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Abstract

In this work, we segment spheroids with different sizes,

shapes, and illumination conditions from bright-field mi-

croscopy images. To segment the spheroids we create a

novel multiscale deep adversarial network with different

deep feature extraction layers at different scales. We show

that linearly increasing the adversarial loss contribution re-

sults in a stable segmentation algorithm for our dataset. We

qualitatively and quantitatively compare the performance of

our deep adversarial network with two other networks with-

out adversarial losses. We show that our deep adversarial

network performs better than the other two networks at seg-

menting the spheroids from our 2D bright-field microscopy

images.

1. Introduction

Deep neural networks outperform traditional methods in

several image analysis applications. A special type of the

deep neural network known as Fully Convolutional Neural

Networks (FCNNs) are typically used for image segmen-

tation [8]. Recently, a special type of FCNN known as

U-net [12] was successfully applied to segment cells from

bright-field images. The FCNNs for segmentation consist

of a contracting convolution path for a coarse feature ex-

traction followed by an expanding convolution path for fine

grained segmentation results. He et al. [6] showed that short

skip connections or residual connections improved perfor-

mance on image classification problems. The U-net utilized

long skip connections for better segmentation performance.

Drozdzal et al. [2] showed that both long and short skip

connections were required for better segmentation perfor-

mance. Szegedy et al. [14] showed that residual connec-

tions along with many parallel convolution paths improved

the learning of deep networks.

Spheroids are a type of cell cultures growing outside an

organism in a controlled environment. In this environment

they grow as 3D structures and don’t adhere to culture sub-

strates, such as polystyrene in 2D monolayer cultures. The

spheroids are used for high throughput drug screening ex-

periments and they typically vary in sizes, shapes and tex-

tures depending on the biology and experimental environ-

ments [3]. To extract features from different sizes or scales

multiscale FCNNs [4, 13] have been used. The multiscale

FCNNs extract features at many scales of observations and

combine the results. In this work, we also use multiscale

FCNNs with long and short skip connections along with

multiple convolution paths.

Deep generative adversarial networks [5] (GANs) are a

type of deep neural networks used to artificially create data

similar to the training dataset. A GAN usually consists of

a generator network to create the new data and an adversar-

ial network to discriminate the ground truth (real data) from

the the artificially generated data (fake data). The genera-

tor and the adversarial networks are usually created as deep

neural networks and they are trained simultaneously. The

performance of both improves over iterations. The predic-

tion from the adversarial network becomes 50 : 50 when

the generator network starts creating images similar to the

ground truth images. Recently, Luc et al. [9] used GAN for

semantic segmentation of natural scenes. They used a seg-

mentation network as the generator and a classifier as the

adversarial network.

In this work, we explore the benefits of combining FC-

NNs with GANs. There are two main contributions in this

work: (1) we create a novel multiscale deep adversarial net-

work with two different types of deep feature extraction

at different scales, (2) we linearly increase the adversar-

ial loss to the segmentation network to stabilize them. We

quantitatively compare the segmentation performance of the

proposed deep adversarial network with a baseline network

without adversarial loss and a modified U-net [12] network.

In Section 2, we describe the datasets we use, the design

and training of the adversarial and baseline networks, how
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Figure 1. Input spheroid dataset. The cell clusters are formed in

different sizes and shapes. (a-c) show the images from dataset 1

and (d-f) show images from dataset 2. The images are contrast

enhanced for visualization.

we convert the probability maps from the networks into seg-

mentation masks. In Section 3, we qualitatively and quan-

titatively evaluate the performance of the proposed network

and compare our network with the baseline network and the

U-net network.

2. Materials and methods

2.1. Input images

The input dataset consists of 2D bright-field images of

spheroids representing a range of cell types, treatments,

and experimental conditions. The sizes and shapes of the

spheroids vary depending on how the cells respond to dif-

ferent treatments, but may also vary with varying cell types

and culturing conditions [3], as shown in Fig. 1. The in-

put images were acquired using different cameras and the

images are of sizes 1080 × 1080 and 2160 × 2160 pixels

in vertical and horizontal directions. The input images are

categorized as easy or hard based on the difficulty in seg-

menting the dataset using conventional methods available

in microscopy image analysis tools such as ColumbusTMand

MetaXpress R©. The easy and hard datasets are hereafter re-

ferred to as dataset 1 and dataset 2, respectively. Exam-

ple images from the datasets 1 and 2 are shown in Fig. 1.

Dataset 1 consists of 2295 images and dataset 2 consists of

781 images.

2.2. Ground truth generation and data augmenta-
tion

We use two different approaches to create the ground

truths for training. For dataset 1, we create the ground

truths semi-automatically using conventional image analy-

sis tools. After the images are segmented the results are

manually curated to remove improper segmentations. For

dataset 2, we manually annotate the input images to create

the ground truths. We divide the datasets 1 and 2 to six ap-

proximately equal partitions. We set one of these partitions

to be the test set. We use the rest of the five partitions for five

fold cross validation. We perform all the hyper parameter

optimizations, such as the values of λ (explained in Section

2.4), on the validation sets only.

The input images of sizes 1080× 1080 and 2160× 2160
are down-sampled to 480× 480. After the resizing, we ran-

domly select the fold and images from dataset 1 and dataset

2 at a ratio 70 : 30. This ratio allows more samples from

dataset 1, since dataset 1 contains more images than dataset

2. After selecting the images we randomly flip and rotate

the images. We make both vertical and horizontal flips. The

random rotations are made at 90, 180 and 270 degrees. Af-

ter the random spatial transformations we create a weighted

label corresponding to each of the input images. We create

the weighted labels considering the number of pixels in both

foreground and background regions. The weighted labels

force the network to learn on regions with higher weights

than on the regions with lower weights. We calculate the

weights as follows

Wfg =
Wbg ×Nbg

Nfg

(1)

where Wfg is the weight of the foreground pixels, Wbg is

the weight of the background pixels (here we set it to 1),

Nbg is the number of background pixels and Nfg is the

number of foreground pixels. The weighted labels give

equal contribution to both foreground and background re-

gions in the loss function. After calculating the dynamic

weight labels we multiply the foreground weights with a

constant value of 3 to force the network to learn more from

the foreground regions. The training data for each fold con-

sists of 6000 images after the data augmentation.

2.3. Deep neural network architectures

The deep neural network architecture we use in this work

is inspired from a few recent deep neural network architec-

tures such as U-net [12], long short skip connection net-

works [2], inception-residual network [14] and multiscale

networks [4, 13].

2.3.1 Segmentation network

The architecture of the segmentation network is shown in

Fig. 2 as Segmentation net. We use dilated convolutions

[15] with kernels of size 3×3, dilations of 2×2 and strides

2× 2 to reduce the spatial resolution of the input 480× 480
images so that the network fits in the GPU memory. The di-

lated convolutions give larger receptive fields so that higher-
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Figure 2. The architecture of the segmentation and adversarial net-

work. The building blocks for each layer in the segmentation and

adversarial networks is as illustrated in the second row.

level features are preserved while down-sampling the im-

age. The first dilated convolution layer creates 60 feature

maps and is doubled with every down-sampling. The in-

put images contain spheroids of large variations in sizes as

shown in Fig.1. Therefore we extract the deeper features at

two scales such as 1/8 and 1/16 of the input image size. To

prevent the extraction of redundant features we create two

different deep paths for the two scales.

The two separate paths are shown in Fig. 2 as Deep-

path 1 and 2. Each of the deep paths contains several

Inception-Residual1 (IR1) and Inception-Residual2 (IR2)

blocks. Deeppath1 contains IR1 blocks followed by a con-

volution layer. The IR1 block is a modified version of the

Inception-Residual network [14]. In the IR1 block, we use

Parameter Segmentation net Adversarial net

learning rate 10−4 10−3

beta1 0.5 0.5
beta2 0.99 0.99
batch size 1 1

Table 1. Optimization parameters for segmentation and adversarial

networks.

1× 3 and 3× 1 convolutions to reduce the memory utiliza-

tion for the deep path with feature maps of size 1/8 of the

input image. In this block we element-wise add the resid-

ual connection to the output convolutions followed by batch

normalization and Rectified Linear Unit (ReLU) [10] acti-

vation at the end. In Deeppath1, we use nine IR1 blocks

with long and short skip connections among the different

blocks.

Deeppath2 consists of nine IR2 blocks. In the IR2

blocks, we replace 1× 3 and 3× 1 convolutions with 3× 3
convolutions since the feature maps size is 1/16 of the in-

put image size, which is smaller than those in Deeppath1. In

the IR2 blocks, we concatenate the feature maps followed

by 1×1 convolutions to reduce the number of feature maps.

We batch normalize the final convolution results and apply

ReLU activation. In DeepPath2, all the IR2 blocks are con-

nected by long and short skip connections as shown in Fig.

2. After the feature extraction using Deeppath1 and Deep-

path2, the outputs are deconvolved with 2 × 2 kernels of

stride 2× 2 so that the size of the feature maps are doubled

after every deconvolution step (DeConv layers). The final

probability maps are of the same size as the input images.

2.3.2 Adversarial network

The adversarial network performs a two class classification.

It discriminates whether the inputs are real or fake. The real

inputs are the ground truths and the fake inputs are the out-

puts from the segmentation network. We design the adver-

sarial network as a fully convolutional network. The net-

work consists of dilated convolutions with kernel of size

3 × 3, dilations of 2 × 2 and strides of 2 × 2 followed by

regular convolution with 1×1 kernel. We repeat the combi-

nation of dilated convolutions and regular convolutions six

times. The first layer has 8 feature maps and we double

the feature map size with every dilated convolutions. The

number of feature maps is reduced to two by a final 3 × 3
convolution and the output is pooled using average pooling.

2.4. Deep neural network training

After creating the segmentation and adversarial networks

we create the loss functions for the training. For the seg-

mentation network we create a modified version of the spa-
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tial cross entropy loss that takes spatially weighted labels

along with the labels as inputs. For the adversarial network

we use binary cross entropy loss. We set the adversarial loss

function [9], La, as follows

La =

N∑

n=1

Lbce(a(In, Tn), 1) + Lbce(a(In, s(In)), 0) (2)

where N is the total number of images in the dataset, Lbce

the binary cross entropy loss, a the adversarial network, In
the nth input image, Tn the nth ground truth image, s the

segmentation network. For the fake input we multiply the

output probability map from the segmentation network with

the input image and pass to the adversarial network. Sim-

ilarly, we obtain the real input by multiplying the one-hot

ground truth image with the input image. We design the

segmentation network loss [9], Ls, as

Ls =

N∑

n=1

Lwsce(s(In), Tn,Wn)

+ λLbce(a(In, s(In)), 1) (3)

where Lwsce is the weighted spatial cross entropy loss, Wn

is the nth weighted label image, λ the contribution of the

adversarial loss to the segmentation network. Here we set λ
as a linearly increasing value from 8.3×10−6 to 10−1, with

every iteration. Setting constant values for the λ resulted in

unstable models in our case.

We use Adam optimization [7] for both the segmenta-

tion and the adversarial networks. The optimization pa-

rameters for the segmentation and the adversarial networks

are shown in Table 1. All the parameters have the same

meaning as mentioned in [7]. We train the network for two

epochs and we use a batch size of 1. We train the segmen-

tation and the adversarial networks alternatively. We repeat

the whole process for all the five folds.

2.5. Segmentation and post processing

After creating the probability maps using the segmenta-

tion network we create the segmentation masks. We store

the output probability maps as eight bit images. We thresh-

old the probability maps at a fixed value of 120 for images

in the range from 0 to 255. After thresholding we fill the

holes and remove objects smaller that 64 pixels. After re-

moving the small objects we label the images for connected

components and select the largest connected component as

the final output segment.

2.6. Deep neural network implementation

We used the open source framework torch [1] to im-

plement our networks. We trained the different network

models on a workstation with six core Intel(R) Core(TM)

i7-5930K CPU running at 3.50GHz and 32Gb RAM and

a Nvidia Titan X Pascal GPU with 12Gb GPU memory

on Ubuntu 14.04 operating system. Training each network

model took nearly one hour. The network could create prob-

ability maps at approximately 5 images per second.

(a) (b) (c)

(d) (e) (f)

Figure 3. Output probability maps from our proposed network for

dataset 1. (a-c) The input spheroid images and the corresponding

probability maps in (d-f)

3. Results and discussions

We create three different networks for spheroid segmen-

tation and compare their results. The first network is a

deep adversarial network with a segmentation network that

generates probability maps and an adversarial network that

evaluates the performance of the segmentation network with

respect to the ground truth. The second network is a base-

line segmentation network that has the same architecture as

the segmentation network in the deep adversarial net with-

out the adversarial loss. The third network is a U-net* seg-

mentation network. The U-net* is a modified version of the

original U-net [12]. We use zero padded convolutions so

that the inputs and the outputs are of the same size, instead

of non-padded convolutions in the original U-net. We use

the same post processing steps to evaluate the performance

of all the networks.

3.1. Segmentation evaluation

We create five network models corresponding to the five

folds of cross validation. After training the networks we test

the performance on the unseen sixth partition of the dataset.

We create the probability maps using the trained networks

and postprocess the probability maps to get segmentation

masks, as mentioned in Section 2.5. After creating the seg-

mentation masks we qualitatively and quantitatively evalu-

ate the segmentation results. The output probability maps
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Model maF±std maP±std maR±std maF±std maP±std maR±std

Adver 77.09±06.89 82.16±06.00 73.07±07.40 64.21±04.79 66.33±04.31 66.85±05.11

Base 68.79± 19.72 73.02± 20.15 65.67± 19.47 50.55± 20.47 51.84± 20.13 55.56± 25.99
U-net* 49.24± 19.38 52.80± 20.14 46.53± 18.77 36.53± 24.03 38.24± 24.72 40.99± 28.29

Table 2. Segmentation performance of different networks on dataset 1 and 2.

(a) (b) (c)

(d) Adversarial (e) Adversarial (f) Adversarial

(g) Baseline (h) Baseline (i) Baseline

(j) U-net* (k) U-net* (l) U-net*

Figure 4. Output probability maps for dataset 2. (a-c) The input

spheroid images, (d-f) the corresponding probability maps from

adversarial network, (g-i) the results from the baseline network,

and (j-l) the results from the U-net*. The third column shows an

image in which all the networks failed to properly segment the

spheroid.

for a few examples from dataset 1 are as shown in Fig. 3.

The probability maps for images from dataset 2 for differ-

ent networks are shown in Fig. 4. The outputs correspond to

the results from the best performing network in each of the

architectures. Fig. 4 shows two examples, in the first and

(a) Adversarial network

(b) Baseline network

(c) U-net* network

Figure 5. Interval plot showing the range of percentage of images

above particular F-score value v/s F-score for the test datasets 1

(blue) and 2 (magenta) for five folds. The solid line plots in blue

and magenta show the median F-score values for datasets 1 and 2,

respectively.

second columns, where our method performs satisfactorily

while the third column shows a limitation of our method.

We believe the poor performance on the third example is

due to the small dataset size we trained the networks on as
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this particular type of spheroid appearance is represented by

only a few images in the dataset.

In addition to the qualitative comparison we also com-

pare the performance quantitatively. We compare the seg-

mentation result for each of the network models with the

corresponding ground truth images. We use semi-automatic

ground truths for dataset 1 and manually annotated ground

truths for dataset 2. After finding the F-score [11] for every

image we set different thresholds for the F-score from 0 to

1 at 100 regular intervals and find the percentage of images

above that particular F-score. We plot the intervals corre-

sponding to the maximum and minimum values of outputs

from the five models for each of the architectures. The re-

sulting interval plots are as shown in Fig. 5. We can see that

the proposed method with adversarial learning (first row) is

more stable over all the five folds than the other two meth-

ods for both dataset 1 (blue) and 2 (magenta). The solid

lines show the median values for dataset 1 and 2.

We find the average F-score for the five folds. After find-

ing the average F-scores we take the mean of the average

F-scores to get the mean average F-score (maF). Similarly,

we find mean average Precision (maP) and mean average

Recall (maR). We repeat this for all the models for datasets

1 and 2. The results are shown in Table 2. The results from

the adversarial models are better than both the baseline and

the U-net* models.

4. Conclusion and future work

In this work, we designed deep adversarial networks for

segmentation of bright-field spheroid images. We qualita-

tively and quantitatively evaluated the segmentation results.

We quantitatively compared our proposed method with two

other deep neural network architectures. We showed that

our method was better at segmentation than the two other

compared methods. In the future we plan to improve the

segmentation results by combining different deep network

architectures and use more data for training. We are also

planning to combine the proposed approach with other seg-

mentation methods.
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