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Abstract

We present a dual convolutional neural network (dCNN)

architecture for extracting multi-scale features from histo-

logical tissue images for the purpose of automated charac-

terization of tissue in digital pathology. The dual structure

consists of two identical convolutional neural networks ap-

plied to input images with different scales, that are merged

together and stacked with two fully connected layers. It has

been acknowledged that deep networks can be used to ex-

tract higher-order features, and therefore, the network out-

put at final fully connected layer was used as a deep dCNN

feature vector. Further, engineered features, shown in pre-

vious studies to capture important characteristics of tissue

structure and morphology, were integrated to the feature

extractor module. The acquired quantitative feature rep-

resentation can be further utilized to train a discrimina-

tive model for classifying tissue types. Machine learning

based methods for detection of regions of interest, or tissue

type classification will advance the transition to decision

support systems and computer aided diagnosis in digital

pathology. Here we apply the proposed feature-augmented

dCNN method with supervised learning in detecting cancer-

ous tissue from whole slide images. The extracted quantita-

tive representation of tissue histology was used to train a lo-

gistic regression model with elastic net regularization. The

model was able to accurately discriminate cancerous tis-

sue from normal tissue, resulting in blockwise AUC=0.97,

where the total number of analyzed tissue blocks was ap-

proximately 8.3 million that constitute the test set of 75

whole slide images.

1. Introduction

In digital pathology, analysis of histopathological images

is mainly time-consuming manual labor and prone to sub-

jectivity, and sometimes a challenging task even for an ex-

pert [30]. Automated image analysis provides methods to

analyze these images in a quantitative, objective, and ef-

ficient way [5, 22]. The development of accurate image

analysis tools can advance the transition to decision support

systems and computer aided diagnosis in digital pathology

[15].

Two common approaches to supervised learning based

image analysis include, traditional feature engineering

methods combined with machine learning, and deep learn-

ing based methods, such as deep convolutional networks.

Traditional feature engineering methods rely on exper-

tise and knowledge on the important discriminative proper-

ties and methods to manually engineer these features for

a certain application. Quantitative feature representation

combined with machine learning methods provide power-

ful image analysis tools. One advantage of these type of

models is that they are relatively easy to interpret by relat-

ing the features of the classifier model to the biological in-

formation. These traditional methods have been used for

years in digital pathology and in many different applica-

tions, such as, cell detection and classification [1], grading

prostate cancer both in human [7], and mouse model [21]

samples. Additionally, these traditional approaches have

been successfully used for quantitatively describing char-

acteristics of histology [26, 6]. However, previous studies

have left room for improved feature engineering and classi-

fication performance.

Neural network based methods, on the other hand, do

not need any specific feature engineering, these methods

learn both the feature representation as well as the classi-

fication model. In recent years, these methods have become

the state-of-art methods in many image classification and

detection tasks [24, 31, 2, 9]. While the the deep learn-

ing approach has been shown to outperform traditional ap-

proaches in a variety of tasks, the model interpretation and

link to biological information remains largely unresolved.

Convolutional neural networks and deep learning can be
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Figure 1. Image analysis system workflow. The upper half presents the training of the model and the lower half presents the steps for

classifying an unseen image with the trained model. The feature extraction module consists of two parts, extraction of deep dCNN features

and extraction of engineered features. As an output, the model provides confidence map presenting the probability of certain tissue region

to contain cancerous tissue.

also used for extracting features. This provides the opportu-

nity to combine these two common approaches. The accu-

racy of deep learning combined with engineered features

and machine learning could provide classification mod-

els for image analysis with high level of performance and

increased model interpretability. With network architec-

ture visualizations, these deep CNN feature representations

can be better understood and linked to spatial information.

There are studies that have established the benefits of com-

bining these two methods, and achieving even better perfor-

mance than either of the methods alone [32, 16, 23].

To mimic the way that a pathologist view and analyze

histological sample, first from distance and then with a

closer look, we implemented a method to characterize tis-

sue histology in a multi-scale manner. A dual convolu-

tional neural network (dCNN) architecture was developed

for extracting multi-scale features from histological tissue

images. The dual structure consists of two identical con-

volutional neural networks working with different image

scales that are merged together and stacked with two fully

connected layers. In addition, manually engineered features

were integrated to the model by concatenating vector of

manually engineered features with the output vector of last

fully connected layer of the dCNN. We evaluated the pro-

posed feature-augmented dCNN method with supervised

learning in detecting cancerous tissue from whole slide im-

ages.

2. System overview

In this work, an image analysis system was implemented

that utilize deep dual CNN with feature augmentation to

automatically extract quantitative characteristics from his-

tological images. Supervised machine learning was then

applied to train a discriminative model based on these quan-

titative histological characteristics. The system was imple-

mented using python programming language and extends

the feature engineering based method presented by Valko-

nen et al. [27, 28]. Figure 1 presents an overview of the

implemented feature-augmented dCNN method.

The data used in this study consists of two independent

hematoxylin and eosin stained whole slide image (WSI)
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datasets, first collected at the Radboud University Med-

ical Center (Nijmegen, the Netherlands) and the second

set at the University Medical Center Utrecht (Utrecht, the

Netherlands). A total of 140 WSIs present normal lymph

node sections and 130 present pathologists annotated WSIs

of breast cancer micro- and macro-metastases. The WSIs

and the corresponding annotation masks were provided as

multi-resolution pyramids in Phillips BigTIFF format. The

pixel size of the images at the full resolution level was 243

nm. Both datasets were provided for Camelyon16 challenge

[8]. This Challenge was organized in conjunction with the

2016 IEEE International Symposium on Biomedical Imag-

ing (ISBI-2016).

The image data was divided into training set and test set.

The training set consisted of approximately 80 percent of

the images, 195 WSIs in total. The test set included the

remaining 75 WSIs.

In order to simplify the classification task and to reduce

the amount of data, first a coarse segmentation step was per-

formed for each image to detect the lymph node tissue while

excluding the background and most of the adipose tissue.

The visual appearance of the two independent image sets

is quite notable due to different scanner and staining proto-

cols. Therefore, histogram matching was applied to correct

this color variation across the WSIs. Histogram matching

was applied separately to each color channel. A training

image Tumor 015.tif was selected as the reference based on

visual examination.

For convenient handling of the image data during model

training and classification, the images were divided into

smaller subimages and stored in JPEG2000 format, along

with information of their location within the WSI. Each

resulting subimage had approximately the dimensions of

8192×8192 pixels. The tissue segmentation and ground

truth masks were processed similarly and saved in TIF for-

mat.

Color deconvolution [20] was applied before extracting

engineered features. In this study, scikit-image [29] imple-

mentation of the color deconvolution algorithm was used.

The deep dCNN features were extracted from RGB images.

Each subimage was processed blockwise in a way that

each 128×128 block is presented with vector of 1344 fea-

ture values. These features include 256 deep dCNN features

and 1088 engineered features extracted from tissue image

with a multi-scale perspective. Thus, the quantitative repre-

sentation of a 128×128 pixel block includes also the infor-

mation about its neighboring area.

The quantitative feature representations was then used

to train a logistic regression model for detecting cancerous

tissue. The trained model provides a confidence map that

presents the probability of each tissue block to belong to

the positive (tumor) class.

3. Dual structured convolutional neural net-

work

3.1. Network architecture

The architecture of the dCNN is presented in figure 2.

Keras module [3] was used to build two parallel sequen-

tial models merged into one model. The network takes

two RGB images as input: patch of 128×128 image blocks

and patch of 640x640 image blocks. Both of the input im-

ages were downsampled into size of 32×32×3 pixels. The

smaller block covers approximately a 31µm physical area

of the tissue and the wide neighborhood covers a 155µm
area of the tissue.

Both of the parallel networks include four two-

dimensional convolutional layers followed by rectified lin-

ear unit (ReLU) activation and max pooling layer. The ker-

nel size was 3×3 for each convolutional layer and 2×2 for

max pooling. These two parallel networks are merged to-

gether with two fully connected layers of length 256 fol-

lowed by ReLU activation. The output layer consists of one

fully connected output node with sigmoid activation. Total

number of trainable parameters in the network is 3 758 337.

Binary cross-entropy was used as loss function and the

optimization procedure was performed using stochastic op-

timization algorithm Adam [14]. For Adan algorithm, step

size was set to 0.001, exponential decay rates for the mo-

ment estimates (β1 and β2) were set to 0.9 and 0.999, and

the used fuzz factor was 1 ∗ 10−8. Learning rate decay over

each update was set to 0.

3.2. Training of the dCNN

The dCNN was trained with sample blocks from the 195

training WSIs. The training set was divided into 12 sets to

prevent the dCNN model from overfitting for one training

set. Each training set included same proportion of images

from both of the independent datasets. The whole dataset

included more normal tissue area than cancerous tissue.

Therefore, to balance the training data, random sampling

of the normal samples was done to get even number of tu-

mor samples and normal tissue samples. Each of the 12 sets

was used to train the CNN model for 5 epochs with a batch

size of 100 samples. The model was trained for 60 epochs,

and in total, with approximately 6.4 million tissue sample

blocks. Only samples with 50% coverage of the tissue mask

or tumor mask within the smaller scale block were accepted

for training. The training accuracy and loss are presented in

figure 3.

The final dense layer before output layer in the deep

dCNN architecture was used as deep dCNN feature vec-

tor. This is visualized in figure 2. Thus, one 128×128 pixel

block was represented with 256 deep dCNN features.
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Figure 2. The implemented deep dCNN architecture is composed

of two identical and parallel convolutional neural networks that

are merged into one model and stacked with two fully connected

layers.

4. Feature augmentation

Engineered features have shown to capture important

characteristics of tissue structure and morphology [12, 17,

27]. Therefore, the dCNN model was augmented with mod-

ule for extracting set of manually engineered features, 272

different features in total. This same feature extraction mod-

ule was applied four times, for tissue blocks of both hema-

toxylin and eosin channels with two different scales. In to-

tal, one 128×128 pixel block can be presented with 1088

manually engineered features. Scikit-image implementa-
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Figure 3. The training accuracy and loss obtained after training the

dCNN model with 12 training sets, 5 epochs each.

tions for extracting manually engineered features were used

in this study [29].

The engineered features included first and second or-

der statistical texture features derived from image his-

togram and gray-level co-occurrence matrix (GLCM [13]).

These features included for example, mean intensity, vari-

ance, skewness, angular second moment, etc. These co-

occurring gray-level value properties were calculated at off-

set distance of one pixel and with respect to four angles:

[0◦, 90◦, 180◦, 270◦].

Engineered features were extracted also using local bi-

nary patterns (LBP [18]). The basic idea of the LBP op-

erator is to transform a local circular neighborhood into a

binary pattern by thresholding the neighborhood with the

gray value of the center pixel. This circularly symmetric

neighborhood is determined by assigning parameters that

control the quantization of the angular space and radius of

the neighborhood. For the implemented method, the LBP

responses were calculated for two different circularly sym-

metric neighborhood: radius of 3 pixels and angular space

of 24 points, and radius of 5 pixels and angular space of

40 points. The response image to these both LBP opera-

tors over a sample block present uniform LBP patterns in

the sample block. Properties of a discrete occurrence his-

togram of these response images were used as features.

Histogram of Oriented Gradients (HOG [4]) were also

used as engineered features. This method counts occur-

rences of gradient orientation in local portions of an im-

age. First, gradient image is computed and then histograms

of gradient orientation angles are computed within smaller

cells of the image. Finally, the orientation histograms of all

cells are flattened into feature vector.

Finally, we included also the so called Daisy features

[25]. Daisy is an efficient dense descriptor for extracting

local features from an image. Daisy descriptor is a combi-

nation of Scale-invariant feature transform (SIFT) and Gra-

dient Location and Orientation Histogram (GLOH) descrip-

tor. The Daisy descriptor is mainly based on computing

Gaussian convolutions. Number of circles was set to two.

From each circle, altogether six histograms were calculated

with eight orientation bins.
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5. Generalized linear model

The probability to belong to the group of cancerous tis-

sue was predicted with trained generalized linear model for

all tissue blocks of each WSI in the test set. The model

applied for prediction was a logistic regression model with

elastic net regularization.

Python package for fitting generalized linear model

(glmnet [11]) was used in this study. This model is fitted

by minimizing the negative binomial log-likelihood. This

loss function for the model can be written as

min
β0,β

−

[

1

N

N
∑

i=1

yi ∗ (β0 + xT
i β)

− log(1 + e(β0+xT

i
β))

]

+ λPα(β)

(1)

where yi presents the log-likelihood, N is the number of

observations, Pα(β) the elastic net regularization term, and

λ controls the overall strength of the regularization. The

elastic net regularization can be written as

Pα(β) = (1− α) ‖β‖
2
2 /2 + α ‖β‖1 (2)

A quadratic approximation of the log-likelihood is used,

which results in penalized weighted least-squares problem.

Finally, coordinate descent is used as an optimization pro-

cedure for the model weight update by minimizing the

weighted least-squares problem of loss function.

The α was set to 0.5, therefore, the elastic net regular-

ization uses both lasso and ridge. The glmnet algorithm fits

series of models to determine the λ value that controls the

overall strength of the regularization. In total, 100 values

for λ was computed. After computing the path of λ values,

the performance of the model is analyzed using 3-fold cross

validation. The value of λ which achieved the best perfor-

mance in cross validation was used in prediction. The best

value for λ was 0.0002.

The feature data was normalized to the range [0 1]. The

number of training samples for the logistic regression was

approximately 100 000 positive samples and 100 000 nega-

tive samples. The samples for training were randomly sam-

pled from all the available training data. However, this was

done in a way that the train set included samples from each

WSI in the training set. In total, the train set included 773

subimages containing cancerous tissue and 10 404 subim-

ages of normal tissue. Consequently, 130 sample blocks

were randomly sampled from each tumor subimage and 10

sample blocks from each normal subimage.

After the confidence map for each subimage was ob-

tained, the confidence subimages are stitched back into

whole slide images for the purpose of visual inspection.

6. Results

The implemented feature-augmented dCNN method was

evaluated with test set of 75 WSIs of lymph node sec-

tions. In addition to classifying the test WSIs using feature-

augmented dCNN model with logistic regression, the test

set was evaluated using the trained dCNN as a classifier,

and also using logistic regression model trained with only

the engineered features. Each test WSI was scored with

confidence levels using three different models trained with

samples from 195 WSIs.

Examples of class predictions performed by dCNN clas-

sifier, logistic regression with engineered features, and

feature-augmented dCNN model with logistic regression

are presented in figure 4. The example images include five

8192×8192 subimages of the tissue histology, the corre-

sponding tumor annotation, and confidence map generated

with each model. Blockwise receiver operating character-

istics (ROC [10]) curve was calculated for each example

image and the corresponding area under the curve (AUC)

measures are also presented in the figure 4.

In order to evaluate the performance of the methods nu-

merically, all of the confidence values from the test set were

collected and blockwise ROC curve was calculated for each

model. These ROC curves are presented in the first column

of figure 5. Background blocks were excluded and only

tissue blocks within the tissue mask area were included in

the ROC analysis. The obtained AUC measure for logis-

tic regression with engineered features was 0.969 (95% CI

[0.9683, 0.9690]), for dCNN classifier the AUC measure

was 0.886 (95% CI [0.8827, 0.8883]), and 0.968 (95% CI

[0.9678, 0.9684]) for the feature-augmented dCNN model

with logistic regression. The 95% confidence intervals were

calculated using logit based method [19]. Further, the dif-

ferences of confidence values of metastatic tissue blocks

and normal tissue blocks were visualized with boxplots.

These boxplots are presented in the second column of figure

5. On each box, the central mark presents the median value,

and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively. The dashed line extend

to the last data points that are not considered as outliers.

The outliers are plotted individually using the plus symbol.

Model Glmnet:

ef

dCNN

prediction

Glmnet:

dCNNf+ef

Classification

accuracy (%) 87.9 92.8 91.3

Sensitivity (%) 87.6 94.0 91.2

Specificity (%) 93.4 70.9 91.7

F-score 0.93 0.96 0.95

Table 1. Classification performances.

In total, the test set included approximately 8.3 million
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Figure 4. Confidence maps predicted for five different tissue subimage. The tissue histology for each color corrected example is presented

in row A. Row B presents the groundtruth annotations, where white mask area stands for metastatic tissue. The class predictions generated

using glmnet model with engineered features are presented in row C, predictions using the dCNN as classifier are presented in row D,

and feature-augmented dCNN model predictions are presented in row E. The confidence denote the probability of a certain tissue block to

belong to the group of cancerous tissue. To support the visual examination of these examples, ROC curve was calculated for each example

confidence map and the corresponding AUC value is presented below each confidence map.

sample blocks (420 000 tumor sample blocks and 7 900

000 normal tissue sample blocks). Percentage of correctly

classified samples, classification sensitivity and specificity,

and F-score were calculated for logistic regression with en-

gineered features, dCNN classifier, and feature-augmented

dCNN model. These results are presented in table 1. The

percentage of correctly classified samples was 87, 9% for

logistic regression with engineered features, 92, 8% for

dCNN classifier, and 91, 3% for feature-augmented dCNN

model with logistic regression.

7. Conclusions and discussion

In this work, feature-augmented dCNN method was pre-

sented for extracting multi-scale features for quantitative

characterization of tissue histology. Supervised learning

was applied to train a logistic regression model with elas-

tic net regularization to detect cancerous tissue from whole

slide images. The method was able to accurately discrimi-

nate cancerous tissue from normal tissue (AUC=0.97).

To evaluate the performance and input of different fea-

tures of the proposed method, classification performance

was compared with two additional models. The perfor-
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Figure 5. All of the confidence values predicted with each model

were collected and blockwise ROC curve and AUC measure were

calculated. Further, the differences of confidence values gathered

from metastatic tissue blocks and normal tissue blocks are visu-

alized in the boxplots. On each box, the central mark presents

the median value, and the bottom and top edges of the box indi-

cate the 25th and 75th percentiles, respectively. The outliers are

plotted individually using the plus symbol. Row A presents the

ROC curve and boxplot for glmnet model using engineered fea-

tures. Row B presents the ROC curve and boxplot for dCNN pre-

dictions, and row C presents the same plots for feature-augmented

dCNN model.

mance of the proposed logistic regression model trained

with engineered features and dCNN features was compared

with logistic regression model trained with engineered fea-

tures alone, and with the dCNN model. Each method gives

as an output a confidence map that presents the probability

of a certain tissue region to contain cancerous tissue. Exam-

ple outputs of these three different models are presented in

figure 6, where the cancerous area is annotated with ma-

genta line. This type of output map could be beneficial

for example in a usage scenario where a pathologist uses

the confidence values as a guidance to potential hot-spot re-

gions within the tissue sample.

The numerical evaluation of the these three different

models are presented in table 1. The table lists the clas-

sification performance of the logistic regression model with

engineered features, dCNN model, and feature-augmented

dCNN model. The percentage of correctly classified sam-

ples is quite high for each case. When considering only

the percentage of correctly classified samples, the dCNN

model reaches the best accuracy. The second best classifi-

cation performance is obtained with the feature-augmented

dCNN model. The small drop in sensitivity, correctly clas-

sified samples, and F-score with feature augmentation can

be explained by the weaker performance of engineered fea-

tures alone considering these metrics. The most signifi-

cant features provided by the glmnet model included both

dCNN features and engineered features. Since glmnet gives

more weight to certain significant features, the resulting

model is a compromise of most discriminative features se-

lected from both dCNN features and engineered features.

Although there was small drop in some metrics, the speci-

ficity of feature-augmented dCNN model increases signif-

icantly compared to plain dCNN model, and therefore, the

overall performance improves considering all accuracy met-

rics. The improved performance can be seen also from the

ROC analysis and confidence value boxplots. These analy-

ses confirm that the feature-augmented dCNN method pro-

vides most distinct confidence values for normal and can-

cerous tissue.

In addition to classification performance evaluation, sev-

eral misclassification cases were considered. Most false

positive signals were detected where normal lymph node

medulla was misinterpreted as cancerous tissue, this can be

caused by the fact that the normal lymph node stroma has

similar color tones and size of nuclei as certain breast can-

cer cell phenotypes. Many misclassifications were also de-

tected in the border of healthy tissue and cancerous tissue.

This is caused by the fact that only samples with 50% cov-

erage of the tissue mask or tumor mask within the smaller

scale block were accepted for training. This could have

been improved for example by using positive training sam-

ples with 100% coverage of the tumor mask and negative

training samples with 50% coverage of the tissue mask.

Most false negative signals were detected in small metas-

tases, where single or only a few cancer cells are surrounded

by lymphocytic cells.

The evaluation of the results is not an easy and straight-

forward task [27]. From blockwise classification point of

view, certain measures can be calculated to evaluate the

performance of the implemented method. However, from

the pathologists viewpoint, these measures dont necessarily

give real accuracy of the method. This type of blockwise

evaluation gives more weight on larger tumor regions in the

final scoring, since they consist of a larger number of pixels

than smaller lesions. For the pathologist, this is a problem,

since large macrometastases can often be spotted more eas-

ily than the small ones.

If a realistic usage of the implemented method is consid-

ered, it would be used as a decision support system, not as

a tool for diagnosis. In this case, the high sensitivity of the
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Glmnet: ef dCNN prediction Glmnet: dCNNf+efHistology

Figure 6. The confidence maps for an example WSI predicted using three different models: the logistic regression model with only

engineered features, the dCNN model, and the feature-augmented dCNN model.

method, list of most discriminative features, and the confi-

dence map output show a potential that the method could

be used in the future as a software for computer aided di-

agnosis. High sensitivity is useful for ruling out normal

tissue, since 100% sensitivity would mean that the method

recognises all of the areas with metastatic tissue. Therefore,

workload of a pathologist could be reduced if an automated

image analysis system with close to 100% sensitivity could

be used to pre-screen histological slides and to exclude even

part of the slides.

Considering the results of this study from a classifi-

cation point of view and the evaluation problem regard-

ing a realistic application and its requirements for digi-

tal pathology, selecting a best method is rather inconclu-

sive. However, the study provides proof-of-principle for

using feature-augmented neural network approach in anal-

ysis of histopathological images. The main advantage of

the proposed feature-augmented method, compared to ac-

curate state-of-art deep learning methods, is the model in-

terpretability. A list of significant features considering the

classification problem is provided by the model and these

features provide insight into the quantitative characteris-

tics of tissue histology that separate metastatic tissue from

normal tissue. Most of the engineered features are intu-

itive as such, and application specific features can be de-

signed based on prior knowledge, such as, histogram prop-

erties that can be directly linked to stains highlighting par-

ticular biological features. Therefore, even if the feature-

augmentation might bias the discovery and classification,

the tradeoff with the provided information is beneficial.

Certainly, the important higher-order dCNN features can be

also connected to the spatial location of the tissue with net-

work visualization. However, linking these features to any

relevant biological information may be challenging. There-

fore, with the combination of these two methods, advan-

tages of both methods can be obtained; high level of classi-

fication performance and increased model interpretability.

In addition, the implemented method is modular and can

be easily extended with new features or more than two sup-

port areas for the multi-scale perspective. Therefore, we an-

ticipate that similar approach could be applied in a wide va-

riety of biomedical image analysis problems in addition to

the breast cancer metastasis detection task presented here,

provided that a large set of annotated image data is avail-

able for training. Transferring the models from prediction

task to another with substantially smaller amount of training

data will be one of our future research goals.
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