
Towards Large-Pose Face Frontalization in the Wild
Supplementary Materials

Xi Yin†Xiang Yu‡, Kihyuk Sohn‡, Xiaoming Liu† and Manmohan Chandraker§‡
†Michigan State University

§University of California, San Diego
‡ NEC Laboratories America

{yinxi1,liuxm}@cse.msu.edu, {xiangyu,ksohn,manu}@nec-labs.com

1. Network Structures

Figure 1 shows the network structure of FF-GAN, com-
posed of the 3DMM reconstruction module R, the generator
G, the discriminator D and the recognition engine C.

The 3DMM module R takes the input image x and gen-
erates the 3DMM coefficients p including weak perspective
matrix m ∈ R8×1, shape coefficients αid ∈ R199×1, ex-
pression coefficients αexp ∈ R29×1, and texture coefficients
αtex ∈ R40×1. We use the provided coefficients in [3] as
our ground truth for training. Originally, 3DMM consists
of 199 bases for texture model. Only the first 40 bases are
used in [3]. We use the CASIA-Net [2] structure, where we
separate texture coefficients from shape-related coefficients
in the later layers, which empirically demonstrates better
performance in our experiments.

The generator G takes the image x and the estimated
3DMM coefficients p as the inputs to generate a frontal-view
face xf . The 3DMM coefficients provide a frontal low fre-
quency basis and the detailed appearance is expected to be
recovered from the raw pose-variant input image. Clearly,
these two inputs are not in the same domain. We apply three
fully convolutional layers to up-sample p and one convolu-
tional layer to down-sample x to the same size of 50×50×64.
The outputs are concatenated to an encoder-decoder struc-
tured network which includes two skip connections that are
used to provide high frequency information to the decod-
ing process. The feature after encoding is of dimension
512 × 12 × 12 which maintains the spatial information to
recover the input image.

The discriminator D aims to distinguish between the
generated image xf and the real frontal-view face xg. This
is a relatively easy task, so we use a shallow network with
five convolutional layers and one linear layer, which outputs
a 2D vector with each dimension indicating the probability
of the input belonging to the generated image or the real
image. In each iteration during training, D is updated with
two batches of samples from xf and xg , respectively.

The recognition engine C also adopts a CASIA-Net

structure. Instead of using the max pooling layer as CASIA-
Net, we choose volumetric max pooling, which applies pool-
ing not only in the spatial dimensions but also across the
feature channels. We find this to be helpful for face recog-
nition. C is pre-trained with CASIA-Webface dataset and
fixed in the first two stages of the training process. Later, we
update C using the original input image x. Note that xf are
the input to fool C during the training of G and gradients
flow through C to update the generator G.

2. Training Details
2.1. Further Implementation Details

For in-the-wild experiments, we train our model using
300W-LP, which is generated using the face-profiling algo-
rithm of [3]. We prepare the training image pairs by setting
one pose-variant face image (15◦-90◦) as the input and the
frontal-view face image of the same subject (0◦-15◦) as the
target. We use Adam solver for optimization with a batch
size 128. The weight decay is set to 2e−4 and momentum
is set to 0.9. The initial learning rate is set to 2e−4. We
reduce the learning rate by a factor of 10 for every 20 epochs.
As indicated in the main submission, there are three stages
for training. For the first stage, λrec and λid are tuned to
be 0 and 0.01, since in the early stage, the network is learn-
ing to rotate from a pose-variant face to a frontal face and
the reconstruction loss or identity loss may prevent such a
process. After 20 epochs, the second stage is to finetune
the frontalization framework. We change λrec and λid to
1 while tuning λtv to 0.5 and λsym to 0.8. Later, when the
four modules are well pre-trained, we relax the update of
module C. The learning rate is 1e−6 for jointly finetuning
the overall framework.

For controlled experiments on Multi-PIE, we finetune
from the models trained on 300W-LP. We mix the dataset
of 300W-LP with Multi-PIE where 300W-LP is only used
to update module R. The weights for each loss are set to
1. Since we already have a good starting point, we do not
need to adjust the weights dynamically on Multi-PIE. The

1

Conv: 3 3/32

BN, ReLU

×

Conv: 3 3/64, /2

BN, ReLU

×

Conv: 3 3/64

BN, ReLU

×

Conv: 3 3/128, /2

BN, ReLU

×

Conv: 3 3/96

BN, ReLU

×

Conv: 3 3/192, /2

BN, ReLU

×

Conv: 3 3/128

BN, ReLU

×

Conv: 3 3/256, /2

BN, ReLU

×

Conv: 3 3/160

BN, ReLU

×

Conv: 3 3/320

BN, ReLU

×

AvgPool: 7 7 ×

Linear: 236

Conv: 3 3/160

BN, ReLU

×

Conv: 3 3/320

BN, ReLU

×

AvgPool: 7 7 ×

Linear: 40

Conv: 4 4/64, /2

LReLU: 0.2

× Fconv: 12 12/64

BN, ReLU

× Conv: 5 5/64, /2

LReLU: 0.2

× Conv: 3 3/32

ReLU

×

Fconv: 5 5/64, /2

BN, ReLU

×

Fconv: 4 4/64, /2

BN, ReLU

×

x

Con

p

x p

Con

Conv: 3 3/512, /2

BN, ReLU

×

Conv: 3 3/512, /2

BN, ReLU

×

Fconv: 4 4/256,/2

BN, LReLU: 0.2

×

Fconv: 5 5/256,/2

BN, LReLU: 0.2

×

Fconv: 4 4/64, /2

BN, LReLU: 0.2

×

Fconv: 4 4/3, /2

Tanh

×

x f

Conv: 5 5/128, /2

LReLU: 0.2

×

Conv: 3 3/256, /2

LReLU: 0.2

×

Dropout: 0.2

Conv: 3 3/512, /2

LReLU: 0.2

×

Dropout: 0.2

Conv: 3 3/128

LReLU: 0.2

×

Dropout: 0.5

Linear: 2

x f / xg x f / x

Conv: 3 3/128 ×

VMaxPool:2 2,/2 ×

Conv: 3 3/64

ReLU

×

Conv: 3 3/256 ×

VMaxPool:2 2,/2 ×

Conv: 3 3/96

ReLU

×

Conv: 3 3/384 ×

VMaxPool:2 2,/2 ×

Conv: 3 3/128

ReLU

×

Conv: 3 3/512 ×

VMaxPool:2 2,/2 ×

Conv: 3 3/160

ReLU

×

Conv: 3 3/320 ×

AvgPool: 7 7 ×

Linear: 200/10549

Format:

Convolution: filter size / output number, / stride (default = 1)

Full Convolution: filter size / output number, / stride (default = 1)

Volumetric Max Pooling: filter size, / stride (default = 1)

Model R Model G Model D Model C

Con : Concatenation

Figure 1: Network structure of FF-GAN.

input 0.2 1 3 5 7 9 11 13 15 17 ground truth
Figure 2: Intermediate face frontalization results showing the three stages of the training on Multi-PIE. The beginning to epoch
5 shows the first stage, which is to rotate the face from non-frontal to frontal. The second stage lasts from epoch 5 to epoch 10,
which aims to capture more fine features of the faces and collect identity information. The last stage starts from epoch 10,
during which the identity information is fully recovered.

initial learning rate is set to 1e−4 for the first two stages
when model C is fixed and reduced to 5e−5 when model
C is relaxed. The first two stages need approximately 10
epochs for finetuning. The other hyper-parameters are the
same as the experiments on 300W-LP.

2.2. Training Process
Figure 2 shows the training process of our face frontal-

ization framework on Multi-PIE. We verify that during the
early stages, the major task is to rotate the non-frontal face
into a near-frontal pose, as shown in Figure 2, epoch 5. We
illustrate training on Multi-PIE as an example here, while
noting that training of 300W-LP exhibits similar trends.

After 5 epochs, our models can generate frontal-view
faces, though still with artifacts or blurry effects. As the
training progresses, the task becomes preserving local high
frequency appearance details and identity information. From
the visual results varying over the course of epoch 5 to
epoch 17, we observe that local features are more and more
finely captured. For example, the eyes and eye corners are
generated to increasingly sharp levels of detail. At the last
stage, the discriminator D usually achieves equal error for
both real and generated samples, which indicates that D and
G reach a balance where G can generate frontal-view faces
that are realistic enough to fool D.

3. Face Frontalization Results
In this section, we will illustrate further face frontalization

results on Multi-PIE, LFW, AFLW, and IJB-A datasets.

Figure 3 shows the face frontalization results of eight
subjects in the test set of Multi-PIE. The proposed FF-GAN
generates realistic frontal faces that are similar to the ground
truth (odd rows are the input, where the frontal ground truth
is the image in the middle column of odd rows) across all
different poses. Furthermore, the gender, race and attributes
like eyeglasses are well-preserved. It is clear that the larger
the pose angle is, the more difficult it is for the generated
output to preserve identity. Surprisingly, for large poses (up
to 90◦), FF-GAN can still preserve the identity to a large
extent. To the best of our knowledge, this is the first work to
show face frontalization results for faces beyond 60◦.

Figure 4 shows the face frontalization results on LFW.
Compared to previous works [1] and [4], the proposed FF-
GAN can generate more realistic frontal faces in various
poses and expressions. The facial detail filling technique
proposed in [4] relies on a symmetry assumption and may
lead to inferior results (2nd row, 6th column). In contrast, we
introduce a symmetry loss in the training process that gener-
alizes to test images without the need for post-processing to
impose symmetry as a hard constraint.

Figure 3: Visual results on Multi-PIE. Each example shows 13 pose-variant inputs (Odd) and the generated frontal outputs
(Even). We clearly observe that the outputs consistently recover similar frontal faces across all the pose intervals.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)
Figure 4: Face frontalization visual comparisons on LFW. (a) Input; (b) from the method of LFW-3D [1] ; (c) from the method
of HPEN [4]; (d) FF-GAN (ours). We observe that our method achieves frontalizations that are much more realistic than prior
works, by both recovering fine details and preserving identity.

Figure 5 shows the face frontalization results on AFLW,
which encompasses more pose variations than LFW. For
better visualization, we separate the faces into three different
groups with small, medium and large pose variations, which
are defined based on the visibility of the two eyes (both visi-
ble for small pose, one eye half-occluded for medium pose
and one eye fully-occluded for large pose). FF-GAN works
extremely well for the face images with small pose, in rows
(a) and (b). For face images with medium or large poses
in rows (c) and (d), respectively, FF-GAN still generates
plausible results without many artifacts. We note that even
for nearly profile views in row (d), high-frequency details of
facial features are recovered well, the frontalized face is sym-
metric and identity is preserved quite well. Row (e) shows
results for input images under various lighting or expressions.
Again FF-GAN works well under these variations.

Figure 6 shows the face frontalization results on IJB-A,
which consists of large-pose and low-quality face images.
The input images are of medium to large pose and under

a large variation of race, age, expression, and lighting con-
ditions. However, FF-GAN can still generate realistic and
identity-preserved frontal faces.

References
[1] T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face

frontalization in unconstrained images. In CVPR, 2014. 3, 5
[2] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation

from scratch. arXiv preprint:1411.7923, 2014. 1
[3] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment

across large poses: A 3D solution. In CVPR, 2016. 1
[4] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose

and expression normalization for face recognition in the wild.
In CVPR, 2015. 3, 5

Figure 5: Face frontalization results on AFLW. Odd rows are all profile-view inputs and even rows are the frontalized results.

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 1: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the
frontalized results.

1

Figure 6: Face frontalization results on IJB-A. Odd rows are all profile-view inputs and even rows are the frontalized results.

