
 

 

 

Abstract 

 

This paper introduces Conditional Regressive Random 

Forest (CRRF), a novel method that combines a closed-

form Conditional Random Field (CRF), using learned 

weights, and a Regressive Random Forest (RRF) that 

employs adaptively selected expert trees. CRRF is used to 

estimate a depth image of hand given stereo RGB inputs.  

CRRF uses a novel superpixel-based regression framework 

that takes advantage of the smoothness of the hand’s depth 

surface. A RRF unary term adaptively selects different 

stereo-matching measures as it implicitly determines 

matching pixels in a coarse-to-fine manner. CRRF also 

includes a pair-wise term that encourages smoothness 

between similar adjacent superpixels. Experimental results 

show that CRRF can produce high quality depth maps, even 

using an inexpensive RGB stereo camera and produces 

state-of-the-art results for hand depth estimation. 

1. Introduction 

Recently there has been surging interest in virtual and 

augmented reality devices [2, 4] that has in turn prompted 

research into natural approaches for interacting with such 

systems, e.g. hand gesture. While human body pose 

estimation from RGBD data may be considered a solved 

problem, open challenges remain for estimating hand pose 

as hands exhibit a high degree of self-occlusion and greater 

variation in orientation relative to the camera [22, 23]. We 

argue that the key to natural gestural interaction with next 

generation devices is robust hand pose estimation. An 

important design criterion for a hand pose estimation 

approach is the type of imaging sensor employed.  RGBD 

sensors are a popular choice, as depth-based input provides 

good shape information, robustness to clutter and changes 

in ambient conditions.  Using the depth channel, inference 

algorithms can be developed to estimate the hand pose [22, 

23]. Despite the successes of such approaches, depth 

channel data capture poses several limitations, including 

poor form factor in egocentric applications, large energy 

consumption, poor near distance coverage, and inferior 

performance outdoors. Therefore, in this paper we focus 

instead on RGB data capture.  By acknowledging that a 

single RGB camera does not provide enough shape and 

structure information, we focus on a stereovision technique 

using two cameras.   

The goal of our research is to extract robust hand depth 

information from stereo RGB inputs as a precursor to hand 

pose estimation. Depth estimation from two views has a 

long and rich history in computer vision, and fundamentally 

relates to establishing correct correspondences between 

images.  However, the recovery of hand depth provides 

unique challenges that differentiates the problem from 

depth recovery of arbitrary scenes as expressed in [9]. 

Unlike generic scene depth estimation, there is significantly 

less texture in hand depth estimation, which makes stereo 

matching substantially more challenging. There is also high 

tendency of self-occlusion which manifests in changes in 

depth that might not reflect in a change in texture. For 

example, the occlusion of a finger on the palm will yield a 

change in depth but the color and the texture of the region 

of occlusion might remain largely unchanged as the color 

of the skin might be consistent (whether on the finger or on 

the palm region). This necessitates a new hand-specific 

depth estimation technique to outperform generic stereo 

matching algorithms. 

Whilst recovery of hand depth provides unique 

challenges, the fact that the depth recovery task will only 

apply to a class of object (hand) means that stereo matching 

constraints can be learnt using a machine learning approach 

and tested on similar surfaces. This is particularly useful as 

we can better establish the matching criteria that can 

achieve the best stereo matches and hence disparity since 

we know the typical structure of the “scene” for which we 

are going to be estimating depth. In this work, we do not 

implement gesture recognition, instead we solely focus on 

recovering accurate depth. The proposed technique also 

relies on a robust hand segmentation procedure. We do not 

address hand segmentation in this paper as there is a large 

body of literature on this subject (see, for example, [7, 8]). 

This paper proposes a novel, data-driven Conditional 

Regressive Random Forest (CRRF) framework.  CRRF 

learns the mapping between a stereo image pair and high 

quality ground truth depth measurement. In so doing, we 

present an innovative combination of Regressive Random 

Forest and Conditional Random Fields to model this 

mapping. A major contribution of this research is the use of 

a machine learning framework to combine various stereo 
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matching criteria (multiple cost functions and window 

sizes) with the aim of implicitly determining stereo 

correspondences.  Unlike conventional CRF methods that 

require iterative solutions, we derive a closed form solution 

to CRRF inference. We note our CRRF framework has 

much wider application, particularly to problems that can 

be posed using graph theory. 

2. Related Work 

The computer vision literature includes numerous 

methods of depth estimation, but for conciseness we focus 

on the most related approaches. Stereovision is based on the 

physical concept of stereopsis. This specifies that given the 

view of a scene from two perspectives, the shift undergone 

by corresponding pixels in both images varies such that it 

is inversely proportional to the distance from the camera. 

Hence the problem of depth recovery given a pair of images 

is reduced to establishing correct correspondences between 

both images. The Middlebury website [6] contains a large 

collection of stereo match algorithms and cost functions, as 

well as a test-bed for relative comparison.  

Depth recovery from a single image is proposed in [18-

20], modelling the depth estimation as a Markov Random 

Field (MRF) learning problem. The success of Deep 

Learning in computer vision has prompted recent 

approaches to model the problem with Convolutional 

Neural Networks (CNNs) [21]. While showing much 

promise, work to date has lacked stronger geometric 

features (like stereoscopic information) highly correlated 

with depth. A closely related technique to ours is [5], where 

a data-driven approach has been taken to develop a near-

infrared based depth camera. In this study, a two-layered 

Random Forest framework was used to establish the 

mapping between near infrared images of a scene consisting 

of articulated hand poses captured from modified RGB 

cameras to actual depth. While this is a unique and 

relatively inexpensive technique, it suffers from ambient 

infrared radiation (e.g., when used in an outdoor scene). In 

addition, it requires nontrivial hardware modifications.  

Our work is also related to [9], where the prediction of joint 

locations that are prominently modelled with a Random 

Forest is conditioned on global variables (like torso 

orientation). A major difference is that we explicitly 

combine Random Forest and Conditional Random Fields. 

To the best of our knowledge, the closest approach in 

literature is [10], which attempts to solve the problem of 

multiclass object recognition and segmentation by 

modelling perceptual organization (e.g., surrounding pixels 

are correlated) and context-driven recognition (e.g., that 

establishing an object is in the scene may indicate that 

another object will be in the scene) using a CRF. CRF 

inference in [10] is achieved using the Swendsen-Wang cut 

algorithm that iterates Metropolis-Hastings jumps. These 

approaches differ to ours in that we adaptively combine 

prediction from the trees using the unary term of our CRRF 

whilst the pairwise term maintains spatial pixel depth 

constraints. Also, we present a closed form solution to 

inference on our Conditional Random Regressive Forest.  

Figure 1: An illustration of the proposed approach.  First the reference stereo image is segmented into superpixels. Using

different window sizes and cost functions we compute the disparity cost along the epipolar line in the corresponding image.

This cost is concatenated to generate a feature signal that is fed into a Regressive Random Forest. Posterior probability

distributions from the trees are combined using the matrix, ࡭ (the defining component of the unary term of our CRRF model).

The similarity measure between neighboring superpixels is multiplied with ࢼ to yield the pairwise term. The CRRF resolves 

a closed form solution ࢟∗ that maximises Eq. 11. 
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This contrasts with earlier approaches like [10] that apply 

an iterative approach to achieving inference. Another work 

that bears similarity to our approach is [17], where the task 

of facial feature localization is addressed with regression 

random forest conditioned on the head pose. Like our 

approach, training samples are partitioned in to a subset 

based on an auxiliary parameter (that describes the head 

orientation) and each tree is exposed to a subset. Then at 

test time, the probability of the auxiliary parameter given a 

facial image is used to modulate the voting probability from 

each tree for feature location. There has been a recent 

increase in interest in hand pose estimation, with several 

techniques proposed, particularly those working with data 

captured from active depth sensors or monocular cameras 

[3], [22] and [23].  However, less work has been done on 

hand pose recovery based on stereo images [15] and [16]. 

We contribute to this area by developing a machine learning 

framework that recovers depth from stereo.  

3.  Overview of Conditional Regressive Random Forest 

Our method recovers a high-quality depth image from 

two stereoscopically acquired images of the hand.  Our 

dataset captures the hand in a variety of poses. Figure 1 

shows an overview of the approach. First, we segment the 

reference stereo image1 into superpixels using SLIC [24]. 

For every hand superpixel, we compute its stereo matching 

cost with all potentially matching pixels along the epipolar 

line in the corresponding image. We apply five different 

matching cost functions. Each of the stereo matching cost 

functions is applied under varying window sizes that are 

centered on the centroid of the superpixel, and on the 

potentially matching pixels in the corresponding stereo 

pair. The matching cost values that are computed across all 

combinations of cost function, window size and potentially 

matching pixel are concatenated to a single feature vector. 

Henceforth we will refer to this vector of features as the 

matching-cost feature vector. Note that we do not attempt 

to identify matching pixels explicitly; we simply compute 

the matching-cost feature vector (for each superpixel). In 

addition, we extract features that relate to the hand in the 

                                                           
1 The reference stereo image is one of the two images in the pair.  For 

each pixel in the reference image, we seek a correspondence in the other 

scene. These features primarily represent how far away the 

entire hand is from the camera, texture, and the color of the 

skin. We refer to this as the holistic hand feature vector.  

A Regressive Random Forest (RRF) is trained to regress 

for the depth of a superpixel based solely on its matching-

cost feature, however, each tree in the RRF is exposed to a 

subset of the training data based on its holistic hand feature. 

Finally, we use a CRF to combine the predictions from each 

whilst constraining for smooth depth surface prediction. 

4. Conditional Random Field and Random Forest 

For ease of presentation, vectors and matrices are 

denoted with a boldface lowercase and uppercase 

respectively. Vector and matrix transpose are denoted with 

an upper script T, as in	{}். Unless explicitly specified, all 

vectors are assumed to be column vectors e.g. ࢖ ௫݌	ൣ= 	, ,	௬݌  A vector whereby of its entries is one is	௭൧்.݌

denoted as ࢏, whilst ࡵ denotes the identity matrix.  

For a given reference image, z, and its corresponding 

stereo image, z’, we denote a hand superpixel in z as	ݔ௝ ∈൛ݔଵ, … ,  .௝࢜	௃ൟ and the centroid pixel of the superpixel asݔ
For each	࢜௝, we define a search space of W potentially 

matching pixels,		࢜௝,௪ ∈ ൛࢜′௝,ଵ, … , ௝,ௐᇱ࢜ ൟ located in z’.  We 

then compute ࢉ௞,௚൫࢜௝൯ = [	 ௞݂,௚൫	࢜௝, ,ᇱ௝,ଵ൯࢜ … , ௞݂,௚ሺ	࢜௝, ,[ᇱ௝,ௐሻ࢜ ሺͳሻ 
where fk,g is the resulting cost from using the ݇th matching 

cost function,  and ݃th window size. We 

concatenate	ࢉ௞,௚ሺ࢜௝ሻ for all combinations of k and g to get 

a single matching-cost feature vector. Hence for each 

superpixel, ݔ௝, given that ݇ ∈ {ͳ, . . ݃ and {ܭ ∈ {ͳ, . .  the ,{ܩ

corresponding matching cost feature will be ࢉ௝ ∈ ℝ୒ 

where	ܰ = ܹ ∗ ܩ	 ∗  Note that W, G and K are the .ܭ

number of pixels in the search space, the number of window 

sizes, and the number of matching cost functions 

respectively. Where the ground truth depth at the centroid 

pixel,	࢜௝, is	 ௝݀, we denote the regression dataset 

as	{ሺ݀ଵ, ,ଵሻሺ௭ሻࢉ … , ൫݀௃ ,  ௃൯ሺ௭ሻ} for all Z stereo image pairsࢉ

collected over different hand poses and subjects.    

image. Hence a resulting disparity image registers perfectly with the 
reference stereo image. 

Figure 2: An illustration of the unary potential when T = 240, D = 500 and H = 6. This illustrates how A weighs the posterior

probability, ࢐ࡼ, from the trees using ࢎ to give a final probability distribution. 
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4.1. Expert Random Forest 

 Decision trees were grown by recursively splitting and 

passing training data based on matching-cost features. The 

intuition is that the trees implicitly learn how to adaptively 

select the window size and type of cost function based on 

different tree split levels. This is analogous to adaptively 

determining the size of the window and type of cost 

function to use at different stages of a coarse-to-fine 

approach to searching for pixel correspondence. The 

entropy decreases moving through each tree from the root 

to the leaf nodes. Expert Trees: As previously stated, 

holistic hand features (features that describe the entire 

hand), are additionally computed. This step is motivated by 

the significant effect that skin color and the overall distance 

of the hand have on the matching-cost features. 

Consequently, establishing a stereo-matching criterion (i.e., 

matching cost, window size, etc.) that works effectively 

across different skin tones and hand depth levels is a 

difficult task. To this end, all the stereo image pairs are 

clustered into classes based on their holistic hand features. 

Each tree in the RRF is trained by bagging from only one 

of the classes, making it an expert at regressing the depth 

for that class. Thus, a tree may be expert at predicting the 

depth of superpixels in a darker-toned hand that is closer to 

the camera, whilst another may specialize in lighter-toned 

hands that are farther away. See Section 5.2 for more detail 

on holistic hand features. When predicting the depth of an 

unseen stereo pair with a holistic hand feature, the CRF 

framework, discussed in the next subsection, ensures that 

more emphasis is placed on prediction from expert trees 

with similar holistic hand features than to others. 

4.2. Conditional Regressive Random Field 

This section describes the CRRF framework (using the 

same notation). Consider a new stereo image pair, with a 

holistic hand feature vector, h, whose superpixels’ depths 

are to be predicted using the trained RRF. For a single 

superpixel, ݔ௝, each RRF tree, t, produces a posterior 

probability distribution,	݌௧൫ ௝݀หࢉ௝ሻ. We discretize this 

distribution by quantizing the depth values into D finite 

values. This yields a probability vector,	࢖௧,௝ ∈ ℝ஽ 	that is 

then consolidated across all the T trees into	ࡼ௝ ,ଵ,௝࢖		]= ଶ,௝࢖	 [௝,்࢖		… ∈ ℝ஽×்.  We model the probability of ௝݀ given the reference stereo image and trained RRF, ܲ൫ ௝݀หࡼ௝,  ൯, as a CRF model. Conventionally a CRFࢎ

formulates conditional probability as a product of 

potentials, that is  Prሺܽ|ܾሻ = ͳܼሺܾሻෑexp	ሺɸ௜ሻ௜ = ͳܼሺܾሻ exp ൥෍ሺɸ௜ሻ௜ ൩ , 	ሺʹሻ	 
where ܼሺܾሻ is the partitioning function, and ɸ௜ are 

potentials. [12] Inspired by [13], the potentials in our 

framework take the form of a unary	ܧ௎ and a pairwise 

term	ܧ௉. The conditional probability is approximated 

because of the intractable nature of	ܼሺܾሻ in our framework,   Pr෪൫ࢊ௝หࡼ௝ , ൯ࢎ = exp ൥෍ሺɸ௖ሻ௖ ൩ = exp[ܧ௎ [௉ܧ	+ , 					ሺ͵ሻ 
where Pr෪	denotes an unnormalized probability distribution. 

This approximation will suffice because the objective is to 

estimate the depth level with the maximum probability. 

Hence, the probability of the predicted depth probability for 

all superpixels given	ࡼ௝	and the image’s holistic hand 

feature, h, is represented as the exponent of sums of both 

potentials. While the unary term aims in yielding a 

conditional probability distribution that maximizes the 

probability of the true depth level, the pairwise term 

encourages neighboring superpixels to have a similar 

posterior probability distribution. 

Unary Potential: The unary term predicts the depth level 

of a superpixel based on its posterior distribution from the 

RRF trees and the holistic hand feature. To this end a unary 

weighting matrix, ࡭ ∈ ℝ்×ு, is introduced, which weighs 

the posterior from each tree based on	ࢎ ∈ ℝு.  This is 

important because expert trees are trained, as opposed to 

randomly bagged trees. The ࡭ matrix provides weights to 

trees depending on the holistic hand feature. Hence it places 

varied emphasis on the predictions from different trees. 

Taking inspiration of the Bhattacharyya metric [15], we 

formulate ܧ௎ as an affinity measure between true depth 

probability, ෝ௝்࢖  and the predicted probability, ࡼ௝ટࢎ as in, 

௎ܧ = ͳܬ ෍൥࢖ෝ்௝	ࡼ௝ટࢎ࡭்࢏ࢎ ൩.																														ሺͶሻ௃
௝ୀଵ 		 

This is accumulated across all superpixels in the reference 

stereo image. The denominator in Eq. 4 ensures that ࢐ࡼટࢎ 

remains normalized. The surface plot in Figure 3 shows 

Figure 3: A surface plot of the matrix A, used to weigh the

expert trees based on the holistic hand feature.  A higher

value indicates more weight.  Consider a hypothetical

holistic hand feature vector, [0, 0, 0, 1, 1, 1], which when

post-multiplied with A will give less weighting to trees 40

to 80 and 160 to 200 based on their lower values (bluer

colors). 
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how the different entries of A vary relatively. Figures 2 and 

3 give an illustration of the weighting ability of A. The 

peaks indicate strong relationship between entries of h and 

the tree index. Studying both figures, consider a 

hypothetical example where ࢎ = 	 [Ͳ	Ͳ	Ͳ	ͳ	ͳ	ͳ]்.  In this 

case, the holistic hand feature vector will weigh the 

prediction from the 240 trees based on the last three 

columns of	࡭, thereby giving less weighting to trees 40 to 

80 and trees 160 to 200. 

Let ࢟ෝ 	= 	 ,ෝଵ୘࢖] ,	ෝଶ୘࢖ … , [ෝ௃୘࢖ ∈ ℝሺ஽∗௃ሻ  be a vector 

resulting from the concatenation of the actual probability 

distribution of all hand region superpixels and let ࢅ	 ,	ଵࡼൣ	= ,ଶࡼ … , ௃൧୘ࡼ ∈ ℝሺ஽∗௃ሻ×்		be the matrix whose row 

vectors are the concatenation of the predicted probability 

distribution from each tree. Then the unary potential in Eq. 

4 can be rewritten for all superpixels in a single stereo 

image, z in matrix form as follows:  ܧ௎ = ͳ࢟ࢎ࡭்࢏ܬෝ்ࢅટࢎ.																																						ሺͷሻ 
The larger ܧ௎ becomes, the more similar the consolidated 

predicted probability, ࡼ௝ટࢎ, is to the true depth 

probability, ෝ௝்࢖ . 

Pairwise Potential: The pairwise potential enforces the 

constraint that adjacent superpixels often possess similar 

depth and hence similar probability distributions. This is 

based on the smooth nature of the depth of the hand surface. 

Similar to [13], a visual similarity measure between 

neighborhood superpixels is established to apply an 

adaptive depth similarity constraint. Specifically, 

neighbouring superpixels that appear dissimilar in terms of 

color, texture, and size will have a weaker pairwise 

potential encouraging similar predicted depth. This is 

particularly intuitive in a self-occluded scenario. The 

discontinuity in texture resulting from a finger occluding 

the palm, for example, will indicate that less smoothness 

constraint is placed on neighbouring superpixels that exist 

on the edge of the finger and the palm. To achieve this 

behavior, a similarity vector, ࢙௝,௞ = ቂݏ	௝,௞	ሺଵሻ , … , ሺொሻ	௝,௞	ݏ 	ቃ, is 

introduced, and a pairwise weighting, ࢼ ∈ ℝொ. For a pair of 

neighbouring superpixels, ݔ௝ and	ݔ௞, Q superpixel 

similarity measures are computed between them (more 

details on the superpixel similarity measures are presented 

in Section 5.2). We specify our pairwise potential as: ܧ௉ = ͳ|ܷ| ෍ ௝,௞்࢙ࢼ ෝ௝ሺ௝,௞ሻ∈୙࢖ෝ௞୘࢖	 ,																										ሺ͸ሻ 
where U is a set of all possible pairs of neighbouring hand 

superpixels. Subsequently, the pairwise potential is a 

measure of the affinity of the probability of all pairs of 

neighbouring superpixels, and  ࢼ୘࢙௝,௞ determines the 

contribution of each pair of superpixels to this measure.  

Let ۰ ∈ ℝ௃×௃ be a matrix such that, its elements are given 

by  

௝௞࡮ ሺ͹ሻ																																									௝,௞۷,࢙୘ࢼ	=                  

and zeros everywhere else. ࡵ is a D×D identity matrix. 

With this matrix, the pairwise potential in Eq. 6 can be 

represented in matrix form as: ܧ௉ = 	 ͳ|ܷ|	࢟ෝ୘࢟࡮.ෝ 																																						ሺͺሻ 
A resulting depth image with high level of smoothness will 

yield a large pairwise potential,	ܧ௉ and vice versa. 

Complete CRRF: At this stage, both potentials, unary and 

pairwise, have been established and that, the higher they 

are, the smoother and the more accurate the predicted depth 

becomes. Eqs. 3, 4 and 6 are combined to result in  

Pr෪ሺࡼ|࢟, ሻࢎ = exp ቎ͳܬ ෍ቈ࢖ෝ௝்ࡼ௝ࢎ࡭்࢏ࢎࢡ ቉௃
௝ୀଵ 		

+ ͳ|ܷ| ෍ ఫෞሺ௝,௞ሻ∈௎࢖	௞ෞ୘࢖	௝,௞்࢙ࢼ ቏,														ሺͻሻ 
for a single stereo image pair. In this unified framework, the 

aim is to maximize Eq. 9 based on ࡭ and	ࢼ. For all stereo 

images in the training set, z, the framework attempts to 

maximize	∑ log Pr෪൫࢟ሺ௭ሻหࡼሺ௭ሻ൯௭ . Formally, 

max࡭ஹ૙,ࢼ෍logPr෪൫࢟ሺ௭ሻหࡼሺ௭ሻ൯௓
௭ୀଵ + ሺͳߣ −  ሺͳͲሻ																					ሻ,ࢼ୘ࢼ

 

where ߣ is the decay weight on the constraint with ࢼ 

maintaining a unit length and 

log Pr෪ሺࡼ|࢟, 	ሻࢎ = ͳܬ ෍ቈ࢖ఫ்෢ࡼ௝ࢎ࡭்࢏ࢎࢡ ቉௃
௝ୀଵ 		

+ ͳ|ܷ| ෍ ௝,௞்࢙ࢼ ఫෞሺ௝,௞ሻ∈୙࢖	௞ෞ୘࢖	 .															ሺͳͳሻ 
During optimization, we ensure that all the entries of ࡭ are 

positive, so that ࢎࢡ࢐ࡼ represents a probability. With the 

aim of solving for Eq. 10, stochastic gradient ascent is 

applied using the partial derivative of Eq. 11 with respect to ࡭ and	ࢼ. ߲൛log Pr෪ሺࡼ|࢟, ࡭ሻൟ߲ࢎ 																																																																													 
= ͳܬ෍ࡼ௝் ሻࢎ࡭்࢏ሺ்ࢎఫෞ࢖ − ൫࢖ఫෞ்ࡼ௝ࢎ࡭൯[ࢎ࡭்࢏]்ࢎ࢏૛௃

௝ୀଵ 			ሺͳʹሻ 
and ߲{log Pr෪ሺࡼ|࢟, ࢼ߲{ሻࢎ = 	 ͳ|ܷ| ෍ ௝,௞்࢙	 ௞ෞ୘ሺ௝,௞ሻ∈௎࢖	ఫෞ࢖		 .								ሺͳ͵ሻ 
We randomly initialize ࡭ and	ࢼ, and iteratively update 

accordingly. See Section 5.4 for details. 
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4.3. Prediction 

Having established ࡭ and	ࢼ, predicting the posterior 

probability for new stereo pairs involves solving the 

Maximum a Posteriori inference on Eq. 9. To achieve this, 

the matrix representations of ܧ௉ and ܧ௎ are used in Eq. 5 

and Eq. 8 resulting in  Pr෪ሺࡼ|࢟, ሻࢎ = exp ቂ ଵ|௎|࢟୘࢟࡮ + ଵே  ቃ.           (14)ࢎટࢅࢀ࢟

The aim is to determine ࢟ that maximizes	Pr෪ሺݔ|࢟ሻ for a 

pre-computed ࡭ and	ࢼ pair. ࢟∗ =	argmax௬ Pr෪ሺࡼ|࢟, ሻࢎ = argmax௬ ଵ|௎|࢟୘࢟࡮ + ଵே    ࢎટࢅࢀ࢟

    (15) 

This is easily derived in closed form by solving for the 

zeros of the second derivative. Formally, ࢟∗ =	 |௎|ே ۰ି૚ࢅટࢎ.																																			ሺͳ͸ሻ   ࢟∗ represents the concatenated predicted depth probability 

for all superpixels in an image. The predicted depth level 

for a superpixel is the depth with the maximum depth 

probability. 

5. Implementation Details 

5.1. Registering reference stereo to RGBD camera 

   To establish a database of strong registration between the 

pairs of data, image and depth acquisition were carried out 

on both the stereo camera and a RGBD camera, almost 

adjacently positioned. Using camera calibration [14], depth 

data from an RGBD sensor was registered to the left image 

of the RGB pair. This allows {ሺ݀ଵ, ,ଵሻሺ௭ሻࢉ … , ൫݀௃ ,  ௃൯ሺ௭ሻ} toࢉ

be established for all captured instances of stereo pairs, z.       

5.2. Extracted Features 

 Matching-cost Features, ࢐ࢉ: our implementation used 

five matching cost functions: Sum of Absolute Difference 

(SAD), Sum of Squared Differences (SSD), Normalized 

Cross Correlation (NCC), Quantized Census (QC), and 

Zero-mean Sum of Absolute Differences (ZSAD). The 

reader is referred to [1] for details on these cost functions. 

These cost measures were chosen because of their 

prominence, computation cost and simplicity. Each of the 

cost functions were applied under three window sizes:	[͹ ×͹],	[ͳͳ × ͳͳ], and	[ͳͷ × ͳͷ].  
Holistic Hand Features, h: For each captured instance of 

stereo pairs three main factors are focused on in describing 

the scene. First, the average intensity value of all hand 

region pixels across all three-color channels is considered. 

This quantifies the skin tone. Second, the aggregative shift 

of all hand pixels in the reference stereo camera compared 

to the other stereo camera is computed. This quantifies how 

far away the hand is from the camera, representing the 

difference in the average pixel’s position for hand region 

pixels in both cameras. Last, we compute the ratio between 

the numbers of hand and non-hand region pixels. This 

R
ef

er
en

ce
 

Im
ag

e 

G
ro

u
n

d
 

T
ru

th
 

C
R

R
F

 

(P
a

ir
w

is
e 

+
 U

n
a

ry
) 

R
R

F
 +

 

U
n

ar
y
 

R
R

F
 (

w
it

h
 

H
o

li
st

ic
 

F
ea

tu
re

) cm 

S
G

M
 

Figure 4: Qualitative Results using real captured poses. The reference image of the stereo pair is shown in the 1st row and 

the corresponding ground truth depth is presented in the 2nd row. The results from our full technique are presented in the

3rd row. Results from solely using the unary term with RF are in the 4th row, while recovered depths from RF are presented 

in the 5th row.   
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quantifies the size of the hand (if considered relatively to 

the aggregative shift). This analysis resulted in a six-

dimensional holistic hand feature vector (3 color channels 

values, 2 vector shift values, and 1 ratio of pixels in the hand 

vs. non-hand regions).  

Superpixel Similarity Measure,	࢙௝,௞: To quantify 

similarities of two neighboring superpixels, four measures 

were used. The first measure is the difference in the average 

LAB color of both superpixels. The second is the difference 

in the Local Binary Pattern. The third measure is the 

difference in the standard deviation of pixels’ values in 

LAB color. Finally, we examine the summed difference in 

histogram. In each of these cases, the exponent of the 

negative Euclidean norm is applied to the resulting 

difference. For instance, the LAB difference is 	࢙௝,௞ሺଵሻ  ௝௅஺஻ is the average LAB value for࢙ ೖಽಲಳ||, where࢙	ೕಽಲಳି࢙||ି݁=

superpixel ݔ௝. This yields a similarity measure vector with 

a length of four or	ܳ	 = 	Ͷ.  

5.3. Data and Training 

Using the setup described above, 500 instances of hand 

poses at different distances, from 12 different participants 

(6,000 stereo pairs in total), were captured. Participants 

were of different skin tone, hand size and gender. Data from 

four participants was reserved for testing, and the remaining 

data (from the other eight participants) was used for 

training. SLIC segmentation was applied to all reference 

stereo images, producing approximately 3,000 superpixels 

per image. Note that only a fraction of these 3,000 

superpixels are hand region superpixels. The amount of 

hand superpixels (ranging approximately from 200 to 500 

per image capture) depends on the distance between the 

hand and the camera. In total, roughly 2.5 million 

superpixels were used in training and evaluating the 

algorithm. The depth values posterior distribution of the 

RRF was quantized into 500 bins, i.e. D = 500. The depth 

range of the hand poses in the entire dataset, generally 

ranged from 500mm and 1800mm. Hence, the RRF can 

predict to a resolution of (1800mm-500mm)/500 bins = 2.6 

mm. Each round of training (i.e., to train for each posterior ࢅ௭ሺ௦ሻ) takes approximately 3 - 4 hours.  Since eight rounds 

were needed, training took roughly one day. Finally, the 

propagation of all superpixels and combining the posteriors 

using ࢼ executes typically in 185 seconds. Hence testing for 

the depth, a frame of stereo images on the cluster will 

typically take 260 seconds.  

5.4. Stochastic Gradient Descent ࡭ and	ࢼ are learned separately by first randomly 

initializing with all elements of A being positive. We 

trained for A and ࢼ with the learning rate initialized at 

12,000. We ran 100 epochs, reducing the learning rate by 

10% every 10 epochs. The decay weight, λ, was set as 0.05.  

6. Experimental results  

The approach was validated experimentally, presenting 

both qualitative (Figure 4) and quantitative (Table 1) 

results. Three main comparisons were made, these include: 

prediction solely using RF (with only matching-cost 

features and with a combination of matching-cost and 

holistic features); using RF with the unary term framework; 

as well as a prominent stereo-matching technique (SGM). 

The results were quantitatively appraised for accuracy by 

computing the percentage of correctly predicted depth both 

at superpixel and pixel levels,	∑ ி{|ௗ೛ಸ೅ିௗ೛|ழ௧}೛ചಿ ே , where ݀௣ீ் 

and ݀௣ are the ground truth and the predicted depth at 

superpixel (or pixel) p;	ܨ{} is a function that returns 1 for 

true input and 0 otherwise; and N is the number of hand 

region pixel/superpixel. We also computed the average 

relative error,	ଵே∑ |ௗ೛ಸ೅ିௗ೛|ௗ೛ಸ೅௣ఢே , to quantitatively evaluate the 

performance of the test.  

6.1. Stereo-matching Comparison 

To validate the machine learning approach, we attempt to 

extract depth (through disparity) from stereo pairs in our 

dataset using a prominent stereo matching technique, SGM. 

At the time of writing, this was the 9th best performing 

published stereo-matching technique on the Middlebury 

stereo evaluation chart [6]. We compare to SGM as it is the 

highest performing technique for which a MATLAB 

implementation is readily available.  

We fed the rectified stereo image pair of hands into the 

standard MATLAB implementation of SGM for stereo 

matching. Stereo baseline and focal length resolved from 

stereo calibration [14] are combined with the SGM 

generated disparity to yield actual distance. We then 

compute error based on hand pixel regions. The 

performance is shown in (last row) Figure 4 and Table 1.  

  This is an interesting comparison as SGM also applies 

global optimization. Nonetheless, its poor performance is 

apparent from Table 1. It provides the least accuracy in 

comparison to the rest of the machine learning techniques. 

We hypothesize that this due to the untextured nature of the 

hand as well as radiometric differences present in the stereo 

pair. The SGM technique attempts to universally appraise 

pixel correspondence by applying a pre-established 

matching criterion. The untextured nature of the hand and 

radiometric inconsistencies, in conjunction with the varying 

skin colors and hand sizes makes this task hard. This result 

emphasizes the significance of our approach in that a 

conventional stereo-matching approach (even one as robust 

as SGM) performs poorly for skin regions.   
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We also compared the proposed method with [16], which 

also applies a regressive random forest to estimate image 

depth.  However, in [16], a single similarity measure 

(Quantized Census) is used to compute a depth image, and 

no pairwise term is modelled in the regression that maps a 

disparity image to a depth image.  As the results in Table 1 

show, our method, even without the pairwise term, 

outperforms [16].  We attribute the improved performance 

of our CRRF method to the features used.  Unlike [16], 

which uses a single similarity measure, our method learns 

the features that best regress the depth using multiple 

similarity measures, disparity shifts, and window sizes in a 

concatenated feature vector.  Also unlike [16], which uses 

disparity as an intermediate representation, our CRRF 

method maps directly from the stereo pair to depth.  

Additionally, our approach to regression is more 

sophisticated in that we conditionally learn expert trees, 

which are combined using holistic hand features.  Finally, 

the pairwise term in our model provides additional 

smoothing constraints that yield superior performance. 

6.2. Baseline Comparison 

Three baseline comparisons were made. The first was 

predicting depth solely from the matching-cost feature, 

using conventional RRF. The results (Figure 4 and Table 1) 

validate our hypothesis that applying a machine learning 

approach to determining stereo correspondence is a more 

effective approach. Using a set of simple stereo matching 

criteria and stochastically determining which to use at 

different tree depths has resulted in almost a 272.7% 

increase (from 0.132 to 0.492) in pixel level accuracy.  

Secondly, we augmented the matching-cost feature by 

concatenating it with the holistic hand features whilst still 

regressing with a conventional RRF model. The aim was to 

specifically investigate the impact of using “expert trees”.  

From Table 1 we can see a notable improvement in the 

prediction resulting from adding the holistic feature, 

yielding greater accuracy (0.492 to 0.689) and less relative 

error (0.500 to 0.353) in both superpixel level and pixel 

level. However, a much greater increase in accuracy results 

from using the holistic feature to learn expert trees as 

opposed to just concatenating it with the stereo-matching 

feature. This yielded a 50.2% increase in accuracy on 

average in comparison to the 29.1% increase in accuracy 

provided by solely concatenating the holistic features.  

The last baseline comparison was to investigate the 

significance of the pairwise term. Recall that the 

contribution of the pairwise term is to add a smoothing 

constraint on the depth prediction. This is presented in the 

qualitative results. The predicted depth is clearly smoother 

and hence a better representation of the surface of the hand. 

The quantitative result from Table 1 also conveys the 

superiority of the prediction made when the pairwise term 

is applied. Interestingly, the pixel level accuracy is almost 

as strong as the superpixel level accuracy when the pairwise 

term is applied. This is again due to the smoothing effect.    

7. Conclusion 

In this paper, we proposed and developed an innovative 

application of the regression forest technique for resolving 

depth from stereo images. We present Conditional 

Regressive Random Forest, a framework that uniquely 

combines expert trees based on the features of the 

superpixel whose depth is being predicted. Note that the 

technique is relevant for to other applications, including 

classification problems like scene labelling. The framework 

further enforces smoothness constraints as it predicts depth 

of superpixels away from the camera. Thus, we have 

demonstrated the use of a relatively cheap stereo camera rig 

to generate a high-quality depth image of the hand.  

RGB cameras have advantages over depth cameras as 

discussed in the introduction, but computing the depth of a 

hand using standard stereo algorithms that use a single 

matching cost function produces inferior results due to 

ambiguities arising from a lack of texture, and variations in 

hand size and skin tone.  To date, the use of machine 

learning for hand depth estimation has received little 

attention, despite the importance of depth estimation for 

hand gesture and pose estimation in HCI applications.  This 

paper fills this gap by presenting a new state-of-the-art 

machine learning approach in recovering accurate depth 

images from stereoscopic images of the hand.  

Methods Superpixel Level Accuracy  Pixel Level Accuracy  Ave. Relative Error 

t=10mm t=20mm t=10mm t=20mm per Superpixel per Pixel 

SGM [11] - - 0.103 0.132 - 0.772 

Basaru et al. [16] - - 0.455 0.515 - 0.534 

RRF  0.599 0.610 0.423 0.492 0.503 0.500 

RRF (with 

Holistic Feature) 

0.686 0.757 0.610 0.689 0.358 0.353 

RRF + Unary 0.835 0.885 0.684 0.788 0.229 0.231 

CRRF (Pairwise 

+ Unary) 

0.911 0.911 0.811 0.852 0.181 0.190 

 
Table 1: Quantitative comparison of our technique (RF + Pairwise + Unary) against existing work in stereo-matching 

[16], conventional RRF, and different variants of our technique.
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