
Count-ception: Counting by Fully Convolutional Redundant Counting

Joseph Paul Cohen

Montreal Institute for Learning Algorithms

Université of Montréal

Friends of the Farlow Fellow

Harvard University Herbaria

cohenjos@iro.umontreal.ca

Geneviève Boucher

Institute for Research in Immunology and Cancer

Université of Montréal

genevieve.boucher@umontreal.ca

Craig A. Glastonbury

Big Data Institute

University of Oxford

craig@well.ox.ac.uk

Henry Z. Lo

Department of Computer Science

University of Massachusetts Boston

henryzlo@cs.umb.edu

Yoshua Bengio

CIFAR Senior Fellow

Montreal Institute for Learning Algorithms

Université of Montréal

yoshua.bengio@umontreal.ca

Abstract

Counting objects in digital images is a process that

should be replaced by machines. This tedious task is time

consuming and prone to errors due to fatigue of human an-

notators. The goal is to have a system that takes as input an

image and returns a count of the objects inside and justifica-

tion for the prediction in the form of object localization. We

repose a problem, originally posed by Lempitsky and Zis-

serman, to instead predict a count map which contains re-

dundant counts based on the receptive field of a smaller re-

gression network. The regression network predicts a count

of the objects that exist inside this frame. By processing

the image in a fully convolutional way each pixel is going

to be accounted for some number of times, the number of

windows which include it, which is the size of each window,

(i.e., 32x32 = 1024). To recover the true count we take the

average over the redundant predictions. Our contribution

is redundant counting instead of predicting a density map

in order to average over errors. We also propose a novel

deep neural network architecture adapted from the Incep-

tion family of networks called the Count-ception network.

Together our approach results in a 20% relative improve-

ment (2.9 to 2.3 MAE) over the state of the art method by

Xie, Noble, and Zisserman in 2016.

Regression
Network

In
pu

t I
m

ag
e

Count map

{

R
ec

ep
tiv

e
Fi

el
d

Figure 1: Given an image, the regression network counts

the number of objects in each receptive field. The predicted

count map corresponds to the receptive field of the regres-

sion network. The upper left pixel of the activation map is

based on only one pixel of the input image in the upper left

corner.

1 18

1. Introduction

Counting objects in digital images is a process that is

time consuming and prone to errors due to fatigue of hu-

man annotators. The goal of this research area is to have a

system that takes as input an image and returns a count of

the objects inside and justification for the prediction in the

form of object localization.

The classical approach to counting involves fine-tuning

edge detectors to segment objects from the background [21]

and counting each one. A large challenge here is dealing

with overlapping objects which require methods such as the

watershed transformation [4]. These approaches have many

hyperparameters specifically for each task and are compli-

cated to build.

The core of modern approaches was described by Lem-

pitsky and Zisserman in 2010 [15]. Given labels with point

annotations of each object, they construct a density map of

the image. Here, each object predicted takes up a density of

1, so a sum of the density map will reveal the total number

of objects in the image. This method naturally accounts for

overlapping objects We extend this idea and focus on two

main areas:

1. We propose redundant counting instead of a density

map approach in order to average over errors.

2. We propose a novel construction of networks and train-

ing that can apply to counting tasks with very compli-

cated objects.

We repose the problem of predicting a density map to in-

stead predict a count map which contains redundant counts

based on the receptive field of a smaller regression network.

The regression network predicts a count of the objects that

exist inside this frame as shown in Figure 1. By processing

the image in a fully convolutional way [16] each pixel is go-

ing to be accounted for some number of times, the number

of windows which include it, which is the size of each win-

dow, (i.e., 32 × 32 = 1024). To recover the true count

we can take the average of all these predictions. Figure

2 illustrates how this change in kernel makes more sense

with respect to the receptive field of the network that must

make predictions. Using the Gaussian density map forces

the model to predict specific values based on how far the

cell is from the center of the receptive field. This is a harder

task than just predicting the existence of the cell in the re-

ceptive field. A comparison of these two types of count

maps is shown in Figure 3.

To perform this prediction we focus on a method using

deep learning [12] and convolutional neural networks [13]

like Xie [24] and Arteta [2] have. They utilized networks

similar to FCN-8 [16] which form bottlenecks at the core

of the network to capture complex relationships in different

parts of the image. Instead, we pad the borders of the input

0.5 0.2 0.0

1.0 1.0 1.0

Gaussian Kernel

Square Kernel

Receptive Field

predicted in
count map

predicted in
count map

Single line of
count map

Figure 2: Comparing how a single row of the count map can

be calculated for single cell. Above the line in red are the

values that the network is trained to predict when a Gaus-

sian kernel is used. Below in green are the values when the

square kernel is used. The square kernel is the same size as

the receptive field.

image so that the receptive field of the regression network

will redundantly count the correct number of times. This

way we do not bottleneck the representation in any way.

Figure 3: Comparison between annotations using Gaussian

and square kernels.

2. Related Work

The idea of counting with a density map began with

Lempitsky and Zisserman in 2010 [15] where they used

dense SIFT features from the image as input to a linear re-

gression to predict a density map. We predict redundant

counts instead of a density map. Although a summation

over the output of the model is taken over both causes, our

method is explicitly designed to tolerate the errors when

predictions are made.

19

However, the density map of objects does count multiple

times indirectly. It needs to properly predict a density map

of objects which is generated from a small Gaussian with

the mean at the point annotation. The values they need to

predict vary as some are at the mean and some are not. It

doesn’t take into account the receptive field so the objects

may be in view and the network has to suppress its predic-

tion.

Many approaches were introduced to predict a better

density map. Fiaschi 2012 [7] used a regression forest in-

stead of a linear model to make the density prediction based

on BoW-SIFT features. Arteta 2014 [1] proposed an in-

teractive counting algorithm which would extend this algo-

rithm to more dynamically learn to count various concepts

in the image. Xie 2016 [24] introduced deep neural net-

works to this problem. Their method built a network which

would convolve a 100 × 100 region to a 100 × 100 den-

sity map. Once this network was trained it can be run in

a fully convolutional way similar to our method. However,

these approaches focus on predicting a density map which

differentiates them from our work.

Arteta 2016 [2] discuss new approaches past the den-

sity model. Their focus is different than our work. They

tackle the problem of incorporating multiple point anno-

tations from noisy crowd sourced data. They also utilize

segmentation of the background to filter our erroneous pre-

dictions that may happen there.

In Segui [20] their method takes the entire image as in-

put and output a single count value using fully connected

layers to break the spatial relationship. They discover that a

network can learn to count and while doing this they learn

features for identifying the objects such as MNIST digits.

We use this idea in that the regression network is learning

to count the 32 × 32 frame. But we expect it to produce

errors so we perform this task redundantly.

Xie in 2015 [25] presented an interesting idea similar to

the direction we are going in. Their goal is to predict a

proximity map which consists of cone shaped distributions

over each cell which smooths each cell prediction using sur-

rounding detections. This cone extended only 5 pixels from

the point annotation which was the average size of the cell.

However, this approach is more in line with a density map

than a count map.

3. Fully Convolutional Redundant Counting

3.1. Problem Statement

We would like to obtain the count of objects in an in-

put image I being given only a few training examples with

point annotations of each object. The objects to count are

often very small, and the overall image very large. Because

counting is labor-intensive, there are often few labeled im-

ages in practice.

Table 1: Notation used in this paper.

Symbol Description

I input image

T target image, constructed from L
L image of point notations

s stride length

r width / length of receptive field

R(x, y) receptive field associated with x, y
F (I) map of predicted counts for I
N number of training / validation images

3.2. Overview of Technique

Motivation: We want to merge the idea of networks that

count everything in their receptive field by Segui [20] with

the density map of objects by Lempitsky and Zisserman

[15] using fully convolutional processing like Xie [24] and

Arteta [2].

Technique: Instead of using a CNN that takes the entire

image as input and produces a single prediction for the num-

ber of objects we use a smaller network that is run over the

image to produce an intermediate count map. This smaller

network is trained to count the number of objects in its re-

ceptive field. More formally; we process the image I with

this network in a fully convolutional way to produce a ma-

trix F (I) that represents the counts of objects for a spe-

cific receptive field r×r of a sub-network that performs the

counting.

The fully convolutional network processes an image by

applying a network with a small receptive field on the en-

tire image. This has two effects which reduce overfitting.

First, by being small, the fully convolutional network has

much fewer parameters than a network trained on the entire

image. Second, by splitting up an image, the fully convolu-

tional network has much more training data to fit parameters

on.

The following discussions will consider a receptive field

of 32 for simplicity and in order to have concrete examples.

This method can be used with any receptive field size. An

overview of the process is shown in Figure 4.

3.3. Input

We want to count target objects in an image I . This im-

age has multiple target objects that are labelled with single

point labels L. Because the counting network only reduces

the dimensions from (32× 32) → (1× 1) the input I must

be padded in order to deal with objects that appear on the

border. Objects on the border of the image will at most be

in the receptive field of a network with only one column or

row overlapping the input image. For r = 32 a pixel in

F (I) can only be 15 pixels from the border of I .

20

{32{ 32

Image input ()

(256 x 256)

Prediction Map ()

(287 x 287)

32
Conv

16

Zero padding

16

Image input to network

(320 x 320)

Dot input ()

(256 x 256)

Target labels ()

(287 x 287)

Convolutions (-32/2 each side)

Loss

Counting

Network

I

T

L

F (I)

Figure 4: Here is the pipeline for r = 32 given an input im-

age that is 256 × 256. The input image is padded and con-

volved to calculate the prediction count map which should

match the target count map. The count map will be non-

zero after r/2 from the border of the input image. A loss

is calculated between the prediction count map and target

count map in order to update the weights of the counting

network to better match the target count map.

F (I) is meant to align with the target T . It is impor-

tant that these be aligned such that the receptive field of the

network aligns with the proper regression target.

3.3.1 Constructing the target image T

The target image can be constructed from a point-annotated

map L, the same size as the input image I , where each ob-

ject is annotated by a single pixel. This is desirable because

labeling with dots is much easier than drawing the bound-

aries for segmentation.

Let R(x, y) be the set of pixel locations in the receptive

field corresponding to T [x, y]. Then we can construct the

target image T :

T [x, y] =
∑

(x′,y′)∈R(x,y)

L[x′, y′] (1)

Here T [x, y] is the sum of cells contained in a region

the size of the r × r receptive field. This will become the

regression target for the r × r region of the image.

3.4. Fully Convolutional Redundant Counting

We use fully convolutional networks with a receptive

field of 32 × 32. The output of the fully convolutional

network on the entire 320 × 320 image is 287 × 287 pix-

els. This yields a fully convolutional network output image

larger than the original input. Each pixel in the output will

represent the count of targets in that receptive field.

To perform this mapping we propose the Count-ception

architecture which is adapted from the Inception family of

networks by Szegedy et. al. [22]. Our proposed model

is shown in Figure 5. At the core of the model Inception

units are used to perform 1x1 (pad 0) and 3x3 (pad 1) con-

volutions at multiple layers without reducing the size of the

tensor. After every convolution a Leaky ReLU activation is

applied [18]. We notice an improvement of the regression

predictions with the Leaky ReLU during training because

the output can be pushed to zero and then recover to predict

the correct count.

Our modifications are in the down sampling layers. We

removed the max pooling and stride=2 convolutions. They

are replaced by large convolutions. This makes it easier to

calculate the receptive field of the network because strides

add a modulus to the calculation of the count map size.

We perform this down sampling in two locations using

large filters to greatly reduce the size of the tensor. A ne-

cessity in allowing the model to train is utilizing Batch Nor-

malization layers [9] after every convolution.

3.5. Loss Functions and Regularization

We tried many combinations of loss functions and found

L1 loss to perform the best.

min ||F (I)− T ||1 (2)

Xie found that the L2 penalty was too harsh to the net-

work during training. We reached the same conclusion for

our configuration and chose an L1 loss instead. We also

tried to combine this basic pixel-wise loss with a loss based

on the overall prediction in the entire image. We found this

caused over-fitting and provided no assistance in training.

The network would simply learn artifacts in each image in

order to correctly predict the overall counts.

3.6. Combining Sub­Image Counts

The above loss is a surrogate objective to the real count

that we want. We intentionally count each cell multiple

21

In
pu

t P
at

ch

(3
x3

) x
64

(1
x1

) x
16

(3
x3

) x
16

(1
x1

) x
16

(3
x3

) x
32

(3
0x

30
) x

64

(3
0x

30
) x

32

32
x3

2

(3
0x

30
) x

48

(1
4x

14
) x

16

(1
7x

17
) x

16

(1
x1

) x
11

2
(3

x3
) x

48

(1
7x

17
) x

16
0

(1
x1

) x
40

(3
x3

) x
40

(1
7x

17
) x

80

(1
x1

) x
32

(3
x3

) x
96

Convolutional Filter with ReLU activation

Layer output

(1
7x

17
) x

12
8

(1
7x

17
) x

16

1x
1x

64

C
ou

nt

1x
1x

64

(1
x1

) x
64

(1
x1

) x
64

1x
1x

1

Figure 5: The Count-ception network architecture that is

used for the regression network. Each intermediate tensor is

labeled (filter size) x # filters There are two points in the net-

work where the size is reduced. The 3× 3 convolutions are

padded so they do not reduce the size. Batch Normalization

layers are inserted after each convolution but not pictured

here.

times in order to average over possible errors. With a stride

of 1, each target is counted once for each pixel in its recep-

tive field. As the stride increases, the number of redundant

counts decreases.

redundant counts =
(r

s

)2

(3)

In order to recover the true count we divide the sum of

all pixels by the number of redundant counts.

true counts =

∑

x,y F (I)[x, y]

redundant counts
(4)

There are many benefits to using redundant counts. If

the pixel label is not exactly at the center of the cell, or

even outside the cell, the network can still learn because on

average the cell will appear in the receptive field.

3.7. Limitations

With this approach we sacrifice the ability to localize

each cell exactly with x, y coordinates. Viewing the pre-

dicted count map can localize where the detection came

from (shown in Figure 7) but not to a specific coordinate.

For many applications accurate counting is more important

than exact localization. Another issue with this approach

is that a correct overall count may not come from correctly

identifying cells and could be the network adapting to the

average prediction for each regression. One common ex-

ample is if the training data contains many images without

cells the network may predict 0 in order to minimize the

loss. A solution similar to Curriculum Learning [3] is to

first train on a more balanced set of examples and then take

well performing networks and train them on more sparse

datasets.

(a) VGG Cells (b) MBM Cells (c) Adipocyte Cells

Figure 6: Example images of cells in each dataset used for

evaluation. VGG Cells is the standard benchmark dataset.

MBM Cells contains complicated heterogeneous cell struc-

ture. Adipocyte Cells contains very complicated structure

where cell walls are adjoined.

4. Datasets

VGG Cells: To compare with the state of the art we first

use the standard benchmark dataset which was introduced

by Lempitsky and Zisserman in 2010 [15]. There are 200

images with a 256x256 resolution that contain simulated

bacterial cells from fluorescence-light microscopy created

by [14]. Each image contains 174 ± 64 cells which overlap

and are at various focal distances simulating real life imag-

ing with a microscope.

MBM Cells: We also use a real dataset based on the

BM dataset introduced by Kainz et al. in 2015 [10] which

consists of eleven 1, 200 × 1, 200 resolution images of

bone marrow from height healthy individuals. The standard

staining procedure used depicts in blue the nuclei of the var-

ious cell types present whereas the other cell constituents

appear in various shades of pink and red. We modified

this dataset in two ways to create the MBM dataset (Modi-

fied BM). First the 1, 200× 1, 200 images were cropped to

600× 600 in order to process the images in memory on the

GPU and also to smooth out evaluation errors during train-

ing for a better comparison. This yields a total of 44 images

containing 126 ± 33 cells (identified nuclei). In addition,

the ground truth annotations were updated after visual in-

spection to capture a number of unlabeled nuclei with the

help of domain experts.

Adipocyte Cells: Our final dataset is a human subcu-

taneous adipose tissue dataset obtained from the Genotype

Tissue Expression Consortium (GTEx) [17]. 200 Regions

Of Interest (ROI) representing adipocyte cells were sam-

pled from high resolution histology slides by using a sliding

window of 1700 × 1700. Images were then down sampled

to 150 × 150, representing a suitable scale in which cells

could be counted using a 32 × 32 receptive field. The av-

erage cell count across all images is 165±44.2. Adipocytes

can vary in size dramatically (20-200µ) [19] and given they

are densely packed adjoining cells with few gaps, they rep-

resent a difficult test-case for automated cell counting pro-

cedures.

22

5. Experiments

First, we compare the overall performance of our pro-

posed model to existing approaches in Table 2 for each

dataset. For each dataset we follow the evaluation proto-

col used by Lempitsky and Zisserman in 2010 that has been

used by all future papers. In this evaluation protocol, train-

ing, validation, and testing subsets are used. The held-out

testing set size is fixed for all experiments while training and

validation sizes (N) are varied to simulate lower or higher

numbers of labeled examples. The algorithm trains on the

training set only while being able to early stop by evaluating

its performance on the validation set. The size of the train-

ing and validation sets are varied together for simplicity.

The results of the algorithm using at least 10 random

splits are computed and we present the mean and standard

deviation. The testing set size remains constant in order to

provide constant evaluation. If the testing set were chosen

to be all remaining examples (|Testing| = |Total| − 2N) in-

stead of a fixed size then smaller N values would be less

impacted by difficult examples in the test set because exam-

ples are not sampled with replacement.

As a practitioner baseline comparison we compare our

results to Cell Profiler’s [5] which uses segmentation to per-

form object identification and counting. This is representa-

tive of how cells are typically counted in biology laborato-

ries. To do so, we designed two main different pipelines

and evaluated the error on 10 splits of 100 randomly cho-

sen images for the synthetic dataset (VGG Cells) and on

10 splits of 10 images for the bone marrow dataset (MBM

Cells) to mimic the experimental setup in place since Cell

Profiler does not use a training set. For the MBM Cells,

we report the performance using the same pipeline (single)

for all images and using three slightly modified versions of

the pipeline (multiple) where a parameter was adjusted to

account for color differences seen in 8 of the 44 images.

Among other methods we compare with Xie’s FCRN-A

network [24]. Only Xie’s and our method (Count-ception)

are neural network based approaches. Our network is suf-

ficiently deeper than the Xie’s FCRN-A network and that

representational power together with our redundant count-

ing we are able to perform significantly better. We show

in §5.2 that the performance of our model matches that of

Xie’s when the redundant counting is disabled by changing

the stride to eliminate redundant counting.

5.1. Training

In order to train the network we used the Adam optimiza-

tion technique [11] with a learning rate of 0.005 and a batch

size of 4 images. The training runs for 1000 epochs and the

best model based on the validation set error is evaluated on

the test set. The weights of the network were initialized us-

ing the Glorot initialization method [8] adjusted for ReLU

gain.

5.2. Redundant Counting

We claim redundant counting is significant to the success

of the method. By increasing the stride we can reduce dou-

ble counting until there is none. We present the reader Table

3 which indicates that a stride of 1, meaning the maximum

amount of redundant counting patch size2, is the optimal

choice. As we increase the stride to equal the patch size

where no redundant counting is occurring the accuracy is

reduced.

The power of this algorithm is in the redundant count-

ing. However, increasing the redundant count is compli-

cated. The receptive field could be increased but this will

add more parameters which cause the network to overfit the

training data. We explored a receptive field of 64x64 and

found that it did not perform better. Another approach could

be to use dilated convolutions [26] which would be equiva-

lent to scaling up the input image resolution.

5.3. Runtime and Implementation

The run-time of this algorithm is not trivial. We ex-

plored models with less parameters and found they could

not achieve the same performance. Shorter models (fewer

layers) or narrower models (less filters per layer) tended to

not have enough representational power to count correctly.

Making the network wider would cause the model to overfit.

The complexity of the Inception modules were significant to

the performance of the model.

The network was implemented in lasagne (version

0.2.dev1) [6] and Theano (version 0.9.0rc2.dev) [23] using

the libgpuarray backend. The source code and data will be

made available online1.

6. Conclusion

In this work we rethink the density map method by Lem-

pitsky and Zisserman [15] and instead predict counts in a re-

dundant fashion in order to average over errors and reduce

overfitting. This redundant counting approach merges ideas

by Segui [20] of networks that count everything in their re-

ceptive field with ideas by Lempitsky and Zisserman of us-

ing the density map of objects together with ideas by Xie

[24] and Arteta [2] of using fully convolutional processing.

We call our new approach Count-ception because our

approach utilizes a counting network internally to perform

the redundant counting. We demonstrate that this approach

outperforms existing approaches and can also perform well

with very complicated cell structure even where the cell

walls adjoin other cells. This approach is promising for

tasks with different sizes of objects which have complicated

structure. However, the method has some limitations. Al-

though the count map can be used for localization it cannot

easily provide x, y locations of objects.

1https://github.com/ieee8023/countception

23

https://github.com/ieee8023/countception

Table 2: Comparison of test set mean absolute error (MAE) of counts per image with prior work. Out of all images in each

dataset, N images are randomly selected for the training set, N for the validation set, and a fixed size is used for the testing

set. At least 10 runs using different random splits and different network initializations are used to calculate the mean and

standard deviation.
VGG Cells (200 Images Total)

Method N = 8 N = 16 N = 32 N = 50

Predict Average Count 52.5± 2.4 52.5± 2.3 52.2± 2.3 52.1± 2.4
Cell Profiler — 7.9± 0.3 —

Lempitsky and Zisserman (2010) 4.9± 0.7 3.8± 0.2 3.5± 0.2 N/A
Fiaschi et al. (2012) 3.4± 0.1 N/A 3.2± 0.1 N/A
Arteta et al. (2014) 4.5± 0.6 3.8± 0.3 3.5± 0.1 N/A

FCRN-A, Xie (2016) 3.9± 0.5 3.4± 0.2 2.9± 0.2 2.9± 0.2*

Count-ception (Proposed) 3.9± 0.4 2.9± 0.5 2.4± 0.4 2.3± 0.4

*
Reported in their work as N = 64.

MBM Cells (44 Images Total)

Method N = 5 N = 10 N = 15

Predict Average Count 29.4± 2.3 28.6± 1.6 28.2± 1.6
Cell Profiler -single — 19.8± 4.2 —

Cell Profiler -multiple** — 12.8± 3.1 —

FCRN-A, Xie (2016) 28.9± 22.6 22.2± 11.6 21.3± 9.4
Count-ception (Proposed) 12.6± 3.0 10.7± 2.5 8.8± 2.3

**
Cell Profiler results were obtained using a single pipeline (single) and using three dif-

ferent pipelines (multiple) to account for color differences in two of the eleven images.

Adipocyte Cells (200 Images Total)

Method N = 10 N = 25 N = 50

Predict Average Count 33.8± 3.1 33.6± 3.0 33.5± 2.9
Cell Profiler 150× 150 — 40.0± 3.9 —

Cell Profiler 299× 299
† — 25.06± 2.6 —

Adiposoft (2012) 299× 299
† ‡ — 45.4± 25.47 —

Adiposoft (2012) 1700× 1700
† ‡ — 14.8± 13.63 —

Count-ception (Proposed) 150× 150 25.1± 2.9 21.9± 2.8 19.4± 2.2

†
This evaluation utilized larger resolution images than then Count-ception evaluation.

‡This analysis was computed on only 10 images because it must be manually processed.

Table 3: Comparison of different strides (s) to reduce the

redundant counting. Results are compared using the mean

absolute error of the count predictions. For these experi-

ments we use N = 32 examples. Here Train & Test means

the stride was set at that value for training and testing. Hav-

ing a larger stride during training means seeing less data. A

network trained with s = 32 has seen 32 times less data that

with s = 1. In the Test Only case the network was trained

with s = 1 and then evaluation on the test set was limited

to different strides so less redundant predictions are made.

Stride s = 1 s = 8 s = 16 s = 32

Train & Test 2.4±0.4 3.5±0.1 4.0±0.2 5.2±0.4

Test Only 2.4±0.4 2.5±0.4 2.7±0.3 3.0±0.3

7. Acknowledgments

This work is partially funded by a grant from the U.S.

National Science Foundation Graduate Research Fellow-

ship Program (grant number: DGE-1356104) and the Insti-

tut de valorisation des données (IVADO). This work utilized

the supercomputing facilities managed by the Montreal In-

stitute for Learning Algorithms, NSERC, Compute Canada,

and Calcul Quebéc. We also thank NVIDIA for donating a

DGX-1 computer used in this work.

References

[1] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman. In-

teractive object counting. In European Conference on Com-

puter Vision, 2014. 3

[2] C. Arteta, V. Lempitsky, and A. Zisserman. Counting in The

Wild. European Conference on Computer Vision, 2016. 2, 3,

24

(a) VGG Cell detection

(b) MBM Cell detection

(c) Adipocyte Cell detection

Figure 7: Example predicted count maps of images held out of training for each dataset. On the left is the image. In the

center is the correct output which would result in the correct count of cells. On the right is the predicted count map.

25

6

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. International Conference on Machine

Learning, 2009. 5

[4] S. Beucher. Watershed, hierarchical segmentation and wa-

terfall algorithm. Mathematical morphology and its applica-

tions to image processing, 1994. 2

[5] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke,

I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A.

Lindquist, J. Moffat, P. Golland, and D. M. Sabatini. Cell-

Profiler: image analysis software for identifying and quanti-

fying cell phenotypes. Genome Biology, oct 2006. 6

[6] S. Dieleman. Lasagne: First release., 2015. 6

[7] L. Fiaschi, R. Nair, U. Koethe, and F. a. Hamprecht. Learning

to Count with Regression Forest and Structured Labels. In

International Conference on Pattern Recognition, 2012. 3

[8] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. International

Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2010. 6

[9] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-

ing Deep Network Training by Reducing Internal Covariate

Shift. In International Conference on Machine Learning,

2015. 4

[10] P. Kainz, M. Urschler, S. Schulter, P. Wohlhart, and V. Lep-

etit. You Should Use Regression to Detect Cells. Medical Im-

age Computing and Computer-Assisted Intervention, 2015. 5

[11] D. Kingma and J. Ba. Adam: A Method for Stochastic Op-

timization. International Conference on Learning Represen-

tations, 2014. 6

[12] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Na-

ture, 2015. 2

[13] Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient back-

prop. Neural networks: tricks of the trade, 1998. 2

[14] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen,

and O. Yli-Harja. Computational Framework for Simulat-

ing Fluorescence Microscope Images With Cell Populations.

IEEE Transactions on Medical Imaging, 2007. 5

[15] V. Lempitsky and A. Zisserman. Learning To Count Objects

in Images. Advances in Neural Information Processing Sys-

tems, 2010. 2, 3, 5, 6

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Conference on Com-

puter Vision and Pattern Recognition, 2015. 2

[17] J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo,

S. Shad, R. Hasz, G. Walters, F. Garcia, N. Young, and Oth-

ers. The genotype-tissue expression (GTEx) project. Nature

genetics, 2013. 5

[18] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier Nonlin-

earities Improve Neural Network Acoustic Models. Interna-

tional Conference on Machine Learning, 2013. 4

[19] T. McLaughlin, C. Lamendola, N. Coghlan, T. C. Liu,

K. Lerner, A. Sherman, and S. W. Cushman. Subcutaneous

adipose cell size and distribution: relationship to insulin re-

sistance and body fat. Obesity, 2014. 5

[20] S. Segui, O. Pujol, and J. Vitria. Learning to count with

deep object features. In Conference on Computer Vision and

Pattern Recognition Workshops, 2015. 3, 6

[21] M. Sezgin and B. Sankur. Survey over image thresholding

techniques and quantitative performance evaluation. Journal

of Electronic Imaging, 2004. 2

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the Inception Architecture for Computer Vision.

In Conference on Computer Vision and Pattern Recognition,

2016. 4

[23] Theano Development Team. Theano: A Python framework

for fast computation of mathematical expressions. arXiv e-

prints, 2016. 6

[24] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell

counting and detection with fully convolutional regression

networks. Computer Methods in Biomechanics and Biomed-

ical Engineering: Imaging & Visualization, 2016. 2, 3, 6

[25] Y. Xie, F. Xing, X. Kong, H. Su, and L. Yang. Beyond

Classification: Structured Regression for Robust Cell De-

tection Using Convolutional Neural Network. MICCAI In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, 2015. 3

[26] F. Yu and V. Koltun. Multi-Scale Context Aggregation by

Dilated Convolutions. International Conference on Learning

Representations, 2016. 6

26

