 36.32 37.27 34.84 35.68

50
29.43 27.90 24.14 23.74 23.68 23.52 32.85 32.11 30.85 30.27 31.01 29.31 28.94 27.60

30.10 30.60 25.31 26.08 25.12 25.35 32.25 32.72 31.09 31.84 30.90 31.52 29.30 29.88
σ Salesman (Q) Silent (C) Silent (Q) Stefan (C) Suzie (Q) Tempete (C) Waterfall (C)

5
34.09 43.06 42.38 42.31 42.80 42.59 38.71 38.66 21.91 42.12 38.53 38.56 39.16 40.18

43.43 43.85 42.43 43.13 42.95 43.54 38.93 40.32 42.04 43.57 39.28 40.24 41.28 42.12

10
39.24 38.59 38.64 38.16 38.73 38.23 34.61 34.55 38.09 38.67 34.84 34.74 35.63 36.49

38.87 39.46 38.30 39.11 38.46 39.26 34.61 36.28 38.27 40.06 35.19 36.25 37.23 38.23

15
36.76 35.59 36.43 35.60 36.39 35.54 32.35 32.28 36.54 36.60 32.83 32.62 33.70 33.97

36.22 36.90 35.98 36.81 35.91 36.82 32.09 33.81 36.21 37.94 32.89 33.98 34.81 35.75

20
34.81 33.50 34.73 33.85 34.63 33.64 30.73 30.66 35.30 35.18 31.39 31.10 32.24 32.13

34.48 34.97 34.46 35.15 34.29 35.05 30.26 32.00 34.87 36.43 31.31 32.32 33.16 33.93

50
28.14 27.33 29.67 29.03 28.62 28.00 24.90 24.90 31.20 31.06 26.05 25.56 27.68 27.45

29.27 29.75 29.90 30.53 29.25 29.99 24.88 26.17 30.58 31.60 26.64 27.33 28.54 29.11
Table 2. Comparison of video denoising PSNR values over ASU dataset. Top Left: VBM3D [3]; Top right: VBM4D [20]; Bottom Left:
VIDOSAT [17];Bottom right: SALT video denoising. The QCIF (i.e. 144 × 176 resolution) and CIF (i.e. 288 × 254 resolution) videos
are denoted with (Q) and (C), respectively. For each video and noise level, the best denoising PSNR is marked in bold.



σ Akiyo (C) Akiyo (Q) Bus (C) Carphone (Q) Claire (Q) Coastguard (C) Coastguard (Q)

5
0.987 0.984 0.992 0.990 0.978 0.979 0.984 0.985 0.992 0.991 0.968 0.975 0.968 0.976

0.987 0.988 0.992 0.993 0.979 0.986 0.984 0.988 0.991 0.993 0.976 0.978 0.978 0.980

10
0.979 0.974 0.985 0.978 0.944 0.947 0.969 0.969 0.987 0.982 0.926 0.940 0.932 0.944

0.974 0.979 0.979 0.985 0.947 0.962 0.966 0.975 0.979 0.986 0.945 0.950 0.949 0.953

15
0.972 0.964 0.976 0.963 0.906 0.912 0.956 0.952 0.980 0.972 0.887 0.904 0.901 0.911

0.959 0.968 0.963 0.974 0.914 0.933 0.946 0.960 0.964 0.976 0.912 0.921 0.920 0.928

20
0.963 0.953 0.963 0.945 0.871 0.879 0.943 0.936 0.972 0.960 0.852 0.870 0.870 0.876

0.943 0.956 0.946 0.962 0.882 0.906 0.927 0.946 0.948 0.964 0.880 0.894 0.892 0.902

50
0.903 0.883 0.871 0.843 0.719 0.716 0.857 0.843 0.921 0.883 0.674 0.687 0.701 0.701

0.821 0.839 0.818 0.861 0.733 0.771 0.811 0.848 0.831 0.853 0.718 0.751 0.741 0.768
σ Container (C) Container (Q) Flower (C) Foreman (C) Foreman (Q) Grandma (Q) Hall (C)

5
0.973 0.974 0.982 0.979 0.989 0.989 0.972 0.974 0.981 0.983 0.987 0.986 0.971 0.969

0.978 0.978 0.984 0.983 0.990 0.993 0.976 0.981 0.984 0.988 0.986 0.988 0.972 0.972

10
0.949 0.943 0.964 0.954 0.975 0.975 0.947 0.948 0.962 0.963 0.970 0.962 0.961 0.957

0.954 0.956 0.963 0.966 0.975 0.982 0.952 0.960 0.964 0.972 0.966 0.972 0.959 0.962

15
0.929 0.917 0.949 0.937 0.961 0.960 0.927 0.928 0.946 0.945 0.949 0.927 0.954 0.947

0.931 0.937 0.943 0.952 0.958 0.967 0.928 0.939 0.943 0.956 0.941 0.951 0.946 0.952

20
0.908 0.897 0.936 0.924 0.946 0.943 0.910 0.910 0.928 0.925 0.921 0.893 0.947 0.938

0.909 0.917 0.926 0.938 0.939 0.950 0.905 0.919 0.920 0.938 0.916 0.929 0.933 0.942

50
0.824 0.808 0.861 0.841 0.830 0.829 0.811 0.813 0.818 0.818 0.795 0.762 0.886 0.870

0.785 0.801 0.813 0.844 0.812 0.838 0.775 0.800 0.788 0.833 0.771 0.802 0.830 0.853

σ Hall (Q) Mobile (C) Mobile (Q) Mother (C) Mother (Q) News (C) News (Q)

5
0.986 0.984 0.987 0.987 0.986 0.988 0.980 0.981 0.986 0.986 0.986 0.985 0.991 0.989

0.986 0.986 0.989 0.992 0.991 0.993 0.982 0.984 0.986 0.990 0.987 0.988 0.990 0.992

10
0.979 0.974 0.971 0.970 0.967 0.970 0.964 0.964 0.969 0.967 0.977 0.973 0.981 0.976

0.976 0.979 0.976 0.981 0.977 0.981 0.962 0.970 0.967 0.975 0.973 0.977 0.977 0.982

15
0.972 0.964 0.955 0.951 0.948 0.949 0.949 0.945 0.952 0.943 0.969 0.961 0.972 0.961

0.963 0.971 0.959 0.969 0.960 0.966 0.940 0.953 0.944 0.958 0.958 0.964 0.961 0.970

20
0.964 0.952 0.935 0.928 0.928 0.924 0.933 0.927 0.934 0.919 0.959 0.949 0.961 0.946

0.950 0.962 0.941 0.953 0.940 0.947 0.919 0.934 0.922 0.940 0.942 0.951 0.944 0.957

50
0.883 0.863 0.773 0.753 0.748 0.736 0.851 0.839 0.818 0.804 0.889 0.864 0.862 0.829

0.846 0.882 0.813 0.842 0.813 0.824 0.783 0.802 0.785 0.824 0.831 0.840 0.829 0.857

σ Salesman (Q) Silent (C) Silent (Q) Stefan (C) Suzie (Q) Tempete (C) Waterfall (C)

5
0.987 0.989 0.982 0.982 0.989 0.988 0.989 0.989 0.950 0.979 0.984 0.984 0.972 0.979

0.990 0.991 0.983 0.985 0.989 0.991 0.988 0.991 0.980 0.984 0.985 0.989 0.983 0.986

10
0.976 0.970 0.961 0.954 0.974 0.968 0.978 0.978 0.954 0.958 0.966 0.965 0.935 0.948

0.973 0.977 0.960 0.964 0.972 0.976 0.974 0.980 0.956 0.969 0.967 0.974 0.957 0.966

15
0.958 0.938 0.938 0.921 0.956 0.943 0.967 0.966 0.936 0.936 0.948 0.945 0.897 0.902

0.951 0.958 0.934 0.942 0.951 0.959 0.958 0.965 0.932 0.951 0.946 0.956 0.924 0.938

20
0.931 0.901 0.911 0.890 0.934 0.915 0.955 0.952 0.918 0.916 0.928 0.923 0.854 0.850

0.927 0.935 0.909 0.918 0.929 0.940 0.940 0.950 0.909 0.933 0.923 0.936 0.888 0.904

50
0.736 0.707 0.780 0.770 0.783 0.770 0.843 0.837 0.832 0.826 0.776 0.761 0.629 0.625

0.779 0.803 0.767 0.794 0.793 0.826 0.804 0.826 0.773 0.808 0.787 0.807 0.694 0.731
Table 3. Comparison of video denoising SSIM values over ASU dataset. Top Left: VBM3D [3]; Top right: VBM4D [20]; Bottom Left:
VIDOSAT [17];Bottom right: SALT video denoising. The QCIF (i.e. 144 × 176 resolution) and CIF (i.e. 288 × 254 resolution) videos
are denoted with (Q) and (C), respectively. For each video and noise level, the best denoising SSIM is marked in bold.



σ coastguard gbicycle gbus gflower

5
38.32 39.12 40.90 40.74 37.60 37.65 36.50 36.26

39.60 40.25 39.91 42.08 37.84 39.43 36.84 38.13

10
34.81 35.35 37.64 37.33 33.37 33.39 32.11 31.81

35.72 36.34 35.78 39.15 33.51 35.22 32.32 33.63

15
33.02 33.24 35.70 35.30 31.06 31.07 29.80 29.51

33.58 34.29 33.38 37.11 31.16 32.79 29.71 31.15

20
31.71 31.71 34.19 33.77 29.53 29.52 28.19 27.94

32.04 32.75 31.65 35.56 29.56 31.14 27.84 29.21

50
26.61 26.71 26.85 27.12 24.45 24.53 21.86 22.21

27.53 27.90 26.57 29.81 25.03 26.38 22.27 23.55

σ gforeman gmissa gsalesman gtennis

5
39.83 39.98 41.50 41.88 40.42 40.82 38.48 38.47

40.20 41.78 42.30 42.43 41.55 41.60 38.28 39.45

10
36.54 36.60 39.62 39.84 37.27 37.12 34.67 34.44

36.58 38.13 40.11 40.44 37.58 37.98 34.36 35.48

15
34.72 34.73 38.66 38.62 35.50 34.95 32.53 32.12

34.46 36.08 38.60 39.09 35.22 36.02 32.19 33.29

20
33.36 33.37 37.87 37.73 34.04 33.29 31.03 30.61

32.94 34.61 37.47 38.13 33.62 34.60 30.71 31.71

50
28.04 28.43 30.98 31.40 27.03 27.01 26.24 26.01

28.49 29.77 33.34 33.32 28.76 29.57 26.31 27.44
Table 4. Comparison of video denoising PSNR values over TUT dataset. Top Left: VBM3D [3]; Top right: VBM4D [20]; Bottom Left:
VIDOSAT [17];Bottom right: SALT video denoising. For each video and noise level, the best denoising PSNR is marked in bold.

σ coastguard gbicycle gbus gflower gforeman gmissa gsalesman gtennis

5
0.97 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.97 0.97 0.95 0.96 0.98 0.98 0.97 0.97

0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.96 0.96 0.99 0.98 0.97 0.97

10
0.93 0.94 0.98 0.98 0.94 0.95 0.97 0.97 0.95 0.95 0.94 0.94 0.96 0.96 0.92 0.92

0.95 0.95 0.97 0.98 0.95 0.96 0.97 0.98 0.95 0.96 0.94 0.94 0.97 0.96 0.92 0.94

15
0.90 0.91 0.97 0.97 0.91 0.91 0.96 0.95 0.93 0.93 0.93 0.93 0.94 0.93 0.88 0.86

0.92 0.93 0.95 0.97 0.91 0.94 0.96 0.97 0.93 0.94 0.93 0.93 0.94 0.95 0.88 0.90

20
0.87 0.88 0.96 0.96 0.87 0.88 0.94 0.94 0.91 0.91 0.92 0.92 0.92 0.90 0.83 0.82

0.89 0.90 0.93 0.96 0.88 0.91 0.94 0.95 0.90 0.92 0.91 0.91 0.92 0.93 0.85 0.85

50
0.69 0.70 0.85 0.86 0.71 0.72 0.80 0.80 0.81 0.81 0.88 0.86 0.74 0.73 0.68 0.68

0.74 0.75 0.80 0.85 0.73 0.78 0.81 0.84 0.77 0.80 0.80 0.78 0.78 0.80 0.69 0.69
Table 5. Comparison of video denoising SSIM values over TUT dataset. Top Left: VBM3D [3]; Top right: VBM4D [20]; Bottom Left:
VIDOSAT [17];Bottom right: SALT video denoising. For each video and noise level, the best denoising PSNR is marked in bold.


