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Abstract

This supplementary material accompanies the paper
“RGB-Infrared Cross-Modality Person Re-Identification”.
It includes more details of Section 4, as well as extra evalu-
ations of our proposed deep zero-padding method.

1. Details of Counting Domain-Specific Nodes
In the third paragraph of Section 4.2 in the main

manuscript, we quantify the number of domain-specific
nodes in the trained network in our experiments.

As defined in Equation (3) in Section 3 in the main
manuscript, the categorization of node types is rather
strict. In the l-th layer, let η(l)i denote the i-th node and
fout(x

(0), i, l) denote the output of η(l)i given the network
input x(0). Let x(0)

d1 and x
(0)
d2 be inputs of the whole net-

work of domain1 and domain2, respectively. The type of
node η(l)i is defined by

type(η
(l)
i ) =


domain1− specific, fout(x

(0)
d2 , i, l) ≡ 0

domain2− specific, fout(x
(0)
d1 , i, l) ≡ 0

shared, otherwise.

(1)

Since the identity sign is used here, the categorization
condition is too strict in applications. So we relax the cat-
egorization condition for counting towards domain-specific
nodes in application by setting a threshold T . The relaxed
definition of node type is formulated as follows: for all x(0)

d1

and x
(0)
d2 in our experiments,

type(η
(l)
i ) =



domain1− specific, fout(x
(0)
d2 , i, l) < T and

fout(x
(0)
d1 , i, l) > T

domain2− specific, fout(x
(0)
d1 , i, l) < T and

fout(x
(0)
d2 , i, l) > T

shared, otherwise.
(2)

Because the scales of responses on feature maps differ from
layer to layer, we set T = α std(x

(l)
i ), where α is a pro-

portion coefficient, x(l)i is the output value of the i-th node

in the l-th layer and std(·) is the standard deviation func-
tion. For an image channel in our experiments, we compute
the average of all values in the feature map as the output
of the node. We set α = 0.01 and α = 0.05 for stric-
t and loose categorizations, respectively. The relation be-
tween the proportion of domain-specific nodes and layer
depth is shown in Figure S1. Both total proportions and
respective proportions of two domains are shown. With
strict threshold, domain-specific nodes mainly exist in the
first three layers. With loose threshold, domain-specific n-
odes mainly exist in the first five layers. In both cases, the
network can learn more domain-specific nodes using deep
zero-padding. When the threshold is loosened, the propor-
tion of domain-specific nodes increases when using deep
zero-padding, but keeps nearly unchanged when using the
inputs without zero-padding.

2. Evaluation on Using Different Networks
Our deep model is based on ResNet [1] as illustrated in

Section 5 in the main manuscript. Deep zero-padding has
shown effectiveness on ResNet-6 in our experiments. To
verify whether deep zero-padding can also work with other
one-stream networks, we also evaluated our method on pop-
ular architectures AlexNet [2] and VGG-16 [3]. The results
are reported in Table S1.

Generally, using deep zero-padding can improve the per-
formance in most cases for all evaluated network architec-
tures. The improvement is especially evident for ResNet-6.
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Table S1. Performance under all-search and indoor-search using different networks, where r1, r10, r20 denote rank-1, 10, 20 accuracies
(%), respectively and mAP denotes mean average precision (%).

Method Metric
All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot
r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP

ResNet-6
(deep zero-padding) Euclidean 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64

ResNet-6 Euclidean 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04

VGG-16
(deep zero-padding) Euclidean 9.23 39.14 55.38 9.60 11.45 45.50 62.41 5.93 11.45 53.18 73.73 17.20 14.82 62.01 80.88 10.13

VGG-16 Euclidean 7.46 36.52 51.71 8.69 9.42 43.49 60.30 5.20 10.61 50.02 70.29 16.25 14.27 60.97 79.87 9.37

AlexNet
(deep zero-padding) Euclidean 9.70 43.14 59.25 11.00 11.52 50.04 67.50 6.68 12.96 55.88 75.45 19.12 15.41 62.51 81.22 11.71

AlexNet Euclidean 9.48 41.63 57.96 10.32 11.07 49.38 66.53 6.21 12.69 55.40 75.50 18.67 16.16 61.31 79.73 11.42
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(a) Proportions of domain-specific nodes
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(b) Proportions of domain1-specific (RGB) nodes
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(c) Proportions of domain2-specific (IR) nodes

Figure S1. Relation between proportion of domain-specific nodes
and layer depth. The x-axis denotes layer depth from bottom to top
of the network, and the y-axis denotes the proportion of domain-
specific nodes. Generally, the proportion of domain-specific nodes
using deep zero-padding is higher than that without zero-padding.
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