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Abstract

Local and global approaches can be identified as the two

main classes of optical flow estimation methods. In this pa-

per, we propose a framework to combine the advantages of

these two principles, namely robustness to noise of the local

approach and discontinuity preservation of the global ap-

proach. This is particularly crucial in biological imaging,

where the noise produced by microscopes is one of the main

issues for optical flow estimation. The idea is to adapt spa-

tially the local support of the local parametric constraint

in the combined local-global model [6]. To this end, we

jointly estimate the motion field and the parameters of the

spatial support. We apply our approach to the case of Gaus-

sian filtering, and we derive efficient minimization schemes

for usual data terms. The estimation of a spatially varying

standard deviation map prevents from the smoothing of mo-

tion discontinuities, while ensuring robustness to noise. We

validate our method for a standard model and demonstrate

how a baseline approach with pixel-wise data term can be

improved when integrated in our framework. The method is

evaluated on the Middlebury benchmark with ground truth

and on real fluorescence microscopy data.

1. Introduction

Accurate optical flow estimation still remains a chal-

lenge for various applications [15]. In particular, image

sequences acquired in microscopy are often corrupted by

a high level of noise, which is one of the main sources of

estimation errors. For example, in time-lapse fluorescence

microscopy, the power of excitation lasers often has to be

reduced to limit phototoxicity and improve temporal reso-

lution of long sequences. This is at the cost of increasing the

amount of noise. Optical flow estimation is also required for

the alignment of micrographs with extremely low signal-to-

noise ratios in electron microscopy [1].

Optical flow estimation is based on the assumption of

conservation of the image intensity of each pixel during its

displacement. Due to its pixel-wise nature, this data fitting

constraint is poorly descriptive and gives no information

about the spatial context around each pixel. This funda-

mental uncertainty is called aperture problem and states that

only the normal component of the motion field can be un-

ambiguously determined. The role of regularization is then

to overcome this under-determination by adding additional

constraints imposing smoothness of the motion field. Two

approaches of regularization have been designed for optical

flow and are usually referred to as local and global.

Global methods penalize the norm of the gradient of the

motion field to favor piecewise smoothness [18]. Varia-

tional minimization of global models has become the dom-

inant approach for optical flow estimation and is the ba-

sis framework of current state-of-the-art methods [23, 26].

However the errors generated by the pixel-wise data term

are often compensated by an undesirable over-smoothing.

A way to deal with this effect is to design more sophisti-

cated data terms as proposed in [21, 11, 14].

The idea of the local approach is to fit parametric motion

models in a neighborhood of each pixel [19]. The motion

field is estimated from a region-based data term defined by

the sum of data constraints of the pixels in the region. De-

spite their superior robustness to noise [6], these methods

are usually unable to compete with global methods in terms

of accuracy at low levels of noise. The reason is the diffi-

culty to determine regions where motion can be accurately

approximated by a parametric motion model. However, it

has been shown that when appropriate regions are chosen,

local parametric models can yield excellent performances
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[27, 16].

Our aim is to combine the potential of the region-based

constraint of local methods with global regularization. A

first investigation in that direction has been performed by

Bruhn et al. [6]. The locally constant flow assumption was

integrated as a data term in a global variational approach.

The spatial support was defined as a Gaussian filter with

fixed standard deviation in the whole image domain. As a

consequence, the counterpart of robustness to noise was an

over-smoothing of discontinuities due to the spatial invari-

ance of the Gaussian kernel.

In this paper, we propose to take benefit from local and

global methods with spatial adaptation of the support for

the local parametric constraint. We propose a framework

for joint estimation of the motion field and the parameters

of the spatial support. We derive an efficient minimization

scheme in the case of the isotropic Gaussian kernel for sev-

eral data terms. As a result, we achieve at the same time ro-

bustness to noise and preservation of the discontinuities. We

demonstrate on the Middlebury benchmark how the accu-

racy of a baseline pixel-wise method can be improved when

integrated in our framework. We also show how real flu-

orescence microscopy problems where noise is one of the

main issues can be addressed with our approach.

1.1. Related work

A common strategy to cope with noise in the optical flow

estimation process is to apply a pre-filtering operation to the

input images. A Gaussian filtering is the standard choice.

However, Gaussian smoothing also blurs image discontinu-

ities and thus affects the recovery of discontinuities of the

motion field, as analyzed in [6]. Another usual way to tackle

noise is to increase the regularization parameter, which also

tends to over-smooth the motion field. Indeed, the role of

motion regularization is to model the a priori assumption

on the motion field, regardless of the nature of data. Noise

in the data should therefore be taken into account in the data

term.

To reduce the over-smoothing produced by the shift-

invariant filtering of the data term in [6], the authors of [13]

replaced the Gaussian filter by a bilateral filter, and [22]

exploited tensor voting. These latter approaches rely on im-

age measurements to specify filters. Similarly to image-

based regularization [25, 24], they are particularly sensitive

to noise and produce over-segmentation of the motion field.

In [3], the covariance of a Gaussian weighting function is

locally estimated jointly with the velocity field, but only for

cross-correlation based motion estimation. Estimation of

shift-variant filters has been investigated for other problems

like deconvolution [12] or denoising [2].

2. Combinations of local and global ap-

proaches

2.1. Variational optical flow and energy functional

In the global approach, the flow field is assumed to be

piecewise smooth and the strategy is to minimize a global

energy E(w) that explicitly combines a potential M(·)
which penalizes deviations from the brightness constancy

equation with a regularization potential R(·) which penal-

izes high values of the norm of the gradient of the velocity

field. Let f : Ω × [0, T ] → R be an image sequence of

T frames, w : Ω → R
2 the motion field, Ω the image do-

main and x = (x, y)⊤ ∈ Ω the pixel location. The energy

functional is defined as

E(w) =

∫

Ω

M(x,w) + λR(x,∇2w)dx (1)

where w(x) = (u(x), v(x))⊤ denotes the motion vector at

pixel x ∈ Ω, ∇2 := (∂x, ∂y)
⊤ denotes the spatial gradient

operator and λ > 0 is a regularization weight.

The standard quadratic pixel-wise data fidelity potential

obtained from the brightness constancy assumption writes

M0(x,w) = w
+(x)⊤J0 w

+(x) (2)

with the tensor J0 = ∇3f ∇⊤

3
f , where ∇3 :=

(∂x, ∂y, ∂t)
⊤ denotes the spatio-temporal gradient operator

and w
+(x) := (u(x), v(x), 1)⊤. To make the data term

robust to additive illumination changes, it is recommended

in [5, 28] to consider the following data term, which com-

bines the brightness and gradient constancy assumptions as

follows:

M1(x,w) = w
+(x)⊤J1 w

+(x) + γw+(x)⊤J̄1 w
+(x) (3)

where J1 = cJ0 and J̄1 = cx∇3fx∇⊤

3
fx + cy∇3fy∇⊤

3
fy

where γ > 0 balances the brightness and gradient as-

sumptions and the normalization factors are defined as:

c = (f2x + f2y + ǫ2)−1, cx = (f2xx + f2xy + ǫ2)−1,

cy = (f2yx + f2yy + ǫ2)−1 where ǫ > 0 avoids division

by zero.

2.2. Spatial filtering of data terms

The combination of local and global approaches in a

single model has been investigated by Bruhn et al. [6].

The so-called “Combined Local-Global” method (CLG) is

based on the local filtering of the data term, implying a

neighborhood-wise data constancy constraint, less sensitive

to noise than pixel-wise measures. The following data term

is considered in [6]:

M0,σ(x,w) = w
+(x)⊤J0,σ w

+(x) (4)

where J0,σ := Gσ ∗ J0, Gσ is a Gaussian filter of stan-

dard deviation σ, and ∗ is the convolution operator. In (4),
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the Gaussian filtering is applied only on the image variables

ft, fx, fy and not on w which is therefore assumed to be

locally constant. Experiments in [6] demonstrated the in-

creased robustness to noise of the results obtained by Gaus-

sian filtering of the data term. The method has been applied

in several fields where acquisition conditions induce noise

in the image [9, 10].

In [28], a similar modeling is proposed when the data

term M1(x,w) is considered:

M1,σ(x,w) = w
+(x)⊤J1,σ w

+(x) + γw+(x)⊤J̄1,σ w
+(x)

where J1,σ := Gσ ∗ J1 and J̄1,σ := Gσ ∗ J̄1. Neverthe-

less, while this strategy focuses on robustness to noise, it

does not address the problem of estimating the optimal fil-

ter support σ at each location. Gaussian smoothing with

fixed standard deviation tends to over-smooth the resulting

flow field at motion discontinuities.

3. Spatially adaptive filtering and optimization

3.1. Novel optical flow energy model

Over-smoothing occurs with [6], as for local methods,

when the support of the local filtering contains multiple mo-

tions, that is, at motion discontinuities. The aim is then to

restrict the spatial support to coherently moving regions by

replacing Gaussian filtering with fixed standard deviation

by an adaptive filtering. Considering the case of isotropic

Gaussian smoothing, the parameter to optimize jointly with

w is the standard deviation of the Gaussian filter, now de-

fined as a dense field σ : Ω → R
+. We define the optimiza-

tion problem

(ŵ, σ̂) = arg min
w,σ

E(w, σ) (5)

where the energy E(w, σ) is defined as

E(w, σ) =

∫

Ω

ρ(Mν,σ(x,w)) dx+ λ

∫

Ω

φ(‖∇w(x)‖2) dx

+ β

∫

Ω

ψ(|∇σ(x)|2) dx+ µ

∫

Ω

1

σ(x)
dx (6)

and ν ∈ {0, 1}, λ, β > 0 are weights that balance the con-

tributions of the data and regularization terms and ρ(·) is

a robust penalization function. The first term is a general-

ization of the data potential (4) and the second and third

terms are regularizations on w and σ. To preserve dis-

continuities in the regularized flow field, robust penalizers

R(x,∇2w) = φ(‖∇2w(x)‖2) and ψ(|σ(x)|2) are consid-

ered. The last term is an inverse barrier that prevents σ from

being negative if it is initialized with a positive value, and µ

is interpreted as parameter that controls the severity of the

barrier.

The minimization (6) w.r.t. w amounts to the method of

[6]. Minimizing w.r.t. σ adapts spatially the standard de-

viation of the convolution σ(x) at each point x. The aim

is to reduce σ at motion discontinuities, where Gaussian

smoothing tends to blur the estimated motion field. If a

discontinuity is contained in the Gaussian support defined

by σ, the locally constant motion assumption will be vio-

lated and lower values σ will be favoured. Rather than being

adapted to the image content as in [13, 22], σ is guided now

by the data term and variations follow motion discontinu-

ities rather than image discontinuities. Note that the inverse

barrier term tends to encourage large values of σ, which is

desirable for large regions with coherent motion, except at

motion discontinuities.

3.2. Energy minimization

The optimization is performed alternatively w.r.t. w and

σ. Minimization of E(w, σ) w.r.t. w with σ fixed amounts

to a standard optimization problem in optical flow. We de-

rive the associated non-linear Euler-Lagrange equations as

[5]:




∂ρ(Mν,σ(x,w))

∂u(x)
− λdiv

(
φ′(‖∇w(x)‖2)∇u(x)

)
= 0

∂ρ(Mν,σ(x,w))

∂v(x)
− λdiv

(
φ′(‖∇w(x)‖2)∇v(x)

)
= 0,

(7)

where div(·) is the divergence. To solve the non-linear sys-

tem of equations (7) we use the fixed point scheme detailed

in [4].

To minimize (6) w.r.t. σ with w fixed, , we adopt

a gradient-based minimization approach using the quasi-

Newton method L-BFGS [20]. It requires the computation

the derivative of E(w, σ) w.r.t. σ(x). We first we consider

the data term ρ(M0,σ(x,w)). It follows that

∂E(w,x)

∂σ(x)
= (w+(x)⊤(gσ(x)∗J0)w

+(x)) ρ′(M0,σ(x)(x,w))

− 2β div
(
∇σ(x)ψ′(|∇σ(x)|2)

)
− µ

σ2(x)

where

g
σ(x)(x− ·) :=

∂G
σ(x)(x− ·)

∂σ(x)
=

G
σ(x)(x− ·)

σ(x)

(

‖x− ·‖2

σ2(x)
−1

)

is a filter analogous to the Gaussian filterGσ(x). The deriva-

tive of E(w, σ) w.r.t. σ(x) when considering the data term

ρ(M1,σ) is as follows:

∂E(w,x)

∂σ(x)
= (8)

(w+(x)⊤(gσ(x)∗J1)w
+(x)) ρ′(w+(x)⊤J1,σ w

+(x))

+ γ (w+(x)⊤(gσ(x)∗J̄1)w
+(x)) ρ′(w+(x)⊤J̄1,σ w

+(x))

− 2β div
(
∇σ(x)ψ′(|∇σ(x)|2)

)
− µ

σ2(x)
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First frame + Gaussian noise Ground truth Result of CLG-A

Estimated σ map Result of CLG0 Result of CLG

Figure 1. Visual results obtained with CLG-A, CLG0 and CLG on the Grove3 sequence corrupted with Gaussian noise with standard

deviation 40.

3.3. Implementation

In our implementation, we embedded the estimation in

a coarse-to-fine scheme to cope with large displacements.

The alternate optimization of w and σ is performed at each

level of the pyramid. In our experiments, 3 alternated mini-

mization iterations are sufficient to reach convergence.

As in [5, 28], we choose a TV-ℓ1 model by taking

ρ(z2) = φ(z2) = ψ(z2) =
√
z2 + ε with a small regu-

larization value to approximate the ℓ1 norm ε = 0.001, and

we set γ = 3.

4. Experimental results

We evaluate our method with the model M1,σ by com-

paring our spatially variant estimation of σ, that we call

CLG-A, with the standard pixel-wise approach without fil-

tering [5], denoted CLG0, and the method of [6] using a

fixed value for σ, denoted CLG. We focus on these methods

to isolate the impact of our adaptive filtering approach in-

side a fixed estimation framework. Our approach could be

integrated in more recent motion estimation methods to fur-

ther improve results. We fix the value of σ to 3 for CLG. We

first evaluate our method on the sequences of the Middle-

bury benchmark with ground truth, and we use the endpoint

error (EPE) as an error measure, which is a standard evalu-

ation procedure. Note that the Middlebury database is rec-

ommended to evaluate variational methods which focus on

accurate estimation of small displacements. Recent datasets

[7, 17] are mostly dedicated to large displacements, occlu-

sions and intensity changes, which should be addressed by

specific techniques that could be integrated in our frame-

work. The regularization parameter on the motion field λ

has been optimized for each method and each sequence.

The computational time of CLG-A is about 5 times higher

than the one of CLG when the number of alternate opti-

mization steps is 3. For a C++ implementation, CLG takes

about 20s for the Grove3 sequence.

Figure 1 shows visual results on the Grove3 sequence

that we corrupted with additive Gaussian noise of standard

deviation equal to 40. The map of σ estimated with CLG-A

is also displayed, encoding σ values by the image intensity

(dark regions correspond to small value of σ and bright re-

gions to large value of σ). The range of estimated values

of σ is [0.1, 3.1]. In Table 1, the EPE obtained on the Mid-

dlebury benchmark are reported for several levels of noise.

In Fig. 2, we compare the evolution of the EPE with the

noise level in the input images for CLG-A, CLG0, and CLG.

In Fig. 1, we observe that to cope with noise in the in-

put image, CLG0 has to smooth motion details and large

regions of the motion field. CLG tends to smooth motion

discontinuities because of the fixed size of the Gaussian ker-

nel. In contrast our CLG-A results are both robust to noise

and discontinuity-preserving. The estimated σ map shows

that large values are estimated in regions of homogeneous
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Table 1. Comparison of EPE obtained with CLG0, CLG, and our proposed method CLG-A on the sequences of the Middlebury benchmark.

We consider three levels of Gaussian noise standard deviation (“noise std”) added to the input images.

Noise std Method Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

20

CLG0 0.253 0.211 0.801 0.229 0.215 0.721 1.305 0.608

CLG 0.360 0.381 1.111 0.416 0.340 0.816 1.013 0.619

CLG-A 0.278 0.244 0.809 0.296 0.239 0.717 0.886 0.592

30

CLG0 0.313 0.271 0.927 0.418 0.328 0.818 1.470 0.666

CLG 0.398 0.412 1.154 0.425 0.351 0.821 1.051 0.629

CLG-A 0.325 0.285 0.909 0.332 0.272 0.761 0.925 0.625

40

CLG0 0.397 0.323 1.120 0.602 0.352 0.961 1.578 0.678

CLG 0.412 0.418 1.174 0.433 0.356 0.833 1.079 0.633

CLG-A 0.373 0.318 1.006 0.379 0.296 0.798 0.960 0.654

0 10 20 30 40 50 60 70 80 90 100

Standard deviation of the noise

0.9

1.2

1.5

1.8

E
n
d
p
o
in
t
er
ro
r

CLG-A

CLG

CLG0

Figure 2. Influence of the standard deviation of the noise on the

endpoint error obtained with CLG-A,CLG, and CLG0 , for the

sequence Grove3.

motion to cope with noise, whereas the filtering is almost

canceled at motion discontinuities to avoid over-smoothing.

The spatial variations of σ follow motion discontinuities

and not image discontinuities. The results of Table 1 shows

that our spatial adaptation of σ yields a significant improve-

ment over pixel-wise and fixed σ approaches for noise lev-

els above a variance of 30, and stays competitive for lower

noise levels. Figure 2 confirms that CLG-A combines the

performances of CLG for high levels of noise with those of

CLG0 for low levels of noise.

We also tested our method on several real fluorescence

microscopy sequences obtained in widefield imaging repre-

senting the growth of CElegans embryos, which is a clas-

sical research topic in biology. Figure 3 visually compares

the results obtained with the three methods on an image pair

extracted from a typical sequence, for several values of λ.

The results of CLG0 show that it is clearly not adapted to the

high level of noise that commonly occurs in fluorescence

microscopy. Compared to CLG, CLG-A preserves sharper

cell discontinuities. Since the Gaussian kernel also acts as

a regularizer, CLG-A is less affected by the change of λ,

which can be a convenient feature for users and biologist

experts.

5. Conclusion - Perspectives

In this paper, we have proposed a framework for the spa-

tially adaptive integration of a local parametric assumption

in the data term of a global optical flow model. In the

case of Gaussian filtering, we have derived efficient quasi-

Newton optimization schemes for joint estimation of mo-

tion and standard deviation of the filter. Our experimental

results demonstrated that our method combines robustness

to noise with sharpness of motion discontinuities. It yields

significant improvements compared to the non-adaptive ver-

sion for all levels of noise. It is also more accurate in fluo-

rescence microscopy, where the usual pixel-wise approach

fails due to the high level of noise.

A natural and potentially powerful extension could be to

define the local spatial support with anisotropic Gaussian

weights to fit more accurately the possibly complex shapes

of motion discontinuities. Another direction of research

would be to consider more advanced local anisotropic mod-

els [8]. We integrated our model in a variational framework

adapted to small displacements. Other approaches to deal

with large displacements and occlusions could be consid-

ered in the future [16, 23, 26].
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