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1 Parameter calibration

In order to tune the algorithmic parameters, we first conduct a benchmark
experiment as follows: a low-rank matrix L0 is generated from L0 = JKT ,
where J,K ∈ R200×10 have entries from a N (0, 0.005) distribution; a 200× 200
sparse matrix S0 is generated by randomly setting 38, 000 entries to zero with
others taking values of ±1 with equal probability.

If X is set as the left-singular vectors of L0 and Y is set as the right-singular
vectors of L0, then a scaling ratio α = 1.1, a tolerance threshold ε = 10−7 and
a maximum step size µ = 1018 to avoid ill-conditioning can bring PCP, RAPS,
PCPF to convergence with a recovered L of rank 10, a recovered S of sparsity
5% and an accuracy ‖L−L0‖F /‖L0‖F on the order of 10−6. Hereafter, we will
adopt these parameter settings for PCP, RAPS, PCPF and will apply them to
PCPS and PCPSF as well. PSSV also uses these parameter settings as done
similarly in [19].

For RPCAG and FRPCAG, the graphs are built using k-nearest neighbors.
Using Euclidean distances, each sample is connected to 10 nearest neighbors

with weight e−
s2

σ2 , where s is the Euclidean distance between the two samples
and σ is the average of s. Weight between unconnected samples is set to 0.
Having obtained such weight matrix A, we can calculate the normalised graph
Laplacian Φ = I − D−

1
2 AD−

1
2 , where D is the diagonal degree matrix. The

tolerance threshold for RPCAG and FRPCAG are all set to ε = 10−7 for reasons
of consistency. We choose λ = 1/

√
max(n1, n2) for a general matrix of dimen-

sion n1 × n2 as suggested in [23,24]. For simulation experiments, γ in RPCAG

is given by the minimiser (at γ = 0.2) of ‖L−L0‖F
‖L0‖F on the benchmark problem

(Figure 1). And for real-world datasets, γ is set to 10 following [23]. For FR-
PCAG, we take γ = γ1 = γ2 which is searched over [0.01, 10] on the benchmark

problem (Figure 2). The resulting minimiser (at γ = 7.3) of ‖L−L0‖F
‖L0‖F is used in

both simulation and real-world experiments.
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Figure 1: Relative error (‖L−L0‖F
‖L0‖F ) of RPCAG for γ ∈ [0.01, 1].
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Figure 2: Relative error (‖L−L0‖F
‖L0‖F ) of FRPCAG for γ ∈ [0.01, 10].
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To find λ and κ in PCPS, a parameter sweep in the κ− λ space for perfect
side information (W = L0) is shown in Figure 3 (a) and for observation as side
information (W = M) in Figure 3 (b) to impart a lower bound and a upper
bound respectively. It can be easily seen that λ = 1/

√
200 from PCP works well

in both cases. Conversely, κ depends on the quality of the side information.

At λ = 1/
√

200, the minimiser of ‖L−L0‖F
‖L0‖F occurs at κ = 0.2 for noisy side

information. This value of κ together with λ = 1/
√

200 is used in simulation
experiments for both PCPS and PCPSF. For public video sequences, increasing
the value of κ to 0.5 can produce visual results that are noticeable to the naked
eye.

Figure 3: Relative error (‖L−L0‖F
‖L0‖F ) of PCPS: (a) when side information is per-

fect; (b) when side information is the observation.
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2 Simulation Results

Figure 4: Domains of recovery by various algorithms: random signs in row I
and coherent signs in row II. (a) for entry-wise corruptions, (b) for deficient
ranks and (c) for distorted singular values.

A direct comparison of RAPS, RPCAG and PCP from simulation studies is
presented in Figure 4. Simulation results for PSSV are shown in Figure 5.
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Figure 5: Domains of recovery by PSSV: random signs in row I and coherent
signs in row II. (a) for entry-wise corruptions, (b) for deficient ranks and (c)
for distorted singular values.
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3 Real-world applications

3.1 Data sources

The datasets used herein are listed below:

The Extended Yale Face Database B: http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/
ExtYaleB.html.

Performance Evaluation of Tracking and Surveillance Workshop 2006: http:

//www.cvg.reading.ac.uk/PETS2006/data.html.

I2R Dataset: http://perception.i2r.a-star.edu.sg/bk_model/bk_index.

html.

The CMU Multi-PIE Face Database: http://www.cs.cmu.edu/afs/cs/project/
PIE/MultiPie/Multi-Pie/Home.html.

The Extended Cohn-Kande Dataset (CK+): http://www.consortium.ri.cmu.
edu/ckagree/.

3.2 Face denoising

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6: Comparison of face denoising ability: (a,d) single-person PSSV; (b,e)
single-person RPCAG; (c,f) single-person FRPCAG; (g) multi-person PSSV;
(h) multi-person RPCAG; and (i) multi-person FRPCAG;.

Illustration of face denoising ability of PSSV, RPCAG, FRPCAG is pre-
sented in Figure 6. The average running times of different algorithms for a
single subject and multiple subjects are summarised in Table 1 1.

1All experiments were performed on a 3.60GHz quad-core computer with 16GB RAM
running MATLAB R2016a.
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Algorithm
Time

Single Subject Multiple Subjects
K-SVD (X) 9 min —
K-SVD (Y) 78 min —

PCP 12s 5 min
PCPS 27s 12 min
PCPF 16s 9 min
PCPSF 19s 8 min
PSSV 13s 5 min

k-NN (X) 7s 4 min
k-NN (Y) 1s 8s
RPCAG 2min 17 min

FRPCAG 8s 1 min

Table 1: Running times of various algorithms.
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3.3 Background Subtraction

Recovered images of the background and the foreground from all methods are
listed in Figure 7 for Airport and Figure 8 for PETS. The running times of
different algorithms for Airport and PETS are summarised in Table 2.

(a) (b) (c) (d)

Figure 7: Background subtraction results for Airport : row I (a) original image;
row III (a) ground truth; row I,III (b) PCP; row I,III (c) PCP (60 frames);
I,III (d) PCPS (60 frames); row II,IV (a) PCPS; row II,IV (b) PSSV; row
II,IV (c) RPCAG; row II,IV (d) FRPCAG.
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(a) (b) (c) (d)

Figure 8: Background subtraction results for PETS : row I (a) original image;
row III (a) ground truth; row I,III (b) PCP; row I,III (c) PCP (60 frames);
I,III (d) PCPS (60 frames); row II,IV (a) PCPS; row II,IV (b) PSSV; row
II,IV (c) RPCAG; row II,IV (d) FRPCAG.

Algorithm
Time

Airport PETS
PCP 52s 17 min

PCPS 2 min 36 min
PSSV 51s 17 min

k-NN (X) 52s 2h
k-NN (Y) 1s 24s
RPCAG 7 min 3h

FRPCAG 11s 34s
PCP (60 frames) 52s 3 min
PCPS (60 frames) 20s 7 min

Table 2: Running times of various algorithms.
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4 Derivations

Here we give deviations of the various equivalent subproblems for the algorithm
quoted in the text:

argmin
H

l(H,E, S, Z,N)

= argmin
H

||H||∗ + κ||E||∗ + λ||S||1 + 〈Z,M − S −XHY T 〉+
µ

2
||M − S −XHY T ||2F

+ 〈N,H − E −XTWY 〉+
µ

2
||H − E −XTWY ||2F

= argmin
H

||H||∗ + 〈Z,M − S −XHY T 〉+
µ

2
||M − S −XHY T ||2F

+ 〈N,H − E −XTWY 〉+
µ

2
||H − E −XTWY ||2F

= argmin
H

||H||∗ + tr(ZT (M − S −XHY T ))

+
µ

2
tr((M − S −XHY T )T (M − S −XHY T )) + tr(NT (H − E −XTWY ))

+
µ

2
tr((H − E −XTWY )T (H − E −XTWY ))

= argmin
H

||H||∗ − tr(ZTXHY T ) + tr(NTH)

+
µ

2
tr(Y HTXTXHY T − Y HTXT (M − S)− (M − S)TXHY T )

+
µ

2
tr((H − E −XTWY )TXTX(H − E −XTWY )Y TY )

= argmin
H

||H||∗ + µ tr(− 1

µ
ZTXHY T ) + µ tr(

1

µ
NTXTXHY TY )

+
µ

2
tr(Y HTXTXHY T − Y HTXT (M − S)− (M − S)TXHY T )

+
µ

2
tr(Y HTXTXHY T − Y HTXTX(E +XTWY )Y T

− Y (E +XTWY )TXTXHY T )

= argmin
H

||H||∗ + µ tr(Y HTXTXHY T − 1

2
Y HTXT (M − S)− 1

2
(M − S)TXHY T

− 1

2
Y HTXTX(E +XTWY )Y T − 1

2
Y (E +XTWY )TXTXHY T

− 1

2µ
Y HTXTZ − 1

2µ
ZTXHY T +

1

2µ
Y HTXTXNY T +

1

2µ
Y NTXTXHY T )

= argmin
H

||H||∗ + µ tr((
1

2
(M − S +XEY T +W +

1

µ
(Z −XNY T ))−XHY T )T

(
1

2
(M − S +XEY T +W +

1

µ
(Z −XNY T ))−XHY T ))

= argmin
H

||H||∗ + µ||1
2

(M − S +W +
1

µ
Z +X(E − 1

µ
N)Y T )−XHY T ||2F
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argmin
E

l(H,E, S, Z,N)

= argmin
E

||H||∗ + κ||E||∗ + λ||S||1 + 〈Z,M − S −XHY T 〉+
µ

2
||M − S −XHY T ||2F

+ 〈N,H − E −XTWY 〉+
µ

2
||H − E −XTWY ||2F

= argmin
E

κ||E||∗ + 〈N,H − E −XTWY 〉+
µ

2
||H − E −XTWY ||2F

= argmin
E

κ||E||∗ + tr(NT (H − E −XTWY ))

+
µ

2
tr((H − E −XTWY )T (H − E −XTWY ))

= argmin
E

κ||E||∗ +
µ

2
tr(− 2

µ
NTE)

+
µ

2
tr(ETE − ET (H −XTWY )− (H −XTWY )TE)

= argmin
E

κ||E||∗

+
µ

2
tr(ETE − ET (H −XTWY )− (H −XTWY )TE − 1

µ
ETN − 1

µ
NTE)

= argmin
E

κ||E||∗ +
µ

2
tr((H −XTWY +

1

µ
N − E)T (H −XTWY +

1

µ
N − E))

= argmin
E

κ||E||∗ +
µ

2
||H −XTWY +

1

µ
N − E||2F
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argmin
S

l(H,E, S, Z,N)

= argmin
S

||H||∗ + κ||E||∗ + λ||S||1 + 〈Z,M − S −XHY T 〉+
µ

2
||M − S −XHY T ||2F

+ 〈N,H − E −XTWY 〉+
µ

2
||H − E −XTWY ||2F

= argmin
S

λ||S||1 + 〈Z,M − S −XHY T 〉+
µ

2
||M − S −XHY T ||2F

= argmin
S

λ||S||1 + tr(ZT (M − S −XHY T ))

+
µ

2
tr((M − S −XHY T )T (M − S −XHY T ))

= argmin
S

λ||S||1 +
µ

2
tr(− 2

µ
ZTS)

+
µ

2
tr(STS − ST (M −XHY T )− (M −XHY T )TS)

= argmin
S

λ||S||1

+
µ

2
tr(STS − ST (M −XHY T )− (M −XHY T )TS − 1

µ
STZ − 1

µ
ZTS)

= argmin
S

λ||S||1 +
µ

2
tr((M −XHY T +

1

µ
Z − S)T (M −XHY T +

1

µ
Z − S))

= argmin
S

λ||S||1 +
µ

2
||M −XHY T +

1

µ
Z − S||2F
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5 Further comments

One might suggest that a potentially better and more direct approach in using
the side information is to subtract the side information. That is, do RPCA on
M′ = M −W, where M is the data and W is the noisy side information, to
obtain M′ = L′ + S with L = L′ + W.

We argue that this is not correct for the following reasons:

• The rank of L′ is no smaller than L, which does not make the problem
any simpler than the original one.

• When W is merged into M, the additional information provided by W is
lost and the features can on longer be applied.

• When W includes full-rank noise on L, L′ is not low-rank anymore. This
violates the assumption of RPCA.

To verify our claim, we perform the Airport experiment again, but with
different side information than that used in the paper. We collect 200 different
frames of relatively clean backgrounds and stack them into the side information
W. Comparison of the suggestion with PCPS and PCP is shown in Figure 9, 10
and 11. It is clearly visible that the low-rank structure cannot be recovered by
the suggestion and spurious noises are introduced in the segmentation, whereas
PCPS works impeccably segmenting accurately the foreground moving objects
leaving a clean background.
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Figure 9: Background subtraction by suggestion: background in row I and
segmentaion in row II.
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Figure 10: Background subtraction by PCPS: background in row I and segmen-
taion in row II.
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Figure 11: Background subtraction by PCP: background in row I and segmen-
taion in row II.
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