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1. More Analyses of Proposed OL-MANS
1.1. Learned Metric Rank Analysis of OL-MANS

Feature descriptors used in PRID are generally high dimensional in order to handle the complex appearance variations. In
practice, most existing methods apply PCA blindly to reduce the feature dimension without clear justification and effective-
ness. In contrast, our OL-MANS can be performed in the original high dimensional space while allowing the selection of a
low rank local metric. The effectiveness of the low rank metric is also verified in [8] and [6].

As described in the paper, in our proposed OL-MANS, we solve the original time-consuming positive semidefinite (PSD)
problem by solving an efficient kernel SVM instead, as in Eqn. 1.
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The obtained local metric Mi
L is formed as Eqn. 2:
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where αrj 6= 0. It is obvious that Mi
L is the linear combination of all the support vectors of {ỹrj}k

′

j=1. Therefore, the rank
of Mi

L is bounded by the number of support vectors, k′. In practice, the local metric is constrained by the strong negative
samples (the hard negatives). In other words, the coefficient vector A = [α1, α2, ..., αk] should be sparse.

To validate this, we have conducted an experiment that we compute the ranks of all the learned local metrics for all the
probes in different benchmarks (VIPeR, GRID, CAVIAR, iLIDS, PRID 450S and CUHK Campus). The result is presented
in Fig. 1, where it is evident that almost all the learned local metrics are pretty low rank, even though the size of the negative
database (NDB) is large. This negative database has over 10,000 negative samples, and more than 500 strong negative
samples are generally selected for each datum to learn its local metric. This clearly shows an advantage of our proposed
method, as it allows us to work in a high dimensional space while most existing methods do not.

2. Proof of Theorem. 2
Theorem 2 For an input x, its nearest neighbor (NN) is x′ in the augmented datasetDa. This augmented dataset is obtained
by adding hard negative samples to the original dataset D. Define the probability that the nearest neighbor of x′ is an
augmented data xa, i.e., x′ ∼ xa by P (x′ ∼ xa) = q; otherwise, the nearest neighbor of x′ is not an augmented data xa,
i.e., x′¬xa, P (x′¬xa) = 1− q, where 0 ≤ q ≤ 1. The asymptotic error Pa(e|x) by using Da is:

Pa(e|x) = (2− q)P(e|x)
2− 2qP(e|x)

≤ P(e|x) (3)
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(b) QMUL GRID

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800
Histogram Distribution of Metric Rank (CAVIAR)

rank(M
L
): the rank of learned lcoal metric

N
um

be
rs

(c) CAVIAR

4 5 6 7 8 9 10 11 12 13 14 15 16 17 19
0

20

40

60

80

100

120
Histogram Distribution of Metric Rank (ILIDS)

rank(M
L
): the rank of learned lcoal metric

N
um

be
rs

(d) iLIDS
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(e) PRID 450S
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Figure 1. Histogram Distributions of Metric Rank for All the Learned Local Metrics

Proof 2 Denote byD the original data set (i.e., the gallery set), and byDa the augmented data set by adding hard negatives.
Except for the augmented hard negative data (denoted by xa), the rest in Da are the same as D.

Let’s consider the two-class 1-NN classification, without losing the generality. The asymptotic error for 2-class 1-NN
using D is

P(e|x) = 2P (ω+|x)P (ω−|x)

Let’s consider the asymptotic error for 2-class 1-NN using Da. We denote it by P a(e|x). Our goal is to prove:

Pa(e|x) ≤ P(e|x) (4)

The prove is the following. For an input x, its nearest neighbor x′ in Da (denoted by x ∼ x′) has two cases:

• case 1: the nearest neighbor of x′ is an augmented data xa, i.e., x′ ∼ xa. Its probability P (x′ ∼ xa) = q;

• case 2: the nearest neighbor of x′ is not an augmented data xa, i.e., x′¬xa. Its probability P (x′¬xa) = 1− q.

We denote the nearest neighbor of x′ in D by x′′(x′). There are two cases. If x′ is xa, then its nearest neighbor in D is
x′′(xa) whose class label is ω+ (because xa are all hard negative samples). If x′ is not xa, then its nearest neighbor in D is
x′′(x′) = x′.

Now we consider the asymptotic probability of assigning ω+ to x′. In case 1, we need to guarantee both x and x′′(x′) to
be ω+ (i.e., the hard negative data is actually useful). In case 2, we only need to guarantee x to be ω+ (i.e., the hard negative
data is not effective). So we have:

φ(ω+|x′) ∝ P 2(ω+|x)q + P (ω+|x)(1− q)

Similarly, the asymptotic probability of assigning ω− to x′ is:

φ(ω−|x′) ∝ P 2(ω−|x)q + P (ω−|x)(1− q)



Because φ(ω+|x′) + φ(ω−|x′) = 1, we have:

φ(ω+|x′) =
P 2(ω+|x)q + P (ω+|x)(1− q)

(1− q) + q[1− 2P (ω+|x)P (ω−|x)]

φ(ω−|x′) =
P 2(ω−|x)q + P (ω−|x)(1− q)

(1− q) + q[1− 2P (ω+|x)P (ω−|x)]

(5)

Therefore, we can compute the 2-class 1-NN asymptotic error for x on Da:

Pa(e|x) = φ(ω+|x′)P (ω−|x) + φ(ω−|x′)P (ω+|x)

=
[2(1− q) + q]P (ω+|x)P (ω−|x)

(1− q) + q[1− 2P (ω+|x)P (ω−|x)]

=
(2− q)P(e|x)

2(1− q) + 2q(1− P(e|x))

=
(2− q)P(e|x)
2− 2qP(e|x)

(6)

Because 0 ≤ q ≤ 1, it is easy to see:

if Pa(e|x) ≤ P(e|x)⇔ (2− q)P (e|x)
2− 2qP (e|x)

≤ P (e|x)

⇔ (2− q) ≤ 2− 2qP (e|x)
⇔ 2qP (e|x) ≤ q

⇔ P (e|x) ≤ 1

2

(7)

Since the error rate P (e|x) ≤ 1

2
is always true, the proof in Eqn. 7 is true, and Theorem. 2 holds.

3. Proof of Theorem. 3 and Theorem. 4
Theorem 3 Let φλ(ML, si) be a distance-based loss function that is λ-Lipschitz in the first argument. Then with probability
at least 1− δ over {s1, ..., sk} from an unknown B-bounded-support (each (x, l) ∼ D, ‖x‖ ≤ B) distribution D, we have:

Sup
ML∈M

[
Errλ(ML,D)− Errλ(ML, S

pair
k )

]
≤ O

(
λB2

√
D ln(1/δ)/k

)
(8)

Proof 3 Let P be the probability measure induced by the random variable (X;L), where X := (x, x′), L := 1[l = l′].
Define function class:

F := {X 7→ ‖x− x′‖ML
}

and consider our loss function φλ(ML, si) = λ[ζi
(
(xi − x0)TML(xi − x0)

)
− γζi ]+ which is λ-Lipschitz in the first argu-

ment. Then, we are interested in bounding the quantity

Sup
(X;L)∈P

[
φλ(fML

(X),L)− 1

k

k∑
i=1

φλ(fML
(Xi),Li)

]

Define x̂i := x0 − xi for each pair si, then the Rademacher complexity1 of our function class F (with respect to the
distribution P) is bounded, since (let σ1, σ2, ..., σk denote independent uniform ±1-valued random variables):

1See the formal definition of the Rademacher complexity in [2]
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Recall that D has bounded support (with bound B). Thus, by noting that φλ is 8B2 bounded function that is λ-Lipschitz
in the first argument, we can readily apply the Theorem.8 in [2] to obtain the desired uniform deviation bound.

Theorem 4 Let ML be any class of weighting metrics on the feature space X = RD, and define d := SupML∈M ‖ML‖2F .
Following the same parameter setting in Theorem. 3, we have:

Sup
ML∈M

[
Errλ(ML,D)− Errλ(ML, S

pair
k )

]
≤ O

(
λB2

√
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)
(10)

Proof 4 Let P be the probability measure induced by the random variable (X;L), where X := (x, x′), L := 1[l = l′].
Define function class:

F := {X 7→ ‖x− x′‖ML
}

Following the same steps in the proof of Theorem. 3, we can conclude that the Rademacher complexity of F is bounded. In
particular,

Rk(F) ≤ 4B2

√
SupML∈M ‖ML‖2F

k

Finally, we note that φλ is λ-Lipschitz in the first argument, so that we can readily apply Theorem.8 in [2].



4. More Experiment Results
4.1. Influence of the Weighting Parameter λ

The parameter λ in d(xpvi , x
g
vj ) = (xpvi − x

g
vj )

TWT (I + λMi
L)W(xpvi − x

g
vj ) is used to balance the underlying global

metric and the learned local metric adaptation. Different λ have different influences to the identification performances. We
have conducted an experiment on the VIPeR dataset to determine the value of λ, the results of which are shown in Fig. 2.

To read the results in Fig. 2, let’s explain λ. When λ = 0, it is the baseline from [8] without our local metric adaptation;
when λ = max, it represents that λ is set to be:

λ = max
1≤j≤m

(
dMG

(xpvi , y
g
vj )
)
/ max
1≤j≤m

(
dML

(xpvi , y
g
vj )
)

(11)

As we can see from this experiment, setting λ as Eqn. 11 achieves the best result because it normalizes the norm scales of
the global and local metric distances.

4.2. Influence of Negative Sample Database

For our OL-MANS, a negative sample database (NDB) is used to provide the negative training data. Because there
are various strategies to collect NDB, we conduct the following experiments to investigate the influences of different NDB
choices. The first two experiments are conducted on the VIPeR dataset [5] and the challenging CAVIAR [4] is used in the
third experiment. Moreover, the global metric learning method proposed in [8] is adopted as the baseline method for the
global metric learning MG.

• Using the training data Xtrain from the same benchmark as negative sample: Here the training samples Xtrain in
VIPeR which have different identities from Pi(the training data for global metric learning) are used as negative samples.
It guarantees that the obtained NDB is clearly meaningful. The accuracy in PRID is given in Table.1 as Our-SAME.

• Using different benchmark datasets as the NDB: In this experiment, we utilize other benchmarks as the NDB. The
QMUL GRID [10] and CAVIAR [4] are combined into one dataset then used as the NDB in this experiment, so that
we can guarantee that the identities of all the negative samples in the NDB are different from Pi. For each identity Pi,
the k nearest negative samples are found in the NDB (under MG) and used for our OL-MANS. Different values of k
(50, 100, 500) are chosen for further comparisons. The experiment results Our-D-50/100/500 are shown in Table.1.
Moreover, an additional experiment Our-D-RAM that uses 50 random negative samples from the NDB for OL-MANS
is compared. This experiment validates the insight of our method that the effective negative samples are those that are
close to the probe in the feature space (e.g., strong false positives).

• The NDB includes the false negative samples: We investigate how the “contamination” in the NDB impacts our
proposed method. In this situation, some negative samples in the NDB are deliberately collected from the same
identity to Pi. We call them false negative samples, in addition to the use of the probe image set of CAVIAR [4] as the
rest of the NDB. Since there are multiple images of the same identity in CAVIAR, they can be considered as the false
negative samples. The experiment results Our-NoFN, Our-FN are shown in Table. 1. Our-NoFN refers to a “clean”
NDB with no false negative samples in it, and Our-FN refers to a “contaminated” NDB that includes false negative
samples for all the probe images.

From Table. 1, it can be observed that Our-SAME performs the best because the negative data from the same benchmark
dataset are most discriminative. Results on Our-D-50/100/500 also largely outperform the baseline by consistent improve-
ments. Moreover, the false negative sample may influence and degrade the performance of Our-NoFN, but not significantly.
Nevertheless, a clean NDB with hard negatives is useful and effective.

4.3. Full CMC Curve Plot and More Comparison Results on Benchmarks

First, in Table. 2, we show more comparison results with state-of-the-arts PRID methods on VIPeR dataset. One interesting
observation is that our performances at rank-20 are a slightly lower than the latest TSRPR [13] method. This is expected as
our local metric becomes less effective when the true positive gallery image is far from the probe in the feature space. Other
than that, our new method still outperforms all the other methods at rank-20.

Besides, the CMC curves of the state-of-the-art methods on various benchmarks are plotted and compared in Fig. 3, from
which it is evident that our new method significantly outperforms all other methods on all different benchmarks.
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Figure 2. We conducted the experiment to determine the influence of λ. The x-axis means the value of λ and the y-axis is the identification
rate. From (a) to (d), there are the identification rates at Rank-1, Rank-5, Rank-10 and Rank-15 on VIPeR dataset.

5. Source Codes
The codes of our proposed OL-MANS algorithm and some demos can be found at the project website: http://www.

ece.northwestern.edu/˜jzt011/project/ICCV17_OLMANS/ICCV17_OLMANS.html

http://www.ece.northwestern.edu/~jzt011/project/ICCV17_OLMANS/ICCV17_OLMANS.html
http://www.ece.northwestern.edu/~jzt011/project/ICCV17_OLMANS/ICCV17_OLMANS.html


Benchmark Dataset Method R=1 R=5 R=10 R=20

VIPeR

Baseline [8] 40.73 69.94 82.34 92.37
Our-SAME 44.97 74.43 84.97 93.64
Our-D-050 42.63 73.63 84.81 93.54
Our-D-100 43.04 73.86 84.30 93.42
Our-D-500 42.53 73.89 84.15 93.35

Our-D-RAM 39.87 70.51 82.28 91.77

CAVIAR
Baseline [8] 40.63 71.72 83.34 95.67
Our-NoFN 51.68 76.36 86.38 96.55

Our-FN 50.34 74.83 85.72 96.03

Table 1. Comparison of different NDBs on the VIPeR dataset (P = 316) and CAVIAR dataset (P = 36).

Method R=1 R=5 R=10 R=20
Ours 44.97 74.43 84.97 93.64
SCNCD[15] 37.80 68.50 81.20 90.40
EPKFM[3] 36.80 70.40 83.70 91.70
K-Ensb2[14] 36.10 68.70 80.10 85.60
IDLA[1] 34.81 - - -
TSRPR[13] 31.10 68.60 82.80 94.90
kBiCov[11] 31.11 58.33 70.71 82.44
LADF[7] 30.22 64.70 78.92 90.44
SalMatch[16] 30.16 - 65.54 79.15
Mid-L-F[18] 29.11 - 65.95 79.87
MMCML[12] 28.83 59.34 75.82 88.51
eSDC[17] 26.74 50.70 62.37 76.36
SSCDL[9] 25.60 53.70 68.10 83.60
PRDC[19] 15.66 38.40 53.86 70.09

Table 2. More comparison results with state-of-the-arts on VIPeR (P = 316).
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