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Abstract

SLAM and SfM algorithms typically involve minimiza-

tion of a cost-function by non-linear least-squares meth-

ods. The matrices involved are typically very poorly con-

ditioned, making the procedure sensitive to numerical pre-

cision effects. Ensuring accuracy therefore entails the use

of high-precision floating-point data-types for representa-

tion and compute. In this paper, a square-root filtering ap-

proach to EKF-based SfM is presented and is shown to be

capable of operating with lower-precision arithmetic than

the EKF, while sacrificing only a little in accuracy. Specif-

ically, we demonstrate a prototype that is capable of op-

erating with integer arithmetic rather than floating-point -

the first such implementation to the best of our knowledge.

This is important given the increasing need to implement

advanced vision-based capabilities on low-power embed-

ded and mobile processors, some of which might not even

support floating-point arithmetic for reasons of cost and

power. Furthermore, an evaluation of the computational

complexity shows that the proposed approach typically re-

quires fewer computations than the EKF in practice, result-

ing in an algorithm that is both numerically more robust

and computationally less intensive.

1. Introduction

Recent years have witnessed a rapid proliferation of

power-constrained smart devices such as smartphones, and

autonomous drones and robots. Increasingly, such devices

are being equipped with advanced computer vision capabili-

ties for scene understanding. A key task is recreating the 3D

space around the device, while simultaneously localizing

the device in real-time within it, thus enabling it to navigate

autonomously. Depending on the specific usage, it might

be required to perform either visual-odometry, or structure-

from-motion (SfM), or full SLAM. Typically, the platform

of implementation of such algorithms is a powerful multi-

core CPU capable of supporting high-performance compu-

tations with double-precision floating-point arithmetic. Re-

cent works such as PTAM [17, 18] and others [26, 21] at-

tempt to attain real-time operation of localization or SLAM

algorithms on smartphone-like devices. They do so by par-

titioning the problem into a fast problem of tracking that is

implemented on a mobile frontend device, and a slow prob-

lem of mapping that is implemented on a server backend.

More recent work focuses on real-time implementations of

visual odometry [11]

However, in all the research mentioned, little attention is

paid to the numerical type used for computations. Modern

mobile and embedded processors may not always support

high-precision arithmetic, or if they do, the performance

is severely limited. Therefore, in order to achieve accept-

able performance on such processors, algorithms typically

have to be implemented using fixed-point (integer) arith-

metic. This poses challenges for SLAM algorithms and

their variants as these are known to be sensitive to numeri-

cal precision errors. In this work, therefore, we demonstrate

the benefit of using alternate ‘square-root’ approaches that

are known to be numerically more robust, and therefore al-

low the use of lower-precision arithmetic. In particular, we

apply these principles to Extended Kalman Filter (EKF)-

based SfM and use a variant of the Kalman filter, known as

the square-root information filter (SRIF)[4]. Unlike the tra-

ditional Kalman Filter, which involves computations with

a poorly conditioned covariance matrix, square-root filters

instead operate on the Cholesky factor of either the covari-

ance matrix or the information matrix, which is the inverse

of the covariance matrix. Specifically, it is shown that SRIF

enables the implementation of SfM in 32-bit integer (fixed-

point) arithmetic - the first such implementation reported

to the best of our knowledge. The accuracy of the results

using integer arithmetic, though slightly lower than that us-

ing floating-point arithmetic, should be tolerable for most

applications. Furthermore, the computational cost of the

proposed algorithm is less than that of the EKF in prac-

tice. This results in significant (typically 2x) performance

improvements in real-world implementation on various pro-

cessors (CPUs, DSPs, or GPUs), owing to the use of lower-

precision arithmetic and the reduced op-count.

Although, EKF has been used extensively in SLAM

[1, 10, 6, 8, 7, 28], the square-root formulation of the
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Figure 1. EKF-based Structure-from-Motion.

Kalman filter has found surprisingly little adoption in the

vision community, despite its obvious numerical advan-

tages. One of the foremost set of works exploring this

for SLAM has been by Dellaert et al. in several publica-

tions [9, 15, 14]. In these works, square-root filtering is

applied to the ‘offline SLAM’ problem, i.e. the problem

of optimally estimating the full set of poses along with all

features in the environment from the entire set of obser-

vations. The square-root matrix itself is obtained by ei-

ther the Cholesky factorization of the information matrix

I(I = RTR) , or the QR-factorization of the measurement

Jacobian A(A = Q

[

R

0

]

). The use of the Cholesky method

is recommended in owing to its lower computational cost

as well as the ability to leverage sparsity of the information

matrix. However, the ability to run the algorithm with lower

precision numeric types is not explored; in fact, explicitly

forming the information matrix precludes such a possibil-

ity because the condition number κ(I) of I, is the square

of the condition number κ(R) of R. By contrast, neither

the information matrix nor the covariance matrix is explic-

itly formed in our work. Another point of contrast is that

this work focuses on the real-time SfM problem in which

the pose- and feature-estimates are updated every time a

new frame is received. This implies that the system-state

changes at every frame since some features previously ob-

served would no longer be visible while some new features

would have been added. An efficient way to deal with this

varying state-size is presented.

An outline of the paper is as follows: an overview of a

square-root approach to SLAM is presented in Section 2.

These principles are then applied to an EKF-based formu-

lation of SfM (Section 3) and the resulting square-root fil-

tering based approach is presented in Section 4. Functional

results are presented in Section 5, in which the error caused

by use of lower-precision data-types is measured on a test-

set. The computational cost of the square-root method, as

well as the effective performance attainable in real-world

implementations, is explored in Section 6. The trade-off

between error and performance is discussed here. Finally,

conclusions are presented in Section 7.

2. A Square-Root Approach to SLAM

Solving the SLAM problem consists of estimating the

trajectory of an autonomous system (drone, robot, or ve-

hicle) and a map of its environment as it moves around

in it. The trajectory is specified by a sequence of poses,

x = {xD
i }, and the map is specified by the set of coordi-

nates, m = {PW
j }, of the landmarks in the scene. The

system captures measurements zk of the landmarks. The

measurements are related to the map via a measurement

function zk = hk(x,m). The SLAM problem can be for-

mulated as the following optimization problem

x∗,m∗ = argmin
x,m

C (1)

where,

C =
∑

k

‖zk − hk(x,m)‖2W

=
∑

k

(zk − hk(x,m))
T
W (zk − hk(x,m)) ,

(2)

and W is appropriately chosen weight matrix (typically the

inverse of the covariance matrix). The optimization is typi-

cally solved by Gauss-Newton or Levenberg-Marquadt. As-

sume that an initial estimate
(

x(0),m(0)
)

is known. Then,
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a refined estimate is calculated by linearizing the above cost

function around this estimate,

C =
∑

k

∥

∥

∥
zk − hk(x

(0),m(0))−Hk∆u

∥

∥

∥

2

W

=
∑

k

‖ek −Hk∆u‖
2
W

(3)

where, ek , zk − hk(x
(0),m(0)), and,

Hk =

[

∂hk/∂x
∂hk/∂m

]

, and ,∆u =

[

∆x

∆m

]

(4)

The minimization of eq. (3), is traditionally attained by

solving

(

∑

k

HT
kWHk

)

∆u =
∑

k

HkWek (5)

Direct inversion of the left-hand side is never carried out;

instead the system is solved by Cholesky factorization. An

alternate way of solving eq. (3) is by QR-factorization as

follows:

C =
∑

k

‖ek −Hk∆u‖
2
W

=
∑

k

‖Rw (ek −Hk∆u)‖
2

=
∑

k

∥

∥

∥
ẽk − H̃k∆u

∥

∥

∥

2

(6)

where, RT
wRw = W, ẽk = Rwek, and H̃k = RwHk.

Eq. (6) can be rewritten by stacking the various error and

Jacobian matrices as,

C =
∥

∥

∥
ẽ− H̃∆u

∥

∥

∥

2

, (7)

where

ẽ =
[

ẽT1 |ẽ
T
2 | . . . |ẽ

T
n

]

, and

H̃ =
[

H̃T
1 |H̃

T
2 | . . . |H̃

T
n

]

.
(8)

H̃ can be factorized by QR-factorization as H̃ = Q

[

R

0

]

,

where Q is orthonormal, and R is upper triangular. Note

that this R matrix is also the Cholesky factor of

H̃T H̃ =
∑

k

HT
kWHk. (9)

Since QTQ = I, multiplying the inner term in eq. (7) by

QT yields

C =

∥

∥

∥

∥

QT ẽ−

[

R

0

]

∆u

∥

∥

∥

∥

2

. (10)

The above equation is easily solved since R is upper-

triangular. The benefit of using this formulation is that the

product H̃T H̃ is never explicitly; rather, all the computa-

tions involve only its Cholesky factor which significantly

increases the numerical stability of the procedure.

3. EKF-based SfM

We now apply the principles described in the previous

section to EKF-based structure-from-motion (SfM). The

difference from the previous section is that the map and

pose estimation is performed at every input frame rather

than waiting for all frames and processing in a batch. The

state-vector, therefore contains only the current 6-DOF pose

of the device (as opposed to the entire trajectory) and the lo-

cations of landmarks currently visible (as opposed to the en-

tire map) and updates these values iteratively at every frame.

Specifically, the system state, x, is defined thus:

xD =
[

qDωDvDpD
]

xS =
[

PW
1 PW

2 · · ·PW
N

]

x =

[

xD

xS

]

(11)

where, qD is the orientation of the device w.r.t the world

frame represented by a quaternion, ωD and vD are, respec-

tively, the angular and linear velocities of the device, and

pD is the position of the device. PW
k are the coordinates

of the kth feature point, represented using a 6-parameter

inverse-depth parametrization [6]. The dimension of x is

therefore 13+6N , where N is the number of feature points.

The error covariance matrix is defined as

P = E
{

(x− x̂) (x− x̂)
T
}

,

[

PDD PDS

(

PDS
)T

PSS

]

(12)

and the observation vector is defined as

z = [p1p2 · · ·pN ]T (13)

and has dimension 2N. Here, pk is the 2D image coordinate

of the kth feature point PW
k . The EKF estimates the state

variables above from a sequence of observations obtained

at discrete time instants. The evolution of the state between

two successive observations is described by the propagation

model. The EKF utilizes the propagation model to predict

the system state at the next time instant. The mapping from

the state to the observations is described by the measure-

ment model. The measurements are used to update the value

of the system state obtained by prediction. The overall flow

of the algorithm is shown in Figure 1.

3.1. Vision pipe

The vision pipe takes as input a sequence of images

and outputs the measurements or observations needed for
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the EKF update step. The observations are the pixel co-

ordinates of the tracked feature points from one frame to

the next frame. The first step in this processing chain is

to extract robust features points which are repeatable and

provide good localization across multiple frames. The ex-

tracted features are then represented by descriptors which

can uniquely capture the properties of the feature, such

as orientation and edge information. In this work, Harris

corners [13] were used as feature points and the Oriented

FAST and Rotated BRIEF (ORB) [24] feature descriptor is

used which is a binary descriptor. The feature tracking step

matches features between successive frames by comparing

their locations and their descriptors. The distance between

binary descriptors is measured using hamming distance. In

order to keep one-to-one correspondence between matched

feature points, the matches with minimum distance measure

are considered.

3.2. Propagation Model and EKF Prediction

The evolution of the system-state is described by the fol-

lowing non-linear continuous-time system model:

ẋ(t) =

[

ẋD(t)
ẋS(t)

]

=

[

f
(

xD(t),w(t)
)

0

]

(14)

where, f is a constant-velocity motion-model as described

in [22], w(t) is the process noise with covariance Q(t), and

ẋS(t) = 0 simply implies that the coordinates of the feature

points in the world frame are fixed. The predicted value of

the state at time tk+1 is obtained by:

xD
k+1|k , x̂D (tk+1) =

∫ tk+1

tk

f
(

xD(τ),w(t)
)

dτ (15)

To compute the covariance matrix at tk+1, the continuous-

time model above is linearized and discretized. The lin-

earized continuous-time model for the device state is

δẋD(t) = FδxD(t) +Gw(t), (16)

where the Jacobians F and G are defined as

F =
∂f

∂x
, and G =

∂f

∂w
, (17)

and δxD(t) =
[

(

δθD
)T (

δωD
)T (

δvD
)T (

δpD
)T
]T

is the

EKF error-state vector. From standard control-theory, the

discrete-time covariance propagation equation is given by:

PDD
k+1|k = ΦD

k PDD
k|k

(

ΦD
k

)T
+Qd

PDS
k+1|k = ΦD

k PDS
k|k

PSS
k+1|k = PSS

k|k since ẋS(t) = 0

(18)

where, ΦD
k , exp

(

∫ tk+1

tk
Fdτ

)

is the state transition ma-

trix, and Qd is the discrete-time system covariance noise.

Qd can be computed from Q,F, and G in a simple fashion

using the algorithm from Van Loan [20].

3.3. EKF Update

The measurement model gives the mapping between the

system state and the observations:

zk+1 = h (xk+1) + vk+1 (19)

Here, xk+1 , x (tk+1), and vk+1 is the measurement noise

with covariance Qv . The H-matrix is defined as

Hk =
∂zk
∂x

(20)

Since we use the inverse-depth measurement model as de-

scribed in [6], the expression for H is obtained in a similar

fashion. The details of the derivation are skipped here for

brevity. The steps involved in EKF update are:

êk+1 = zk+1 − h
(

x̂k+1|k

)

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Qv

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1

x̂k+1|k+1 = x̂k+1|k +Kk+1êk+1

Pk+1|k+1 = Pk+1|k −Kk+1Hk+1Pk+1|k

(21)

In practice, the covariance matrix P is often highly ill-

conditioned, which results in the solution being highly sen-

sitive to even small numerical errors. More seriously, such

small numerical errors can also cause P to lose its positive

definiteness which results in meaningless outputs from the

update step.

3.4. Feature update and removal

Each time a new image is received, some new features

would have been observed and some features that were be-

ing tracked would no longer be present. For the features

that are no longer visible, the corresponding entries from

the system state are removed. The covariance matrix is also

updated by removing the rows and columns corresponding

to the eliminated feature. For newly observed features, both

the state-vector and the covariance-matrix are augmented

with the entries of the newly initialized values, i.e.

xk+ =

[

xk−

xnew

]

,Pk+ =

[

Pk− 0

0 Pnew

]

(22)

For notational convenience, the subscript k− is used to de-

note the values after removing features that were visible at

time k−1 but not at time k, and the the subscript k+ is used

to denote the value after augmenting with the new features

at time k.

4. SRIF-based SfM

Square-root information filter (SRIF) is an alternate for-

mulation of the Kalman Filter that operates on the Cholesky
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factor of the information matrix: P−1 = RTR. The con-

dition number of R is the square-root of that of P−1 (or,

equivalently, P). One of the earliest formulations of square-

root filtering can be found in [23]. In this work, the conven-

tional Kalman Filter algorithm was reformulated in terms

of the square-root of the covariance matrix to improve nu-

meric accuracy and stability; however, this formulation re-

quired more computations than the conventional Kalman

Filter [16]. An alternate square-root formulation that op-

erates on the square-root of the information matrix was pre-

sented in [4], and with greater exposition and detail in [5].

It was shown that this formulation achieved far superior nu-

merical accuracy compared to the conventional Kalman Fil-

ter at a modest increase in computational cost. A survey of

the numeric aspects of the various square-root formulations

has been presented in [27]. Our work largely follows the

presentation of [5] such that the predict and update steps

of the EKF operate directly on R without ever having to

compute either P or P−1. The resulting algorithm is, there-

fore, less sensitive to numerical errors and can consequently

operate with lower-precision numerical types. Details are

provided in the following subsections.

4.1. SRIF Update

The following treatment is motivated from the material

in [5, Chapters 2 and 5]. It can be shown that the EKF up-

date step is equivalent to performing one iteration of Gauss-

Newton algorithm on the following cost functional [2]:

C =
(

x− x̂k+1|k

)T
P−1

k+1|k

(

x− x̂k+1|k

)

+

(zk+1 − h(x))
T
Q−1

v (zk+1 − h(x)) (23)

Linearizing about x̂k+1|k, and rearranging terms yields

C =

∥

∥

∥

∥

[

0

ẽk+1

]

+A∆x

∥

∥

∥

∥

2

,A =

[

Rk+1|k

RvHk+1

]

(24)

where, Q−1
v = RT

v Rv , ẽk+1 = Rvêk+1, and ∆x = x −
x̂k+1|k. êk+1 and Qv are as defined in subsection (3.3).

Performing the QR-factorization of A and using the fact

that
∥

∥QTy
∥

∥ = ‖y‖ since Q is orthogonal, yields

C =

∥

∥

∥

∥

[

0

ẽk+1

]

+Q

[

R

0

]

∆x

∥

∥

∥

∥

2

=

∥

∥

∥

∥

QT

[

0

ẽk+1

]

+

[

R

0

]

∆x

∥

∥

∥

∥

2
(25)

The above system can easily be solved by back-substitution

since R is an upper triangular matrix. ∆x is added to

x̂k+1|k to obtain x̂k+1|k+1. Furthermore, it can be shown

that P−1
k+1|k+1 = RTR, and hence Rk+1|k+1 = R. Thus,

at no point is it required to explicitly compute the covari-

ance matrix and it is sufficient to maintain the R matrix

throughout the algorithm.

4.2. SRIF Predict

Performing prediction in the SRIF formulation is signifi-

cantly more complex than by using the traditional EKF for-

mulation. The main results are presented here; for details

please refer [5, Chapter 6]. The predicted value of R at

time tk+1, i.e. Rk+1|k is obtained by the following QR fac-

torization:

QR

([

Rw 0

−Rd
kGeff Rd

k

])

=

[

R̃w Rwx

0 Rk+1|k

]

(26)

where, Q−1
d = RT

wRw,R
d
k = Rk|kΦ

−1
k , and

Geff =

[

G

0

]

,Φk =

[

ΦD
k 0

0 I

]

(27)

Q and ΦD
k are as defined in subsection (3.2). At the face

of it, it seems that a QR factorization of (Nw + Nx) ×
(Nw + Nx) sized matrix needs to be performed, where

Nx = 12 + 6N . This is significantly more computation-

ally intensive than the predict step of the conventional EKF.

Observe, however, that Rk|k can be partitioned as

Rk|k =

[

R1 R12

0 R2

]

(28)

where, R1 is 12× 12, and R2 is 6N × 6N . Hence,

Rd
k =

[

R1

(

ΦD
k

)−1
R12

0 R2

]

,

Rd
kGeff =

[

R1

(

ΦD
k

)−1
G

0

]

,

(29)

which, on substituting in Eq. (26) yields the following as

the expression for the matrix to be factorized





Rw 0 0

−R1

(

ΦD
k

)−1
G R1

(

ΦD
k

)−1
R12

0 0 R2



 (30)

Observe that the lower-right portion corresponding to R2

is already upper-triangular. Hence, triangularizing via QR

needs to be performed only the upper Nw +12 rows, which

reduces the complexity of this step from O(N3) to O(N2),
a significant reduction.

4.3. Feature update and removal

Addition of new features in the SRIF formulation is

straightforward. Similar to feature addition in the EKF

(subsection (3.4)), the state vector and the R matrix are aug-

mented with the entries of the newly initialized values,

xk+ =

[

xk−

xnew

]

,Rk+ =

[

Rk− 0

0 Rnew

]

(31)
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Seq# EKF single precision EKF fixed point (24.40) SRIF single precision SRIF fixed-point (16.16)

TranError

[%]

RotError

(deg/m)

TranError

[%]

RotError

(deg/m)

TranError

[%]

RotError

(deg/m)

TranError

[%]

RotError

(deg/m)

1 0.87 9.40E-05 0.88 2.08E-06 0.87 2.50E-04 1.95 1.77E-03

2 8 5.50E-05 10.22 5.47E-07 9.83 8.06E-05 11.24 6.29E-04

3 1.68 1.04E-04 1.67 1.75E-06 1.68 1.31E-04 3.66 2.07E-03

4 1.83 6.64E-05 1.77 1.54E-06 1.83 7.40E-05 3.18 3.57E-03

5 0.67 5.79E-05 0.67 4.90E-07 0.67 9.53E-05 6.96 1.59E-03

6 1.99 1.47E-04 1.51 1.86E-06 1.99 1.36E-04 2.59 2.16E-03

7 4.9 1.74E-04 5.31 1.24E-06 5 2.75E-04 7.69 2.05E-03

8 1.67 1.28E-04 1.69 2.13E-06 1.67 1.77E-04 3.33 3.95E-03

9 1.42 1.39E-04 1.54 1.29E-06 1.51 8.59E-05 4.16 4.24E-03

10 1.82 1.41E-04 1.88 6.70E-07 1.82 7.55E-05 3.6 1.99E-03

Table 1. EKF and SRIF results with various precisions.

Note that Rnew is upper triangular, and hence so is Rk.

Removal of features is more complex than in the EKF

case and cannot be accomplished by a simple deletion of

rows and columns. A two-step process is followed. First, a

permutation matrix Π is applied to the state-vector x (sub-

script k dropped for notational convenience) such that it is

partitioned into two sub-vectors: sub-vector xd of length d
representing the features that need to be discarded and sub-

vector xr of length r corresponding to features that need to

be retained, i.e. xΠ = Πx =
[

xT
d x

T
r

]T
. Then, the covari-

ance of xΠ is PΠ = ΠPΠT . Hence, P−1
Π = ΠP−1ΠT ,

since Π−1 = ΠT for any permutation matrix. Now, P−1 =
RTR. Hence, P−1

Π = RT
ΠRΠ, where RΠ = RΠT .

Clearly, RΠ is not upper triangular, but is easily triangu-

larized by a applying a sequence of Givens rotations. Now,

suppose that RΠ is partitioned after triangularization as

RΠ =

[

Rd Rdr

0 Rr

]

(32)

Then,

R−1
Π =

[

R̄d R̄dr

0 R̄r

]

=

[

R−1
d −R−1

d RdrR
−1
r

0 R−1
r

]

(33)

Hence, PΠ can be expressed as

PΠ ,

[

Pd Pdr

PT
dr Pr

]

= R−1
Π R−T

Π

=

[

R̄dR̄d
T
+ R̄rR̄r

T
R̄drR̄r

T

R̄rR̄dr
T

R̄rR̄r
T

] (34)

From the above, it is seen that the covariance matrix, Pr of

the retained features is given by Pr = R̄rR̄r
T

and hence

P−1
r = RT

r Rr. Hence, the R-matrix of the remaining fea-

tures is lower-right r × r submatrix of the triangularized

RΠ.

5. Experiments and Results

In order to demonstrate the numerical superiority of the

SRIF-based approach, both EKF-SfM and SRIF-SfM were

run on a set of test clips with numerical data-types of

various precisions. The objective here is to evaluate the

degradation in accuracy occurring due to the use of lower-

precision numerical-types rather than to evaluate the inher-

ent quality of the SfM algorithm itself. The test-set includes

ten clips from the Kitti Odometry dataset [12] for which

ground truth poses are available. Details about the test clips

are provided in the supplementary material. To evaluate

and compare accuracy, the methodology proposed in [12]

is adopted wherein the relative translational and rotational

errors are calculated over fixed-interval segments of length

100, and the average error over these segments is reported

in Table 1. Only those numerical types that are commonly

supported in hardware on modern processors were tested.

Non-standard types (such as 40-bit integer, 48-bit integer,

etc.) were not considered because these would involve im-

plementing bit-shift operations for various arithmetic oper-

ators in software which would result in a significant perfor-

mance degradation.

For EKF-SfM, the results are reported with single-

precision (32-bit) floating-point and with 64-bit fixed-point

in Q23.40 format. Reducing the precision resulted in the co-

variance matrix, P, losing positive definiteness, which also

resulted in S becoming indefinite. This caused the Cholesky

factorization of S to fail. Using LDL factorization for S in

lieu of Cholesky did not help because although S would fac-

torize with LDL, the outputs using an indefinite S quickly

diverged and became meaningless.

For SRIF-SfM, results are reported for single-precision

floating-point and with 32-bit fixed-point in Q15.16 format.

It was observed that with 32-bit integer arithmetic, the trans-

lational error degraded only slightly compared to floating-

point. Rotational error could be up-to an order of magnitude

559



worse; however, in absolute terms it was still very small.

From this it is clear that the SRIF-based SfM is capable

at operating with roughly half the number of bits as EKF-

based SfM.

6. Computational Complexity

The computational complexity of the SRIF-based SfM is

analyzed and compared to that of the EKF-based SfM and

the results are presented in Table 2. Complexity figures are

reported only for the steps that require a significant com-

pute; steps for which the computational cost is negligible

compared to the overall cost are ignored. Furthermore, for

any given step, only the highest order terms are reported

as these dominate the cost. The time subscripts on vari-

ous matrices are dropped for notational convenience. The

special structures of matrices involved are leveraged to re-

duce complexity when applicable (such as sparsity of H,

the approximately upper-triangular form of RΠ, etc.). For a

more general comparison of the computational complexity

of square-root filtering vs Kalman filtering, please refer [5].

The derivations to arrive at the figures presented in Table 2

are straightforward but too lengthy to include here, and are

hence included in the supplementary material.

For the feature removal-step in SRIF-SfM, it is not possi-

ble to arrive at a closed-from expression for its complexity

because it does not simply depend on the number of fea-

tures being removed, but also on which particular features

are being removed. It is, however, possible to demonstrate

that this term has an upper-bound of 162N3. This upper-

bound is attained in a highly specific scenario (explained

in the supplementary material) which is rarely, if ever, re-

alized. Typically, the cost of the feature-removal step is a

small fraction, β, of this upper-bound. From our experi-

ments over several hundreds of input frames, the average

value of β was observed to be 0.084 and the maximum value

observed was 0.235.

6.1. Implementation on processors

From Table 2, it can be seen that SRIF-SfM typically

requires fewer operations than the EKF, which already in-

dicates that the real-world performance of the SRIF-based

SfM should be faster than that of the EKF-based one. More

importantly, though, SRIF-SfM can be implemented with

32-bit integer type instead of the 64-bit integer or single-

precision floating-point type required for EKF. Throughput

of 32-bit integer operations is twice that of 64-bit integer

operations. Hence, the performance of SRIF (as measured

by operations/sec) will be 2x that of EKF when comparing

implementations using fixed-point arithmetic.

Comparing performance of SRIF-SfM using 32-bit in-

teger arithmetic to that of the EKF-SfM using single-

precision (32-bit) floating-point is less straightforward.

Fixed-point architectures, by definition, do not provide

capabilities for automatic adjustment of the exponent.

Floating-point architecture, on the other hand, must be ca-

pable of adjusting the exponent or normalizing-factor auto-

matically. This increases the hardware cost and the power

consumption. In order to balance cost versus throughput,

the fixed-point embedded processors are typically twice as

fast as floating-point processors [3] and are half the price of

the floating-point processors. The use of floating point pro-

cessors, therefore, significantly increases the system cost

along with the power consumption. The recent trend is to

use FPGAs for the special purpose applications in order to

have rapid time-to-market along with low-power real-time

implementations. If there is no special hardware block for

floating point operations, the fixed-point versus the floating-

point multiplier on an FPGA results in four times increase

in size and latency[25], which is effectively a 16x perfor-

mance difference. In the presence of specialized hardware

support, the floating-point implementation on an FPGA will

take double the area, along with the increase in platform

cost and power consumption [19].

In short, use of floating-point arithmetic will require pay-

ing a price either in terms of performance, or power, or cost

and algorithms that are able to run using fixed-point arith-

metic will generally be easier to implement such on con-

strained platforms. In fact, the use of SRIF might enable im-

plementation on low-power embedded platforms that sup-

port only lower-precision types owing to which they are un-

able to support a traditional EKF implementation.

7. Conclusions and Future Work

In this work, a SRIF-based approach to the real-time

monocular structure-from-motion problem is presented. It

is demonstrated that our SfM algorithm can be implemented

using 32-bit integer arithmetic, the first such implementa-

tion to the best of our knowledge. This should enable im-

plementation of SfM on low-power processors that either

do not support floating-point arithmetic, or if they do, do

so at tremendous cost to performance or power. The ability

to work with lower-precision arithmetic is a direct conse-

quence of using the square-root information filter instead

of the traditional EKF. Going forward, therefore, we expect

to implement real-time stereo-SfM and RGB-D SfM using

SRIF formulations too in the anticipation that these will be

able to run with even lower-precision arithmetic.
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