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Abstract

Robust principal component analysis (RPCA) is cur-

rently the method of choice for recovering a low-rank ma-

trix from sparse corruptions that are of unknown value and

support by decomposing the observation matrix into low-

rank and sparse matrices. RPCA has many applications

including background subtraction, learning of robust sub-

spaces from visual data, etc. Nevertheless, the application

of SVD in each iteration of optimisation methods renders

the application of RPCA challenging in cases when data

is large. In this paper, we propose the first, to the best of

our knowledge, multilevel approach for solving convex and

non-convex RPCA models. The basic idea is to construct

lower dimensional models and perform SVD on them in-

stead of the original high dimensional problem. We show

that the proposed approach gives a good approximate solu-

tion to the original problem for both convex and non-convex

formulations, while being many times faster than original

RPCA methods in several real world datasets.

1. Introduction

Low-rank matrix recovery is a cornerstone in data analy-

sis and dimensionality reduction, with the principal compo-

nent analysis (PCA) [12] being the most widely employed

method for this task. Even though the PCA is easy to do

by means of eigen-decomposition, it is fragile to the pres-

ence of gross, non-Gaussian noise and outliers and the es-

timated low-rank subspace may be arbitrarily away from

the true one; even when a small fraction of the data is cor-

rupted [14]. To alleviate this, robust PCA (RPCA) models

have been proposed [6]. The RPCA aims to recover a low-

rank matrix from sparse corruptions that are of unknown

value and support by decomposing the observation matrix

(D) into two terms: a low-rank matrix (L) and a sparse

one (S) , accounting for sparse noise and outliers, namely

D = L+S. This model has profound impact in visual data

analysis and computer vision applications such as image de-

noising [6], background substraction, image alignment [25],

texture recovery [30], deformable models [26], face frontal-

ization [27], structure from motion [2], to mention but a few

examples.

A natural approach to estimate the low-rank plus sparse

decomposition of the RPCA is to minimize the rank of L

and the number on non-zero entries of S , measured by

ℓ0 quasi norm [6]. Unfortunately, both rank and ℓ0-norm

minimization is NP-hard [29, 21]. The nuclear- and the ℓ1-

norms are typically adopted as convex surrogates to rank

and ℓ0- norm, respectively yielding a convex relaxation,

which can be provably solved under some natural condi-

tions on the low rank and sparse components. Common

solvers for the convex RPCA include: Iterative Threshold-

ing (IT) [8], Accelerated Proximal Gradient (APG) [24],

Augmented Lagrange Multipliers (ALM) and Augmented

Lagrangian Alternating Direction method [16]. However,

the above mentioned solvers exhibit significant computa-

tional drawbacks. In particular, the convex RPCA model

can be solved with at mostO(1/ǫ) iterations, where ǫ is the

solution accuracy, each iteration requires a singular value

decomposition (SVD), which can be computationally ex-

pensive even when only a few singular values are calculated.

Moreover, theO(1/ǫ) convergence rate is much slower that

the O(log(1/ǫ)) rate of the classical PCA.

Recent advances in non-convex optimization enable the

development of algorithms that partially alleviate the com-

putational burden of convex RPCA. Concretely, Netrapalli

et al [22] proposed to solve a non-convex problem of finding

a low rank plus sparse matrix decomposition, by means of

alternating projections onto non-convex sets. Surprisingly,

the method provably converges to a unique minimiser with

linear rate O(log(1/ǫ)), which is much faster that the sub-

linear rate of convex methods. However, for large problems

(even partial SVDs) can require unacceptably long time to

solve the problem. There have been several attempts to re-

duce the computational time of large nuclear norm regu-

larized optimization problems. Namely, [17] proposed to

reduce the problem dimension by writing the large solution

matrix as a product of a small orthogonal and another ma-

trix. They solved the resulting non-convex problem via an
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augmented Lagrangian alternating direction method. An-

other very popular approach for reducing large problem di-

mensions is to create smaller sub-problems using various

randomized techniques [18, 23, 9, 19, 1].

In this paper, motivated by the recent advances in mul-

tilevel optimization algorithms [20, 13] we propose a sim-

ple, yet quite generic and very effective approach for signif-

icantly reducing computational costs for many problems re-

quiring low rank matrix approximations, including convex

and non-convex robust PCA models. We exploit the fact

that many problems arising from computer vision and ma-

chine learning applications can be modelled using various

degrees of fidelity. For instance, video frames from a fixed

camera or facial images taken with varying illuminations

are highly correlated and therefore their linear combina-

tions maintain the model’s underlying information. The ba-

sic idea is to construct and solve lower dimensional (coarse)

models for each subproblem and then prolong its solution to

the original problem dimension. We show that using special

restriction and prolongation operators ensure good low rank

approximations. Then we demonstrate our proposed multi-

level low rank approximation technique within both convex

and non-convex models. As several video background ex-

traction and facial shadow removal experiments show, our

multilevel approach can speed up its original method by

several times.

Notations. Throughout the paper, scalars are denoted by

lower-case letters, vectors (matrices) are denoted by lower-

case (upper-case) boldface letters, e.g. x (X). I denotes

the identity matrix with appropriate dimension. The ℓ1 and

ℓ2 norms of a vector x are defined as ‖x‖1 =
∑

i |xi| and

‖x‖2 =
√

∑

i x
2
i , respectively. The matrix ℓ1 norm is de-

fined as ‖X‖1 =
∑

i

∑

j |xij |, where | · | denotes the ab-

solute value operator. The Frobenius norm is defined as

‖X‖F =
√

∑

i

∑

j x
2
ij , and the nuclear norm of X (i.e.,

the sum of singular values of a matrix) is denoted by ‖X‖∗.

The l-th largest (in absolute value) singular value of matrix

X is denoted as σl(X). In algorithm pseudocodes we use

X
(k) (uk) to denote the value of matrix X (scalar u) at iter-

ation k.

2. RPCA Methods

In this section, we present the state of the art methods for

solving the convex and non-convex robust PCA problems.

Note that for both methods, the computational bottleneck

are the SVDs requiring O(rmn) operations each, where r
is the number of required singular values.

2.1. Inexact ALM for RPCA

The problem of representing an input data matrix D ∈
R

m×n as a sum of a low rank matrix L
⋆ and a sparse matrix

S
⋆ can be exactly solved via the following convex optimiza-

tion problem:

min
L,S
‖L‖∗ + λ‖S‖1, subject to D = L+ S, (1)

where λ > 0 is a weighting parameter. A classical approach

for solving (1) is by minimizing its augmented Lagrangian

defined as

L(L,S,Y, µ) = ‖L‖∗ + λ‖S‖1

+ 〈Y,D− L− S〉

+
µ

2
‖D− L− S‖2F ,

(2)

where Y ∈ R
m×n is the Lagrangian variable and µ > 0

is a penalty parameter. (2) can be solved via alternating

directions method, aka solve the problem for each variable

separately at each iteration [16]. In this case each resulting

subproblem has a closed form solution so that the algorithm

iterates as follows:

1. Solve (2) for S with fixed L and Y. This is done by

element-wise soft thresholding the appropriate inter-

mediate matrix, i.e. S
(k+1) = Sλµ−1[D − L

(k) +
µ−1

Y
(k)], where Sτ [M] is the soft thresholding op-

erator defined element-wise [8]:

Sτ [x] = (|x| − τ)+sgn(x). (3)

2. Solve (2) for L with fixed S and Y or equivalently

solve

min
L

{‖L‖∗ +
µ

2
‖M− L‖2F }, (4)

where M = D − Sk + µ−1
Y

(k). This in turn, can

be done in closed form using the singular value thresh-

olding operator Dτ [M] [5], i.e. L(k+1) = Dµ−1 [D −

S
(k+1) + µ−1

Y
(k)], where

Dτ [M] = USτ [Σ]V
⊤, (5)

where M = UΣV
⊤ is the SVD of M.

3. Update Lagrange variables Y and penalty coefficients

µ.

This procedure was dubbed Inexact ALM (IALM) in

[16] and is formally given here in Algorithm 1. Note that for

practical efficiency only a few singular values are computed

as suggested in [16].

2.2. Non­convex RPCA

In a recent paper Netrapalli et al proposed a new method

for recovering a low-rank matrix from sparse corruptions

[22]. Its main idea is to perform alternating projects onto

low rank and sparse matrix spaces. Although these sets are

not convex, projections onto them can be done efficiently
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Algorithm 1 Inexact ALM (IALM)

Input: D ∈ R
m×n

1: for k ← 1 to ... do

2: // Solve argmin
S

L(L(k+1),S,Y(k), µk)

3: S
(k+1) ← Sλµ−1

k

[D− L
(k+1) + µ−1

k Y
(k)]

4: // Solve argmin
L

L(L,S(k+1),Y(k), µk)

5: M←D− S
(k+1) + µ−1

k Y
(k)

6: (U,Σ,V)← SVD(M)

7: L
(k+1) ←USµ−1

k

[Σ]V⊤

8: // Update the Lagrangian variable

9: Y
(k+1) ←Y

(k) + µk(D− L
(k+1) − S

(k+1))
10: Update µk ← µk+1

11: end forreturn (L(k+1),S(k+1))

using the hard thresholding operator Hζ [x], which is ap-

plied on vectors and matrices element-wise, i.e. Hζ [X]i,j =
Xi,j if |Xi,j | ≥ ζ and 0 otherwise. Specifically, solve the

following non-convex problem of finding a low rank plus

sparse matrix decomposition:

min
L

‖D− L‖0, subject to rank(L) ≤ r, (6)

where r is a given upper bound on the rank of low rank

component L⋆. Although the problem in (6) is not convex,

it can provably be solved in linear time under mild condi-

tions. The main steps of the method are given in Algorithm

2, which alternatively solves two sub-problems at each iter-

ation by fixing one variable and solving for the other. The

main difference here is that the arising sub-problems are

constrained with the corresponding non-convex sets, there-

fore hard thresholding is used instead of soft thesholding.

Here SVD(M, l) returns the first l singular values with

corresponding singular vectors. Although Algorithm 2 re-

quires only l singular values at stage l = 1, . . . , r, SVD

operations are still the computational bottleneck.

3. Multilevel Approximate SVD

In this section, we present a simple and yet efficient

method for calculating SVD of a matrix M ∈ R
m×n in-

spired from multilevel optimization algorithms [20, 13].

The main idea is to first create a lower dimensional coarse

matrix and then calculate its SVD, which is then used for

low rank approximations.

As in multilevel optimisation algorithms our method too

uses so-called ”restriction” operators to construct coarse

models. We denote the restriction operator as R and as-

sume that it has linearly independent columns.

Algorithm 2 Alternating Projections (AltProj)

Input: D ∈ R
m×n, target rank r

1: Initialize L
(0) = 0 and S

(0) = Hζ0(D− L
(0))

2: for Stage l← 1 to r do

3: for Iteration k ← 0 to T do

4: // Solve argmin
L:rank(L)≤l

‖D− L− S
(k)‖22

5: M←D− S
(k)

6: (U,Σ,V)← SVD(M, l)
7: L

(k+1) ←UHl[Σ]V⊤

8: // Solve argmin
S:‖S‖0≤ζ

‖D− L
(k+1) − S‖22

9: Update threshold ζ as in [22]

10: S
(k+1) ←Hζ [D− L

(k+1)]
11: if σl+1(L

(k+1)) < ǫ then

12: return (L(T ),S(T ))
13: else

14: S
(0) ← S

(T )

15: end if

16: end for

17: end for

18: return (L(T ),S(T ))

Specifically, for R ∈ R
n×n

2 we use

Rn =
1

4





























α 0 0 . . . 0 0
4− 2α 0 0 . . . 0 0

α α 0 . . . 0 0
0 4− 2α 0 . . . 0 0
0 α α . . . 0 0

. . .
0 0 0 . . . α α
0 0 0 . . . 0 4− 2α
0 0 0 . . . 0 α





























(7)

for some 0 ≤ α ≤ 1 acting as a smoothing parameter. For

instance, when α = 1, Rn is the standard interpolation op-

erator [4], and when α = 0, Rn simply selects every other

column of M.

Often in practice we use more than 2 levels of coarse

models. Specifically, we use a restriction operator R =
RnRn

2
. . .RnH

∈ R
m×nH , where Rk ∈ R

k× k
2 is given as

in (7). For all experiments we used up to the deepest possi-

ble levels, so that nH > r, where r is the number of singular

values required by the overlying algorithm. Clearly, R has

linearly independent columns and thus is full rank, more-

over, without loss of generality we can assume that R has

normalized columns so that ‖R‖2 ≤ 1.

Next, we use the restriction operator R to present our

proposed CoarseSVD method for efficiently calculating ap-

proximate SVDs in Algorithm 3. The basic idea here is to

first apply the restriction operator on M and then perform

SVD on the lower dimensional coarse model.
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Algorithm 3 CoarseSVD

Input: M ∈ R
m×n, R ∈ R

n×nH

1: MH ←MR

2: (UH ,ΣH ,VH)← SVD(MH )

3: return (UH ,ΣH ,VH)

Then after finding a low rank approximation for M, we

”lift” it to the original fine problem dimension. As in mul-

tilevel literature, this is done using the transpose of the re-

striction operator. Proposition 1 characterizes the approxi-

mate SVD after prolongation.

Proposition 1. The prolongation V
H = VHR

⊤ of right

singular vectors satisfies

1. V
H⊤

V
H = RR

T

2. ‖VH
V

H⊤
‖ = ‖R⊤

R‖

3. ‖UHΣHV
⊤
HR

⊤ −M‖ ≤ δ‖M‖,

for a constant δ > 0 and either ‖ · ‖2 and ‖ · ‖F norms.

Proof. The first two results follow directly from the or-

thogonality of VH . The third one is due to the fact that

‖M(RR
⊤ − I)‖ ≤ δ‖M‖, for

δ := ‖RR
⊤ − I‖ ≤ 1. (8)

4. Multilevel Algorithms via Coarse SVD

While both Inexact ALM and Alternating Projections

algorithms are guaranteed to converge to the global op-

tima with strong convergence rates, in practice performing

SVDs still remains a computational bottleneck, especially

for larger problems. To overcome this major obstacle we

propose to instead construct lower dimensional counterparts

for the computationally expensive parts of each algorithm

and use their solutions for finding approximate solutions for

the original fine level problems. In other words, we use the

multilevel low rank approximation technique to accelerate

both convex and non-convex robust PCA algorithms.

4.1. Multilevel Inexact ALM

We begin this subsection by introducing the multilevel

singular value thresholding (ML-SVT) operator defined as

DH
τ [M] = UHSτ [ΣH ]V⊤

HR
⊤, (9)

where MR = UHΣHV
⊤
H is the SVD of the coarse model

MH = MR. Note that the ML-SVT operator (9) requires

a SVD on a m× nH matrix - significantly cheaper than the

m × n for (5). The next theorem shows that the proposed

ML-SVT operator gives a good approximate solution for

problem (4).

Theorem 1. Assuming that ‖R‖2 ≤ 1 and 0 < τ ≤ σH,1,

the ML-SVT operatorDH
τ [M] gives a

σH,1

τ2 (σ1+σH,1−τ)-
approximate solution to the problem (4), where σH,1 is the

largest singular value of MR.

Proof. The proof follows the steps of the proof of Theorem

2.1 of [5] and is given in the Appendix.

Then we can use the proposed ML-SVT operator to solve

the corresponding subproblems of Algorithm (1) resulting

the Multilevel Inexact ALM (ML-IALM) method given be-

low as Algorithm 4.

Algorithm 4 Multilevel Inexact ALM (ML-IALM)

Input: D,S(0),YH,(0) ∈ R
m×n; µ0

1: for k ← 1 to ... do

2: S
(k+1) ← Sλµ−1

k

[D− L
H (k+1)

+ µ−1
k Y

(k)]

3: // Approx solve argmin
L

L(L,S(k+1),Y(k), µk)

4: MH ← (D− S
(k+1) + µ−1

k Y
(k))R

5: (UH ,ΣH ,VH)← SVD(MH )

6: LH ←UHSµ−1 [ΣH ]V⊤
H

7: L
H (k+1)

← LHR
⊤

8: // Continue as in Algorithm 1

9: Y
(k+1) ←Y

(k) + µk(D− L
H (k+1)

− S
(k+1))

10: Update µk ← µk+1

11: end for

We finish this subsection with a remark that the same

approach can be used to extend the Inexact ALM method

for the more general matrix completion problem (Algorithm

6 in [16]). In this case the only difference is that instead of

soft-thresholding, projection onto a simple convex space Ω
is used to update S

(k+1), whereas updates for L(k+1) are

the same and therefore multilevel SVD can be used.

4.2. Multilevel Alternating Projections

We apply the multilevel low rank approximation method

of Algorithm 3 also within the non-convex alternating pro-

jections algorithm. In this case we create coarse models for

subproblems of finding low rank approximations for inter-

mediate matrices M = D− S
(k), solve these subproblems

and lift their solutions to the original fine dimension.

Each iteration of the Alternating Projections algorithm

requires solving

min
L∈Rm×n

‖D− L− S‖2 s.t. rank(L) ≤ l, (10)

which has a closed form solution given by the hard thresh-

olding operator as follows

L̂ = UHl[Σ]V⊤, (11)
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where Hl[x] is the hard thresholding operator and is de-

fined element-wise for vectors and matrices. Therefore, for

this setting we use the hard thresholding operator on the

coarse model to construct an approximate solution for prob-

lem (10) as follows:

L
H = UHHl[ΣH ]V⊤

HR
⊤, (12)

where MR = MH = UHΣHV
⊤ is a SVD of the coarse

model. Notice that the multilevel operator computes SVDs

on much smaller problems than the original algorithm in

this case as well. Then in Theorem 2 we show that the L
H

defined in (12) gives a good approximate solution for prob-

lem (10).

Theorem 2. The multilevel low rank approximation proce-

dure of (12) gives a (σ1 + σH,1)-approximate solution of

the problem (10), where σH,1 is the largest singular value

of MH = MR.

Proof. The proof follows the proof of Eckhard-Young-

Mirsky theorem [11] and is given in the Appendix.

Then we can use (12) inside Algorithm 2 to efficiently

solve the corresponding subproblem. The resulting method

is presented in Algorithm 5.

Algorithm 5 Multilevel Alternating Projections (ML-

AltProj)

Input: D ∈ R
m×n, target rank r

1: Initialize L
H (0)

= 0 and S
(0) = Hζ0(D− L

H (0)
)

2: for Stage l← 1 to r do

3: for Iteration k ← 0 to T do

4: // Approx solve argmin
L:rank(L)≤l

‖D− L− S
(k)‖2

5: MH ← (D− S
(k))R

6: (UH ,ΣH ,VH)← SVD(MH , l)
7: LH ←UHHl[ΣH ]V⊤

H

8: L
H (k+1)

← LHR
⊤

9: // Continue as in Algorithm 2

10: Update threshold ζ as in [22]

11: S
(k+1) ←Hζ [D− L

H (k+1)
]

12: if σl+1(L
H (k+1)

) < ǫ then

13: return (LH (T )
,S(T ))

14: else

15: S
(0) ← S

(T )

16: end if

17: end for

18: end for

19: return (LH (T )
,S(T ))

5. Experiments

To test the practical efficiency of the proposed methods

we compare them with the standard Inexact ALM [16]and

Alternating Projections [22] algorithms on several real life

video background extraction and facial shadow removal

problems. For the standard Inexact ALM and Alternat-

ing Projections algorithms we used the provided Matlab

code. Then for each multilevel variant we replaced the

standard low rank approximation parts of respective algo-

rithms with corresponding multilevel low rank approxima-

tion code, keeping the rest of the algorithms unchanged.

Particularly, we used the same optimality criteria, so that

the comparisons are fair. All methods were tested in Matlab

R2015a on a standard desktop machine with Intel Core i7

processor and 32GB RAM.

5.1. Video Background Extraction

First, we test the algorithms on real surveillance videos.

Assume we are given a surveillance video from a fixed cam-

era and the task is to separate the constant background from

moving objects. This problem can be modeled as (convex

or non-convex) RPCA [3]. We first stack each frame of the

video as a column vector creating a data matrix D. Then,

since the fixed background remains (approximately) con-

stant in each frame and the moving objects take a relatively

small portion of each frame, they can respectively represent

the low rank and sparse components of the RPCA decom-

position. We tested all algorithms on 4 surveillance videos

described below:

• highway: 48× 64× 400; run 2 seconds

• copy machine: 48× 72× 3400; run 50 seconds

• walk: 240× 320× 794; run 50 seconds [28]

• gates: 240× 320× 1895; run 200 seconds [28]

The results are reported in Figure 1. Each row represents

a tested video. The first column contains sample frames

from each corresponding video, then each of the following

column triplets contains corresponding low rank and sparse

components as returned from IALM and ML-IALM and

ML-AltProj algorithms. We run IALM and ML-IALM for

the same fixed time and ML-IALM until convergence with

10−7 error for reference. Below each frame we also re-

port the corresponding achieved rank and the feasibility gap

(FG) i.e. ‖D− L
⋆ − S

⋆‖F /‖D‖F . As the results indicate,

all algorithms produce similar results for all videos, except

copymachine, for which ML-IALM produces significantly

clearer separation of background than IALM. This is be-

cause copy machine has largest number of frames relative

to the frame dimension.

We do not present frame samples from AltProj since it

returns visually similar values to ML-AltProj. In this case,
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Original
Low Rank Sparse

IALM ML-IALM ML-AltProj IALM ML-IALM ML-AltProj

highway rank =5 3 1 FG = 0.0176 0.01 3.6 · 10−4

copy machine rank = 7 4 1 FG = 0.0364 0.0031 2.8 · 10−4

walk rank = 2 1 1 FG = 0.02 0.0231 4 · 10−4

gates rank = 3 3 2 FG = 0.05 0.04 2.8 · 10−4

Figure 1: Examples from solving video background extraction problems via IALM, ML-IALM and ML-AltProj methods.

IALM and ML-IALM run for a fixed CPU seconds, while ML-AltProj is given for reference and runs until convergence

error 10−7. Each row corresponds respectively to highway (48 × 64 × 400), copy machine (48 × 72 × 3, 400), walk

(240× 320× 794) and gates (240× 320× 1, 895) videos from top to bottom. With each frame we also report the respective

rank of the low rank component and the feasibility gap (FG): ‖D− L− S‖F /‖D‖F .

Problem AltProj ML-AltProj

highway 7 3 (2 levels)

copy machine 54 12 (8 levels)

walk 467 261 (6 levels)

gates 744 354 (8 levels)

Table 1: CPU times (in seconds) after solving video back-

ground removal problems up to tolerance 10−7 using the

standard non-convex alternating projections algorithm and

its multilevel variant.

we ran each algorithm until the same optimality error and

report CPU times (in seconds) in Table 1. In all experi-

ments we used up to 4-7 levels of coarse models (more for

larger problems). In this case as well, the multilevel vari-

ant largely outperforms the original algorithm. In fact, the

larger the original problem, the bigger relative speed up can

be achieved using the multilevel approach, since for larger

n we can use deeper levels.

For further investigation of the convergence properties

of IALM and AltProj algorithms compared to their multi-

level variants, we measure the relative error of the current

iterates compared to the ground truth (L0,S0) and FGs dur-

ing the iterations of both standard and multilevel algorithms

through the same time interval. We report those relative er-

rors against CPU time (seconds) and iteration numbers in

Figure 2.

The plots suggest that ML-IALM performs only slightly

faster than IALM on the smaller highway example, how-

ever, as expected it is significantly faster on the larger copy

machine and gates problems. As we could anticipate from

the theory, at each iteration ML-IALM achieves a very

good approximation as measured by the reconstruction er-

ror, and since its iterations are significantly cheaper, it per-

forms more iterations during the same time interval than

IALM. We also report the results of running AltProj and

ML-AltProj methods on the walk problem. The results are

very similar to those observed in the convex model. ML-

AltProj decreases the relative errors much earlier during the

iterations and has significantly cheaper per iteration com-

plexity.

5.2. Shadow Removal from Facial Images

Here we have a set of facial images from one or more

individuals under various illuminations and the task is to re-

move shadow/light noises from images. We used images of

individuals from the Yale B facial extended database [10].

It contains (96× 84) facial images of 39 subjects taken un-

der various poses and illuminations each, with total 2, 414
images.
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Figure 2: Comparing the relative errors during IALM, ML-IALM, AltProj and ML-AltProj iterations. The first two columns

give relative errors compared to the ground truth (L0,S0), and the third column gives FGs during iterations. Each row

corresponds respectively to highway (48× 64× 400), copy machine (48× 72× 3, 400), walk (240× 320× 794) and gates

(240× 320× 1, 895) videos from top to bottom.

For this setting as well we test the multilevel SVD

plugged into both IALM and AltProj methods. We ran both

IALM and ML-IALM algorithms for 5 second and compare

the returned results. While AltProj and ML-AltProj run un-

til convergence with 10−7 error. The results are reported

in Figure 3. Here as well each row represents a particu-

lar database (individual). The first column contains sam-

ple frames from each corresponding facial database, then

each of the following four columns contains correspond-

ingly low rank and sparse components as returned from

Inexact IALM, ML-IALM, AltProj and ML-AltProj algo-

rithms. With each image we also report the corresponding

achieved rank of the low rank component and the FG.

In order to compare the multilevel approach for the non-

convex problem, we report the results after running AltProj

and ML-AltProj algorithms until achieving convergence er-
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Original
Low Rank Sparse

IALM ML-IALM AltProj ML-AltProj IALM ML-IALM AltProj ML-AltProj

Yale B01 rank = 5 10 10 10 FG = 0.24 0.05 4 · 10−4 10−4

Yale B02 rank = 5 10 10 10 FG = 0.24 0.05 4 · 10−4 10−4

Yale B10 rank = 3 10 10 10 FG = 0.24 0.05 4 · 10−4 10−4

Figure 3: Examples from solving facial shadow removal problems via IALM, ML-IALM, AltProj and ML-AltProj algorithms

on cropped Yale B database (96× 84× 2414). We run both IALM and ML-IALM for fixed five seconds, while AltProj and

ML-AltProj run until convergence with 10−7 error. With each image we also report the respective rank of the low rank

component and the feasibility gap (FG): ‖D− L− S‖F /‖D‖F .

Problem AltProj Ml-AltProj

Yale B01 38.8 15.3
Yale B02 39.1 15.2
Yale B10 37.4 16.8

Table 2: CPU times (in seconds) after solving shadow re-

moval problems up to a fixed tolerance using the standard

non-convex alternating projections algorithm and its multi-

level variant. For all experiments we used 2 levels for the

multilevel algorithm.

ror 10−7 and record CPU times (seconds). The results are

reported in Table 2. In all experiments we used up to 3
levels of coarse models. In all experiments the multilevel

algorithm is more than twice faster than its standard coun-

terpart.

6. Discussion

In this paper we presented an approximate multilevel di-

mension reduction method for efficient SVD calculations.

We showed that the multilevel algorithms are theoretically

good approximations to the original problem, and more-

over, in practice they are significantly faster as demon-

strated within convex and non-convex RPCA models. Fi-

nally, its applications can be extended further to other SVD

based methods, such as RASL [25] and matrix comple-

tion [7]. More interesting application of multilevel methods

would be their application to tensor decomposition prob-

lems (see [15] and references therein).
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benchmark dataset for outdoor foreground/background ex-

traction. In Asian Conference on Computer Vision, pages

291–300. Springer, 2012. 5

[29] L. Vandenberghe and S. Boyd. Semidefinite programming.

SIAM review, 38(1):49–95, 1996. 1

[30] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma. Tilt: Transform

invariant low-rank textures. International Journal of Com-

puter Vision, 99(1):1–24, 2012. 1

544


