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In the supplemental material, we provide the proofs of
Corollary 3.2 and Proposition 3.3 in Section 3.3 in the main
paper. The detailed training and testing setting used in the
experiments are also provided. We also show training errors
of proposed BitNets used in our experiments.

A. Proofs

Proof of Corollary 3.2. The total depth of the given net-
work is LK. Thus, the parameter size is O

(
LKD2

)
. Also,

according to Corollary 5 of [6], the maximal number of lin-
ear region of functions that can be computed by the given
network in an n-dimensional (D > n) input space is lower
bounded by O

(
(Dn )

n(KL−1)Dn
)
, which can be simplified

by a looser bound O
(
(Dn )

nKL
)

and resulting in our corol-
lary.

Proof of Proposition 3.3. According to the definition of
BitBlock, the width of kth layer in a BitBlock is D

2(k−1) .
Thus, the parameter size of the given BitBlock can be com-
puted by,
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Thus, the parameter size of L stacked BitBlocks is
O
(

4
3L
(
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4K

)
D2
)

.

To analyze the expressive capacity, we approximate a
BitBlock as a ConvenBlock with depth K and width D

2k
at

each kth layer. According to Theorem 4 of [6], the maximal
number of linear regions of functions that can be computed
by a given BitBlock in an n-dimensional (D ≥ 2Kn) input

space is lower bounded by
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As a result, with L BitBlocks, the maximal number of linear
region is bounded by O

((
D

2Kn

)nKL
)

.

B. Training and Testing Setting
For Cifar-10 and Cifar-100 dataset, we use a common

data augmentation method used in previous works [1, 5, 2,
10]. More precisely, 4 pixels with zero values are padded
on each side of the original image to make a 40×40 image,
from which a 32 × 32 patch is randomly cropped and ran-
domly flipped horizontally. For testing, the original 32×32
image is used. Batch size is 128 that is split on two GPUs.
The initial learning rate is 0.1, and is reduced by 0.2 on the
60th, 120th and 160th epoch. The training is finished at the
200th epoch.

For ILSVRC12 task, data augmentation and image pre-
processing methods used during training are as follows.
Each image is cropped by scale and aspect ratio augmen-
tation method [9], and then resized to 224×224. A random
horizontal flip is also applied. The input images are mean
subtracted and variance normalized on each RGB channel.
The color distortion methods proposed in [4] and [3] are
both used. For validation, the image is resized such that
its shorter side is 256, and a center crop of 224 × 224 are
used to test. Batch size is 256 split on 8 GPUs. The ini-
tial learning rate is 0.1 and is reduced by 10−1 at each 30
epoch. The training is finished at the 90th epoch. Follow-
ing [2], stochastic gradient descent (SGD) with momentum
0.9 is used as our optimizer and the weight decay is set as



Model Param. Error
Wide ResNet (d=4,k=2,n=6) 8.9M 0.018

BitNet (d=4,k=3,n=4) 3.7M 0.018

BitNet (d=4,k=4,n=3) 2.7M 0.022

BitNet (d=4,k=2,n=6) 5.4M 0.026

BitNet (d=4,k=6,n=2) 1.7M 0.028

Wide ResNet (d=10,k=2,n=2) 17.1M 0.018

BitNet (d=10,k=2,n=2) 9.6M 0.018

BitNet (d=10,k=4,n=1) 3.9M 0.020

Wide ResNet (d=10,k=2,n=3) 26.8M 0.018

BitNet (d=10,k=2,n=3) 15.6M 0.018

BitNet (d=10,k=3,n=2) 10.2M 0.018

Wide ResNet (d=12,k=2,n=4) 52.5M 0.018

BitNet (d=12,k=2,n=4) 31.2M 0.018

BitNet (d=12,k=4,n=2) 14.9M 0.018

Table 1. Cifar-100 training error (%) of the BitNets and Wide
ResNets used in our experiments.

0.0001. Batch Normalization is used in every convolutional
layer before ReLU. We didn’t use dropout [8] in any BitNet.

C. Training Errors

Training errors of BitNets used in our experiments for
Cifar-100 classification task are given in Table 1. As shown
in [7, 6], the expressive capacity reflects the complexity
of class decision boundary computable by a DNN. We use
training errors to quantify the expressive capacity of a DNN.
As we can see from the table, the training errors of BitNets
are close to that of the Wide ResNets, which indicates that
by using considerably less number of parameters, the pro-
posed BitNets can obtain expressive capacity similar to that
of the Wide ResNets.
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