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Abstract

High-throughput microscopy generates a massive

amount of images that enables the identification of bio-

logical phenotypes resulting from thousands of different

genetic or pharmacological perturbations. However, the

size of the data sets generated by these studies makes it

almost impossible to provide detailed image annotations,

e.g. by object bounding box. Furthermore, the variability

in cellular responses often results in weak phenotypes that

only manifest in a subpopulation of cells. To overcome the

burden of providing object-level annotations we propose

a deep learning approach that can detect the presence or

absence of rare cellular phenotypes from weak annotations.

Although, no localization information is provided we

demonstrate that our Weakly Supervised Convolutional

Neural Network (WSCNN) can reliably estimate the loca-

tion of the identified rare events. Results on synthetic data

set and a data set containing genetically perturbed cells

demonstrate the power of our proposed approach.

1. Introduction

High-throughput microscopy generates vast amounts of

data capturing phenotypes in healthy and abnormal cellu-

lar populations on routine bases. Automated detection and

classification of these phenotypes in large imaging data sets

are crucial for advancing biomedical studies and identify-

ing novel therapeutic targets. However, analysis methods

for these data sets are still lagging behind as these meth-

ods generally rely on strong supervision which is not feasi-

ble with the deluge of generated images. Furthermore, both

pixel-level annotations and object-level annotations can be

biased by the experience of an individual observer. There-

fore, there is a great need for generalizable learning meth-

ods that can learn to predict and highlight the differences
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between samples from weakly labeled (i.e. image-level la-

bels) training data.

Why rare phenotype detection? In many cellular imag-

ing classification problems, we are interested in only a small

subpopulation of the cells in an image such as cancerous

or mitotic cells [2, 14]. Additionally, cellular populations

are highly heterogeneous and often only a subpopulation

of cells responds to perturbations resulting in an abnormal

phenotype [13]. Consequently, only a small percentage of

the overall cell population is of interest. It is not clear a pri-

ori which features discriminate such rare phenotypes from

the remaining cell population. Ideally, such features should

be learned from the data in order to generalize to the wide

spectrum of cellular phenotypes.

Why weakly supervised learning? With the rapid

technological advances in large-scale experimental biology

methods, the labeling and manual assessment of visually

complex phenotypes become problematic. However, infor-

mation that relates to experimental conditions or compound

treatments is readily available and can be used as image-

level annotations. The ability to classify and localize phe-

notypically different cells between cell populations is cru-

cial for discovering or validating treatment effects. Once a

consistent phenotypic difference, even a weak one, between

biological samples has been identified, experimentalists can

validate the detected difference.

We address the challenge of detecting rare cellular events

by leveraging (i) the power of Convolutional Neural Net-

works (CNNs) in learning features that consistently dis-

criminate between different classes and (ii) the ability of

max-pooling operation to select the most consistent features

across different layers regardless of their location. There

is evidence that CNNs that are trained to predict image-

level labels can successfully localize objects associated with

different classes [11]. We further illustrate here that our

Weakly Supervised CNN (WSCNN) is able to detect and

localize different instances of an abnormal phenotype even
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Figure 1. Workflow for weakly supervised rare phenotype de-

tection. The WSCNN network is trained on image-level classes

that indicate the absence of a rare or abnormal phenotype (nega-

tive class) or the presence of such phenotype (positive class) in the

image. In the shown example the abnormal phenotype is multinu-

cleate cells. Our WSCNN is able to detect and localize the multi-

nucleate cell even though it is surrounded by uninucleate cells.

when it is surrounded by very similar objects in intensity

and texture. Our learning pipeline is illustrated in Figure 1.

The details of the classification framework are presented

in Section 2. Using a synthetically generated data set, we

demonstrate how our approach results in a robust and reli-

able detection of rare events. A data set containing 1600

images of both normal and multinucleated cells is used to

evaluate the performance of the proposed method in a chal-

lenging and biologically relevant setting. The details of the

data sets and CNN training are described in Section 3. The

results are discussed in Section 4. Summary and conclu-

sions are presented in Section 5.

Related work. In most studies, weakly supervised learn-

ing is formulated as a multiple-instance learning (MIL) task

where the image is considered as a bag of regions [1, 3].

The image is labeled positive if at least one region contains

the object of interest (rare phenotype in our case) and neg-

ative if no region in the image contains such object. Such

learning paradigm does not only overcome the burden of

providing object-level annotations but also can be crucial

in studies where generating detailed annotations is not fea-

sible. Recent studies demonstrated that CNNs are able to

classify and localize objects given only weak image-level

annotations [1, 8]. In contrast to our problem, the meth-

ods proposed in these studies have been evaluated on data

sets, such as PASCAL VOC, where the objects often occupy

most or a reasonably large region of the image. Further-

more, the different object classes are usually very distinct

in their color and structure.

On the other hand, cellular images contain many in-

stances of cells that have very similar morphology and ap-

pearance. The difference between classes includes morpho-

logical changes [13], changes in protein abundance, or dif-

ferences in protein localization [9]. There has been an in-

creasing interest in utilizing the power of CNNs in classi-

fying various cellular phenotypes. However, most studies

employ deep learning only as a part of the image analysis

pipeline such as segmentation or feature extraction [4, 9].

For example, Parnamaa et al. [9] applied CNN-based learn-

ing to the classification of protein subcellular localization

in yeast cells using cropped images of presegmented cells.

Their results illustrate that CNN-learned features outper-

form carefully hand-crafted features and shallow classifi-

cation methods such as random forests [9]. Similarly, Kan-

daswamy et al. [4] applied CNNs and transfer learning to

classify the effects of drugs with known mechanism of ac-

tion on cells. Again they only used deep learning as fea-

ture extractors from presegmented cell images. Given the

segmentation task, Ronneberger et al. [10] demonstrated

the successful application of CNNs to cell and tissue im-

age segmentation. Extending a similar approach, Wang and

collaborators [12] present an architecture that can detect a

number of different cellular subtypes. However, all of these

approaches either rely on manually generated object-level

labels or presegmented images which do not address the

need for fully automated classification systems.

A capable CNN architecture for the classification of cel-

lular images from image-level labels has been proposed by

Kraus et al. [5]. But given the high frequency of the events

they are detecting, their work does not investigate rare event

classification. In contrast, we are aiming to detect objects

or phenotypes that are rare and only occupy a small region

of the image from weak and noisy annotations.

2. Classification and localization framework

Our aim is to classify the presence or absence of a rare

phenotype (e.g. multinucleate cells) given only image-level

labels. We formulate this task as a binary classification

problem where images with positive labels have at least one

cell with a rare phenotype while images with negative labels

have no such cells 1. The input to the CNN is images that

contain around 20-100 cells and the corresponding class la-

bels (i.e. positive or negative for the rare phenotype). Most

positively labeled images have few phenotypically different

objects, i.e multinucleate cells. We train the network to pre-

dict whether an image contains a rare phenotype. Before

the concrete design of the architecture is presented, we dis-

cuss the two components that are crucial for the detection

and localization of rare events.

2.1. Feature selection using max pooling

Our work is motivated by the intuition that the max-

pooling operation searches for the best discriminative fea-

tures in an image by propagating only the pixel values with

the highest local score to the subsequent layers. Therefore,

they can be regarded as signal amplifiers where at each layer

only the best scoring pixels are selected for further learning.

Based on this intuition we hypothesize that a CNN utiliz-

ing a max-pooling operation following convolutional layers

should be able to classify images where different classes are

very similar except for very small regions that have an aber-

rant appearance. Probabilistically, feature values that dis-

criminate rare events from the rest of the population have

extremely low probabilities. Therefore, using average pool-
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Figure 2. Weakly supervised CNN architecture for classifying rare phenotypes. The figure illustrates an architecture which utilizes

4 convolutional layers with 50, 100, 100 and 2 features respectively. Max-pooling downsampling of size 2×2 is applied following each

convolutional layer except for the last layer where a global max-pooling is applied.

ing which sums the evidence from different features would

swamp the discriminative feature values. This would make

the rare event detection almost impossible, which we con-

firmed experimentally.

Global max pooling. In order to summarize the pixel

scores from the entire feature map, global max-pooling is

applied over all the pixels in the final convolutional layer.

This is in line with Oquab et al. [8] who utilized global max

pooling to perform weakly supervised classification and lo-

calization. The final convolutional layer is composed of an

output unit for each class where each unit can be regarded

as a detector of that class. Let ak(x, y) represent the ac-

tivation of the class detector k at a spatial location (x, y).
Then, performing a global max pooling for class detector

k produces a single score (one pixel value) for each class

Ak = max(ak(x, y)). These scores are passed to the soft-

max loss function. Importantly, max-pooling aggregation

function allows CNNs to detect discriminative features re-

gardless of their location.

2.2. Visualization and localization of rare pheno-
types

Although we do not provide any localization or seg-

mentation information during training, we show that the

network can implicitly learn to localize rare events. If

the network classifies an input image as positive, regions

which contributed significantly to the classification score

can be used for visualizing the detected differences between

classes. Simulated data is used to validate the localization

accuracy. In addition, our approach provides a qualitative

way of analyzing the phenotypic difference between differ-

ent cell populations, such as the difference between normal

and genetically perturbed cells.

Different methods [7, 11, 15] have been proposed for vi-

sualizing and understanding CNN representations. The er-

ror backpropagation-based visualization method proposed

by Simonyan et al. [11] is extended here to visualize rare

events. Given an image I we aim to generate a saliency

map that displays the contribution of each pixel site x to the

classification score S. This is achieved by back propagating

the CNNs class specific scores Sc in the penultimate layer

through the trained network. At each layer, the rank of each

pixel can be approximated by the derivative of the linear

function y = wT I+b. This can be regarded as the Jacobian

map with respect to specific class predictions of image I .

The originally proposed method [11] produces highly pixe-

lated and noisy saliency maps. We apply Gaussian smooth-

ing and local non-maximum suppression to generate more

smooth segmentation (see Figure 4 and 5).

2.3. CNN architecture

Given the relatively small size of the objects of interest,

a modest number of layers is sufficient to achieve good per-

formance. Cellular images contain many instances of very

similar but relatively independent objects. Consequently,

convolutional layers that identify locally discriminative fea-

tures are more appropriate to this problem than Fully Con-

nected (FC) layers that attempt to model the relationship

between detected features or objects. Oquab et al. [8] also

report a similar strategy for efficient learning in weakly su-

pervised learning tasks.

The input to our WSCNN is grayscale images and the

output is whether the image belong to the positive or neg-

ative class. We employ four convolutional layers starting

with a filter of size 11×11, and reducing the filter size in

the subsequent layers to 3×3, 5×5, and 5×5 as in [6] (Fig.

2). Apart from the last convolutional layer, all convolu-

tional layers are normalized using batch normalization, and

equipped with rectification linear units (ReLU). A padding

of 1×1 pixel is applied to convolutional layers 3 and 4. Each

convolutional layer is followed by max-pooling subsam-

pling. The final convolutional layer contains two convolu-

tional filters, one for each class. As motivated before, global

max pooling is used after the final convolutional layer to ag-

gregate information from the entire image. We also investi-

gated the performance of a deeper architecture as discussed

in Section 4.1.

3. Data sets and CNN training

3.1. Data sets

Simulated data set. For the purpose of validation, we

simulated data so that we can control the occurrence of rare

events. To mimic the subtle difference between normal and
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Figure 3. Input images and representation of E100 C10 CNN model features. (a) Input image. Circles are indicated in red to aid the

reader but not provided during training. (b) Output feature maps of the last convolutional layer for the negative and the positive class. (c)

The intensity distribution of the feature maps in (b). Pixels with the highest intensity are indicated in red.

abnormal cells we introduced circles as the outlier subpop-

ulation to a collection of ellipses. A data set of 4000 im-

ages (2000 images per class) was generated by defining an

equally spaced grid of 48 cells (6 rows × 8 columns). A

variable number of objects between 30 and 48 were drawn

at the defined positions and shifted by a random number be-

tween 1 and 20 pixels. The dimensions of the object were

also generated randomly as a number between 15 and 20

pixels. The rotation angle of each ellipse was generated

randomly. In the positive class we replaced 10% of the el-

lipses with circles (Sim. Data 1) and hence the classifier is

called E100 C10. The resulting images size is 210 pixels ×

280 pixels. The data was then split into three equally sized

partitions for training, validation, and testing. In order to

test the robustness of our approach to the frequency of the

rare event, we simulated another data set where 20% of the

objects in the positive class are circles (Sim. Data 2).

Multinucleate cells data set. A set of 1600 images of

both wild-type and genetically perturbed MCF10a breast

cells was used to test the method in a relevant biological

study. Cells are stained with a cytoplasmic stain (anti-PDI).

The wild-type cells are normal and expected to have one

nucleus per cell. By knocking down cytokinesis regulat-

ing genes these cells become multinucleated if they go into

mitosis as they fail to divide after nuclei replication. The

genes that were knocked down are ECT2, AURKB, and

RACGAP1. Here, only meta-data on the experimental con-

ditions but no pixel-level annotations are available. How-

ever, as cells are heterogeneous we expect to have few im-

ages in the negative class with multinucleate cells. 800 im-

ages containing between 5 and 30 cells each were acquired

for each class at 40x resolution. Data were split into three

equally sized training, validation, and test sets. Training

images were generated by concatenating four randomly se-

lected raw images from each class in a 2×2 grid. To further

augment the images, this process is repeated eight times for

each raw image. The resulting images were downsampled

into 356×462 pixels.

3.2. CNN training

We trained an independent model for each data set from

scratch using stochastic gradient descent. The hyperparam-

eters are: momentum = 0.9, weight decay = 0.0005, and

mini-batch size=50. Learning rate is set to 0.0001 and low-

ered by a factor of 10 as the error plateaus. We normalized

the images by subtracting the mean of all images in the data

set.

3.3. Data augmentation

Both data sets are augmented extensively in order to

make the CNN classifier robust to transitions, especially

to rotation and scaling. We employed four augmentation

strategies: (i) horizontal and vertical flipping, (ii) rotation

with = 20° to 20° or = 160° to 200°, (iii) translation of ±40

pixels, and (iv) scaling by ±50 pixels. We found that ex-

tensive augmentation is critical for CNN to accurately and

robustly learn the occurrence of the rare events.

4. Experiments and results

4.1. CNN classification results

Simulated data. Our CNN achieves 99.62% accuracy

on Sim. Data 1 where only 10% of the objects in the pos-

itive class images are circles (Table 1). This corresponds
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Data set
CNN

Config.
Accuracy Precision Recall

Sim.

Data 1

WSCNN-

Max

99.62% 99.26% 99.92%

WSCNN-

Avg

51.03% 2.19% 1.45%

WSCNN-

FC

86.73% 99.40% 74.60%

Sim.

Data 2

WSCNN-

Max

99.5% 99.2% 99.7%

Table 1. Classification results on simulated test data. WSCNN-

Max: CNN with global max-pooling, WSCNN-Avg: CNN with

global average pooling and WSCNN-FC: CNN with FC instead

of global max pooling. Sim Data 1 contains 10% circles while

Sim. Data 2 contains 20% circles in the positive class images. The

results for Sim. Data 2 is based on the E100 C10 CNN that was

trained only on Sim. Data 1.

to 2-5 circles per image as we vary the number of drawn

objects and augment data by rotation and shifting. To test

whether the E100 C10 CNN is sensitive to the frequency of

the circles in the population, we evaluated its performance

on images that have 80% ellipses and 20% circles in the

positive class (Sim. Data 2). E100 C10 model trained only

on Sim. Data 1 can correctly predict that images with 20%

circles belong to the positive class (accuracy = 99.5%) (Ta-

ble 1).

To understand how CNNs utilizing max-pooling can effi-

ciently classify rare events, we investigated the feature maps

learned by the E100 C10 CNN. Figure 3 shows the feature

maps of the class detectors (last convolutional layer) of the

E100 C10 CNN. When the input image contains few cir-

cles, then only a few pixels in the positive class feature de-

tector have higher activation values than the negative classs

activation values (indicated in red in Fig. 3 (b-c). The pix-

els with the highest activation in the positive class detector

correspond well to the position of the circles in the input im-

age. Using global max-pooling operation, the feature map

for each class is reduced to 1×1 pixel value reflecting the

maximum activation of that class. This explains how our

CNN can accurately predict the presence of rare events.

To further confirm the importance of the max-pooling

operation to the rare event detection we replaced the global

max-pooling with average-pooling and trained the network

from scratch. A CNN with global average pooling oper-

ation (WSCNN-Avg) completely failed in classifying im-

ages with rare event (accuracy = 51.03%) (Table 1). This

is rather expected as the value of the discriminative pix-

els of the weak phenotype (e.g. pixels indicated in red in

CNN Config. Accuracy Precision Recall

WSCNN-Max

(4)

90.27% 88.24% 90.20%

WSCNN-Max

(6)

91.89% 88.97% 93.65%

Table 2. Classification results on multinucleate cells data. Number

of convolutional layers are indicated in parentheses.

Fig. 3 (b)) are lost when averaged with the values of all the

other pixels in the learned feature maps. Furthermore, we

tested adding an FC layer instead of global max-pooling af-

ter the last convolutional layer. FC layers have proved bene-

ficial in classification problems where it allows learning the

spatial relationship between different pixels in the feature

maps while max-pooling discard such spatial information.

A CNN utilizing an FC performed significantly worse than

CNNs with global max pooling (Table 1). These results

confirm the crucial role of using max-pooling downsam-

pling to efficiently classify rare events, a finding that has

also been reported by Oquab et al. [8].

Cell data. To demonstrate the usability of our CNN ar-

chitecture in real applications, we tested the performance

of our method in classifying images of multinucleated cells

given only image-level annotations. The CNN for process-

ing the cell images (input image size: 356×462) is identical

to that of simulated data except for the filter size in the sec-

ond convolutional layer is increased to 7×7. Our WSCNN

predicted images that have multinucleate cells in the test

data set with high accuracy of 90.27% (Table 2). Because

the cell images are bigger and more complex than the sim-

ulated data, we also tested using a deeper architecture of

six convolutional layers. The accuracy improved slightly to

91.89% by increasing the number of convolutional layers

(Table 2). Importantly, segmented saliency maps confirm

that WSCNN was able to detect and localize the multinu-

cleate cells despite many other uninucleate cells also being

in the image (Fig. 5).

4.2. Location prediction results

Given that our trained CNN achieves excellent classi-

fication performance of predicting the presence of a rare

event, we sought to investigate its performance in localiz-

ing these rare events. The simulated data set has been de-

signed to facilitate this analysis. Using the test data, we gen-

erate segmentation masks by thresholding and smoothing

the saliency maps generated by backpropagation of class-

specific scores given a certain input image (Fig. 4).

Localization metric. To measure the localization power

of our CNN architecture, we introduce a metric that assesses

CNN performance in (i) detecting the different instances of

the rare event as well as (ii) detecting the extent of the ob-

ject. A circle location is considered to be correctly predicted
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Figure 4. Segmented saliency maps for the simulated data. The

maps (shown in purple) were generated by a single backpropaga-

tion pass through WSCNN followed by thresholding and smooth-

ing. WSCNN correctly detects and localizes the presence of a rare

event of circles in the positive class although only image-level la-

bels were used for training.

Localization accuracy Precision Recall

99.995% 93.00% 97.19%

Table 3. Localization prediction scores of WSCNN on the Sim

Data 1 test set based on segmented saliency masks. True positives

are defined as circles that their bounding boxes intersect with the

segmentation mask by at least 90% in the positive class images.

Similarly, false positives are defined as ellipses that their bounding

boxes overlap with the segmentation mask by at least 90% in the

positive class images.

(true positive), if it’s bounding box intersects with the seg-

mentation mask by at least 90%. Otherwise, the prediction

is counted as false negative. Similarly, a prediction for an

ellipse in the positive class images is counted as false pos-

itive if it’s bounding box intersects with the segmentation

mask by more than 90%. The WSCNN localization accu-

racy, precision, and recall scores are calculated based on

these numbers.

Using this localization metric, our weakly supervised

CNN achieves high accuracy in detecting the different in-

stances of the rare event as well as their extent (Table 3).

The accuracy of the CNN on the test data is 99.5% which

is comparable to the classification performance confirming

that the proposed architecture successfully learns the weak

phenotype. The precision is slightly lower than the recall

indicating that a few ellipses are confused for circles. How-

ever, these ellipses have lower confidence in the score maps

and therefore their values are overridden with the higher

scoring pixels through the max-pooling operation. These

results confirm that the proposed WSCNN is not only able

to predict the occurrence of the rare event but also implicitly

learns the location of such event.

For the cell images, the only information that is be-

ing provided are the experimental conditions (i.e. wild-

type versus genetically perturbed for cytokinesis regulating

genes). We qualitatively assess that the network is able to

identify that the phenotypic difference between the negative

and positive class is the presence of multinucleate cells in

the positive class (Fig. 5). The network correctly predicts

that some of the negative class images are mislabeled and

actually do contain multinucleate cells (Fig. 5 (b)). Impor-

tantly, this confirms that our CNN architecture is robust to

noisy labels which is highly valuable in many biomedical

classification problems.

5. Discussion & Conclusions

Here we propose a generalizable approach for the dis-

covery of weak phenotypes or rare events from cellular

imaging data. Unlike traditional feature-based methods,

deep learning provides an attractive approach to this prob-

lem as it does not rely on a particular feature set but rather

learn such features from the data. To our knowledge, the ap-

plication of CNNs to this problem is new and has not been

applied to either natural images or other biomedical imag-

ing studies. The results demonstrate that our weakly su-

pervised CNN architecture can accurately classify images

which contain a small cell subpopulation of an abnormal

phenotype.

We conclude that WSCNN can detect rare events by ex-

plicitly searching and selecting local features that are con-

sistently discriminative of the negative versus positive class

through max-pooling. Furthermore, our CNN is able to lo-

calize the evidence regions for the phenotypic difference.

While we achieve near perfect performance on the simu-

lated data, the performance degrades as expected on the

cellular data. Here, image noise and artifacts cause signif-

icant difficulties. Furthermore, the annotations of the cel-

lular images are based on meta-data specifying the experi-

mental conditions rather than pixel-level ground truth. Con-

sequently, there are few images that are mislabelled. Impor-

tantly, many of these images were classified correctly by our

CNN which predicted the right phenotypic class indicating

the robustness of our method to noise.

The principle goal of this work is the development of

a generalizable approach for discovering weak phenotypic

differences between experimental conditions from large-

scale imaging studies. Our lack of prior knowledge on

how cells respond to certain treatments motivates why this

particular approach holds a lot of promise in the context

of phenotypic screening. We controlled the frequency of

the rare event by simulating data where 10% or 20% out

of 30-50 objects have a different phenotype. Our results

show that the WSCNN provides consistent results that are

independent of the frequency of the rare event. We con-

tent that our framework is highly beneficial in studies where

the phenotypes resulting from thousands of pharmacologi-

cal treatments of cells are unknown a priori. In this frame-

work, CNNs can be used for discovering phenotypic dif-

ferences resulting from perturbations, rather than learning

from imaging data sets with a perfect ground truth. Fur-

thermore, saliency maps can be used to qualitatively assess
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(a) (b)

Figure 5. Segmented saliency maps for the multinucleate cells. (a) The saliency maps (shown in magenta) confirm that WSCNN trained

using image-level annotations can detect and localize the difference between the positive class and negative class, which is the presence

of a few multinucleate cells in the positive class. (b) An image that belongs to the negative class based on the experimental metadata is

correctly predicted to have a multinucleate cell.

the discovered phenotypes. Such a flexible framework can

have a great impact in discovery-based studies and lead to

an objective and systematic identification of novel pheno-

types and therapeutic targets.
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