
LPSNet: A Novel Log Path Signature Feature based Hand Gesture Recognition

Framework

Chenyang Li, Xin Zhang* and Lianwen Jin

School of Electronic and Information Engineering

South China University of Technology

Guangzhou, P. R. China

eexinzhang@scut.edu.cn

Abstract

Hand gesture recognition is gaining more attentions be-

cause it’s a natural and intuitive mode of human computer

interaction. Hand gesture recognition still faces great chal-

lenges for the real-world applications due to the gesture

variance and individual difference. In this paper, we pro-

pose the LPSNet, an end-to-end deep neural network based

hand gesture recognition framework with novel log path sig-

nature features. We pioneer a robust feature, path signature

(PS) and its compressed version, log path signature (LPS) to

extract effective feature of hand gestures. Also, we present

a new method based on PS and LPS to effectively combine

RGB and depth videos. Further, we propose a statistical

method, DropFrame, to enlarge the data set and increase

its diversity. By testing on a well-known public dataset,

Sheffield Kinect Gesture (SKIG), our method achieves clas-

sification rate as 96.7% (only use RGB videos) and 98.7%

(combining RGB and Depth videos), which is the best result

comparing with state-of-the-art methods.

1. Introduction

With the development of intelligent devices (e.g., AR,

VR and smart-home devices), gesture interaction is attract-

ing more and more attention because it is more closely relat-

ed to human expression instinct and habits. Many popular

products (e.g., Microsoft HoloLens, Facebook Oculus and

DJI MAVIC) involve hand gestures as one of the interaction

tools. However, these products are limited to specific usage

scenarios, in which only a small amount of gestures can be

used or a specific touch needs to be held. Therefore, a more

universal and robust hand gesture recognition algorithm is

still in pressing need.

Hand gestures can be divided as two categories: static

hand gesture and dynamic hand gestures. Static hand ges-

ture recognition can be treated as the well-studied object

recognition problem. For the dynamic hand gesture recog-

nition, recently, few convolutional neural network (CNN)

based methods have achieved promising results [16, 18].

However, for the real-world application, we still face great

challenges. Firstly, the hand gesture has high variance due

to different users and various application environments. For

example, any specific gesture performed by different peo-

ple can be in different speeds, shapes, hand poses and back-

ground surroundings. Although deep neural network can

learn effective features of the hand gesture, it requires large

diversified training data for generalization. Researcher-

s choose to introduce complex model like R3DCNN [16],

RNN [18], but the high computational cost prevents them

from the wide application. By adding the optical flow, the

result is getting better with the same network [16]. Hence,

extracting essential and representable features may be the

possible solution. Secondly, with the improvement of hard-

ware, we can now obtain the color and depth information

easily and multi-stream and multi-resource framework has

shown promising results. Nevertheless, methods of combin-

ing these information are relatively simple so that we need

a more effective way to make them fully complementary.

In this paper, we present an end-to-end hand gesture

recognition framework with novel log path signature fea-

ture, named LPSNet. The contributions are as follows: i) to

the best of our knowledge, we are the first to introduce the

path signature (PS) [2] concept into the hand gesture recog-

nition problem; ii) further, considering the unique charac-

teristic of hand gestures, we employ the log path signature

(LPS) [21], an extended, compressed and sparse version

of PS; iii) to simulate various hand gestures with differ-

ent speeds and trajectories, we propose an statistical data

enhancement method, DropFrame; iv) we propose an effec-

tive method to combine RGB and depth information based

on PS and LPS. By testing on a public dataset and com-

paring with state-of-the-art methods, we achieve the best

recognition accuracy on both RGB and RGB-D sequences.
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2. Related work

Hand gesture recognition methods can be mainly divid-

ed into two types: selected feature based methods and deep

learning (DL) based methods. As in the first category, many

selected features have been used to character hand shape,

physical structure and motion features. [4] extracts four dif-

ferent sets of feature descriptors including the distances of

the fingertips from the hand center and from the palm plane,

the curvature of the hand contour and the geometry of the

palm region. To detect the positions of hand parts, they first-

ly employ skin-based segmentation and a circle fitting algo-

rithm and 3D plane fitting for palm detection, but the skin-

based method is not very robust especially when the inten-

sity of light changes violently. [15] designs a local descrip-

tor called a 3D Motion Scale-Invariant Feature Transform

(3D MoSIFT), which detects the interesting points and con-

sequently encodes the motion information to describe the

interesting points based on RGB and depth information. 3D

MoSIFT characters the motion features well but it requires

some complex prophase calculation and tends to have high

dimension.

In recent years, a trend toward using deep neural net-

work to extract feature is growing. In [24], a two-stream

CNN is introduced, which guides the network to learn from

both spatial and temporal inputs. Later, [5] further discusses

where is the best position to fuse two streams. They demon-

strate that the two-stream architecture and the multi-frame

dense optical flow are useful in action recognition tasks. In

the context of hand gesture recognition, a multi-stream Re-

current Neural Network (MRNN) to combine the RGB and

depth sequences is presented in [18]. They carefully de-

sign the network to fuse multiple temporal modalities using

multiple streams of recurrent neural networks with Long

Short-Term Memory cells (LSTM-RNNs). [16]proposes a

Recurrent 3D Convolutional Neural Network (R3DCNN)

to utilize multi-modal information. They use a pre-trained

3D-CNN for local spatio-temporal feature extracting, a re-

current layer for global temporal modelling, a softmax layer

for probabilities predicting, and finally a connectionist tem-

poral classification for class labels predicting. Deep neural

network methods often require a well-designed structure, a

pre-trained CNN and a careful designed training strategy for

RNN.

Although DL based algorithms have achieved good re-

sults, their abilities to describe hand gesture characteristics

are still limited, especially hand shape under different light

intensities and hand motion with varying speeds. There-

fore, we propose to introduce a discriminative feature PS

and its extended and compressed version LPS as the hand

gesture feature descriptors, which will greatly reduce the

structure and training requirements for the subsequent clas-

sification network. PS was first proposed in [2] in the for-

m of noncommutative formal power series. After that P-

S was used to solve differential equations driven by rough

paths [6, 13]. More recently, PS has been successfully ap-

plied in sound compression [14], online handwriting recog-

nition [7, 10, 26, 27] and human action recognition [28] for

its remarkable performance in extracting information con-

tained in a finite path. In this work, by considering every

dynamic hand gesture as a finite trajectory, we apply PS and

LPS to obtain essential features for the final classification.

3. Path signature and log path signature

In this section, we will briefly introduce the mathemat-

ical definition of PS and its extended version, LPS. This

section is mainly referred to [3].

3.1. Path signature

Before giving the definition of PS, we first introduce the

iterated integral of path. Assume a path P : [t1, t2] → R
d,

where [t1, t2] is a time interval. The coordinate paths are

denoted by (P 1

t , ..., P
d
t ), where each P i : [t1, t2] → R is a

real-value path. For any single index i ∈ {1, ..., d}, define

the quantity:

S(P )it1,t =

∫
t1<a<t

dP i
a = P i

t − P i
t1

(1)

which is the increment of the i-th coordinate of path P at

time t ∈ [t1, t2]. Note that S(P )it1,t : [t1, t2] → R is itself

a real-value path.

Further, for any pair i, j ∈ {1, ..., d}, define the double-

iterated integral as:

S(P )i,jt1,t =

∫
t1<a<t

S(P )it1,adP
j
a

=

∫
t1<b<a<t

dP i
bdP

j
a

(2)

in which S(P )it1,a is given by Eq. 1. The double-iterated

integral represents path curvature. Emphasis again that

S(P )it1,a and P j
a are simply real-valued paths, so the Eq. 2

is a special case of the path integral. S(P )i,jt1,t : [t1, t2] → R

is itself a real-value path.

Continue recursively, for any positive integer k ≥ 1 and

the collection of indexes i1, ..., ik ∈ {1, ..., d}, define:

S(P )i1,...,ikt1,t
=

∫
t1<a<t

S(P )
i1,...,ik−1

t1,a
dP ik

a (3)

As before, because S(P )
i1,...,ik−1

t1,a
and P ik

a are real-valued

paths, the Eq. 3 is defined as a path integral, and

S(P )i1,...,ikt1,t
: [t1, t2] → R is itself a real-valued path. The

Eq. 3 can be equivalently written as:

S(P )i1,...,ikt1,t
=

∫
t1<ak<t

...

∫
t1<a1<a2

dP i1
a1
...dP ik

ak
(4)
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Figure 1. Flowchart Overview of the LPSNet for the gesture recognition .

The real number S(P )i1,...,ikt1,t2
is called the k-fold iterated

integral of P long indexes i1, ..., ik.

The definition of PS is given as follows. The signature

of a path P : [t1, t2] → R
d, denoted by S(P )t1,t2 , is the

collection (infinite series) of all the iterated integrals of P .

S(P )t1,t2 can be expressed as a sequence of real numbers:

S(P )t1,t2 =(1, S(P )1t1,t2 , ..., S(P )dt1,t2 ,

S(P )1,1t1,t2
, S(P )1,2t1,t2

, ...)
(5)

The superscripts run along the set of all multi-indexes:

I = {(i1, ..., ik)|k ≥ 1, i1, ..., ik ∈ {1, ..., d}} (6)

The k-th level PS is the collection (finite series) of all

the k-fold iterated integral of path P . For example, the 1-th

level PS of path P is (S(P )1t1,t2 , ..., S(P )dt1,t2), and the 2-th

level PS of path P is (S(P )1,1t1,t2
, S(P )1,2t1,t2

, ..., S(P )d,dt1,t2
).

Note that the 0-th level PS of path P is equal to 1 by con-

vention.

In practice, we often truncate the S(P )t1,t2 at level m
to enture the dimension of the PS feature in a reasonable

range. The dimension of S(P )t1,t2 truncated at level m is

calculated through:

M = 1 + d+ · · ·+ dm (7)

We empirically set m to 1,2,3 and 4 in our experiments

because the PS of a higher level typically characterizes

more trivial details of a path and do not lead to further im-

provement.

3.2. Log path signature

The LPS can be obtained from PS by taking the formal

logarithm of PS in algebra of formal power series. It is an

extended, compressed and sparse version of PS.

According to Chen’s identity [23], there is another way

to describe the PS of P truncated at level m by a for-

mal power series where e1, ..., ed are d formal indetermi-

nates and the coefficient of each monomial ei1 · · · eik is

S(P )i1,...,ikt1,t2
. For simplicity, we choose the same symbol

S(P )t1,t2 to express this representation:

S(P )t1,t2 =
m∑

k=0

∑
i1,...,ik∈1,...,d

S(P )i1,...,ikt1,t2
ei1 · · · eik (8)

Still, the 0-th level of the PS S(P )0t1,t2 = 1.

For a power series:

s =

∞∑
k=0

∑
i1,...,ik∈1,...,d

λi1,...,ikei1 · · · eik (9)

Assume that λ0 > 0, then its logarithm can be defined as

the power series:

log s = log λ0 +
∑
n≥1

(−1)n

n
(1− s

λ0

)⊗n (10)

where the product ⊗ between monomials is defined by join-

ing together multi-indexes:

ei1 · · · eik ⊗ ej1 · · · ejk = ei1 · · · eikej1 · · · ejk (11)

The definition of LPS is given as follows. The LPS

of a path P : [t1, t2] → R
d, is defined as the formal power

series logS(P )t1,t2 . We can calculate it by substituting s =
S(P )t1,t2 into Eq. 10:

logS(P )t1,t2 =
∑
n≥1

(−1)n

n
(1− S(P )t1,t2)

⊗n (12)

For two formal power series s1 and s2, the their Lie

bracket [23] is given by:

[s1, s2] = s1 ⊗ s2 − s2 ⊗ s1 (13)
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Figure 2. The process of calculating and storing LPS feature for one point (A) of the hand trajectory.

A direct computation shows that the first few terms of

the LPS are:

logS(P )t1,t2 =

d∑
i=1

S(P )it1,t2ei+

∑
1≤i<j≤d

1

2
(S(P )i,jt1,t2−

S(P )i,jt1,t2)[ei, ej ] + · · ·

(14)

For the same number of levels of the PS, the LPS con-

tains the same information in fewer numbers. A formula for

the number of each level of the LPS is mentioned in [25].

4. Proposed method

Our proposed LPSNet consists of three major compo-

nents: hand detector, LPS feature extractor and gesture clas-

sifier, as shown in Fig. 1. Firstly, we employ the Faster R-

CNN [22] to return hand positions. Next, given the hand

gesture trajectory, we propose a DropFrame method, which

is followed by rotation, scaling and translation to increase

diversity of training data (all the data augmentation method-

s are only utilized during training). Then, we compute the

LPS feature maps based on the extracted hand gesture tra-

jectory. Finally, the CNN-based network is used to provide

the classification result.

4.1. Hand detector

The hand detector provides the bounding box of the hand

position accurately regardless of illumination, background

and hand pose change. After detection, we gain the trajec-

tory of every gesture video (we use the left-top point of the

bounding box as the trajectory in our experiment). Note

that Faster-RCNN can be replaced by any other detection

algorithms such as SSD [12], YOLO [19, 20] and so on.

We manually label the hand bounding box of few sequences

from the dataset for the training, which can be downloaded

from http://www.hcii-lab.net/data/.

4.2. Data augmentation

Deep learning model usually requires sufficient and

diverse training data to ensure its generalization capa-

bility. Therefore, beside a mix of affine transforma-

tions (i.e., rotation, scaling and translation), inspired by

DropStroke [26], we propose a data-augmentation method

named DropFrame, which randomly omits some frames for-

m the sequences in each training batch and generates a set

of new hand trajectory sequences. Beside increasing the

number of training samples, DropFrame can also simulate

various hand gestures with different speeds and trajectories,

which enhances the generalization. For instance, if some

frames among an interval are selected to be dropped, the

hand speed will become faster.

Assume that there are N frames in a hand sequences

and the DropFrame rate is r, so the number of dropped out

frames n is equal to floor(N × r). Consequently, the num-

ber of new possible hand sequences is:

Cn
N =

N !

n!(N − n)!
(15)

Furthermore, the number of all the generated hand se-

quences is
∑n

i=1
Ci

N . The larger the DropFrame rate, the

more hand sequences will be generated.

4.3. Log path signature (LPS) feature maps gener­
ation

After data augmentation, we have many different trajec-

tories of the same hand gesture. Here we will discuss how to
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Figure 3. Time dimension is added as a third dimension (use the

normalized coordinates).

represent the obtained trajectory and how to compute cor-

responding LPS feature maps. It is the essential step spe-

cially designed for the hand gesture. Note that the method

to generate PS feature is similar with that for LPS feature,

just replace the LPS with PS. We call the framework PSNet

correspondingly.

Two-dimensional trajectory representation (2d). In

the hand gesture sequence, the hand position of every frame

can be expressed as two-dimensional coordinate (x, y),
where x and y are the normalized spatial coordinates in the

image. By connecting every position, we can obtain the

hand gesture trajectory, as shown in Fig. 2(a).

Three-dimensional trajectory representation (3d).

The LPS of 2D trajectory (LPS 2d) can uniquely charac-

terize the path if it contains no part that exactly retraces

itself [1, 8]. However, in hand trajectories, some local part-

s do retrace themselves due to slight hand shaking. For

instance, path {(0, 0), (0.3, 0.3), (0.4, 0.5), (0.3, 0.3)} has

the same LPS with path {(0, 0), (0.3, 0.3)} since the local

part {(0.3, 0.3), (0.4, 0.5), (0.3, 0.3)} retraces itself. Under

this circumstance, the LPS 2d is unable to express a path

uniquely.

To handle this problem, we redefine (x, y) as (x, y, n),
where n is a monotone time dimension of the hand gesture

sequence (n=0,1,2,3,...). For example, (0.3, 0.5, 0) means it

is the first frame of the gesture sequence and the hand posi-

tion is normalized x, y coordinates 0.3, 0.5. This concept is

demonstrated in Fig. 3.

Four-dimensional trajectory representation (4d). The

LPS 3d can characterize the path uniquely because the 3D

trajectories contain no part that exactly retraces itself. N-

evertheless, the LPS 3d cannot express the vertical move-

ment clearly. For example, when a part of a 3d trajecto-

Figure 4. Illustration of how to generate d in the four-dimensional

coordinate (x, y, d, n).

ry is {(0.3, 0.3, 0), (0.3, 0.3, 1), (0.3, 0.3, 2)}, we actually

cannot determine the hand is stationary or is moving verti-

cally.

In order to describe the vertical movement , we propose

a method to combine the depth information with the RGB

information. As shown in Fig. 4(a), we get the bounding

box from the hand detector and use the left-top point as the

track point of the hand. Then we draw a bounding box at the

same position on the corresponding depth frame and use the

pixel value of a fixed point in this bounding box as the depth

information of the hand (as Fig. 4(b)). Consequently, we

turn the 3d expression (x, y, n) into the 4d one (x, y, d, n),
where d is the depth information calculated by the above

method.

LPS feature maps computation. Theoretical speak-

ing, we can directly compute its LPS features according to

the definition and then exrpess them with a vector but this

method could miss important details and neighboring rela-

tionship. Hence, we propose to compute segment-wise LPS

feature, and re-organize them as a series of feature maps in

terms of the PS order. We will introduce a general method

to generate an N × N × M LPS feature maps (N × N
denotes the shape of feature map in Fig. 2 and Fig. 3, M
represents the dimension of feature) for both LPS 2d, LP-

S 3d and LPS 4d. Note that M is determined by trajectory

dimension d and truncated level m.

The detail about how to construct an N ×N ×M input

for hand gesture classifier is as follows: i) initialize an array

of size N × N ×M to all zeros; ii) calculate the LPS fea-

ture corresponding to each point of the hand trajectory. For

instance, take w points before and after point A in Fig. 2

to generate a path PA for A (w is 1 in Fig. 2(b) and 4 in

our experiments), then calculate the LPS feature of PA as

Fig. 2(c); iii) put the LPS feature of A in the corresponding

position of the N ×N ×M cube as A0-A7 in Fig. 2(d).

In Fig. 5, we visualize the feature maps of LPS 2d trun-

cated at level 4 of ten gestures in SKIG [11]. Each row

includes the feature maps corresponding to two hand cate-

gories. And each column is a one dimension of the truncat-

ed LPS feature, which represents special information (e.g.,

displacement in x-axis, displacement in y-axis). The way

to calculate the number of columns per k is mentioned in
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Figure 5. Visualization the feature maps of LPS 2d truncated at level 4 (randomly selecting ten samples from ten categories of SKIG [11]

respectively).

Section 3. When the trajectories of hand move in a hori-

zontal direction (such as circle, triangle, right-left, wave, Z

and cross), we can distinguish them well. However, when

the hand trajectories mainly move in the vertical direction

(e.g., up-down, comehere, turnaround and pat), we need to

use the higher level LPS feature or even depth information

to distinguish them.

We want to emphasize again that LPSNet can be easi-

ly turned into PSNet only by replacing the LPS mentioned

above by PS, More comparisons and discussions will be p-

resented in Section 5.

4.4. Hand gesture classifier

Finally, we train a deep convolutional neural network

(DCNN) based on LPS feature maps. As shown in Fig. 1

(right part), our classification network contains eight layers

with weights, among which the first seven layers are

convolutional layers and the last one is fully-connected

layer. The output of the last fully-connected layer is fed

to a n-way softmax. The first six convolutional layers are

followed by max-pooling layers which are carried out over

a 3 × 3 pixel window with a stride of 2 pixels. The size of

the convolutional filter is 3× 3 for the first layer and 2× 2
for the others, with a constant stride of 1 pixel. Rectified

linear units (ReLUs) [17] are used as activation functions

for neurons in all convolutional layers and fully-connected

layers. We set the number of convolutional filter kernels

to 32 for the first layer and increase it by an increment of

32 after each max-pooling. We render the hand trajectory

as a 40 × 40 bitmap embedded in a 255 × 255 image

that is initialized to zero, which is more convenient for

data augmentation (e.g., rotation, scaling and transla-

tion). In summary, the architecture of our classification

network is M × 255× 255-32C3-MP3/2-64C2-MP3/2-

96C2-MP3/2-128C2-MP3/2-160C2-MP3/2-192C2-

MP3/2-224C2-output.
In order to handle different training samples, we also

propose a small network. We make the following changes

to the network mentioned above: i) reduce 2 convolution-

al layers to the network; ii) changing the render size from

40×40 to 20×20. For convenient, we call the first network

Network 1 and the small one Network 2.

To sum up, our proposed framework—LPSNet effective-

ly combines color and depth videos basing on LPS feature.

It can not only characterize the path discriminatively and

avoid the interference of background, but also dramatically

reduce the dimension of the input feature.

5. Experimental results and discussion

5.1. Hand gesture dataset and network settings

The SKIG [11] dataset is organized to evaluate and

advance the state-of-the-art dynamic hand gesture recog-

nition under challenging conditions (with variable lighting

conditions, different poses and multiple subjects). The

dataset contains 2160 hand gesture sequences (1080 RGB

sequences and 1080 corresponding depth sequences)

collected from 6 subjects (people). It collects 10 cat-

egories of hand gestures in total: circle(clockwise),

triangle(anti-clockwise), up-down, right-left, wave, Z,

cross, comehere, turnaround and pat, as shown in Fig. 6.

All types of gestures are performed with three different

hand postures: fist, index and flat. The sequences are

recorded under 3 different backgrounds (i.e., wooden

board, white plain paper and paper with characters) and 2

illumination conditions (i.e., strong light and poor light) to

increase the diversity. Consequently, each subject performs

10(categories)×3(poses)×3(backgrounds)×2(illumination)

×2(RGB and depth)=360 gesture sequences.

We perform our experiments on a PC with a GTX Ti-

tan X GPU. The training mini-batch size is set to 100

for both Network 1 and Network 2. For Network 1, the

DropOut [9] rate of the DropOut layers after seven convo-

lutional layers are calculated through 0.5× i
l

, where l=6 and
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Figure 6. Some example samples of SKIG [11] dataset.

i=0,1,2,3,4,5,6 respectively for the first to seventh convolu-

tional layers. And for Network 2, the l=4 and i=0,1,2,3,4.

We set the DropFrame rate to 0.08, i.e., r=0.08. To compare

with other algorithms, we adopt three-fold cross-validation

on SKIG (i.e., four subjects for training and the other two

for testing).

5.2. Evaluation

As we have discussed in Section 4.3, the hand gesture

can be represented as 2D, 3D and 4D trajectories.

The dimensionality of trajectory representation. We

firstly compare the 2d and 3d representation, which are de-

noted by (L)PS 2d and (L)PS 3d respectively in Fig. 7. The

X-axis indicates different truncated levels of PS and LPS

features and Y-axis expresses recognition accuracy. Our ex-

perimental results show that 3d representation is more ben-

eficial to the recognition accuracy. It demonstrates that the

(L)PS 3d is more discriminative than the (L)PS d2 due to

the ability of uniquely characterizing the paths containing

some local parts that retrace themselves. We use the Net-

work 2 as classifier for (L)PS 2d and (L)PS 3d.

Combining RGB and depth videos. We utilize the

method mentioned in Section 4.3 to generate 4d track

points. Because adding the depth information brings feature

dimension increasing, we use Network 1 as classifier. The

experimental results are shown in Fig. 7 as LPS 4d. The

results show that the recognition accuracy improves signif-

icantly for all truncated levels when adding the depth infor-

mation (97.59%, 98.06%, and 98.30% for truncated levels

2, 3, and 4 respectively), which demonstrates the ability of

LPS 4d to effectively characterize the hand movement, es-

pecially vertical movement.

5.3. Comparison of path signature (PS) and log path
signature (LPS) feature

As shown in Fig. 7, PS and LPS has comparable per-

formance when the dimension of trajectories and truncated

levels are low. When the truncated level goes high, results

of both LPS and PS are getting better. But, LPS shows ob-

Figure 7. Comprehensive comparison of the trajectory dimension-

ality, PS v.s. LPS and the DropFrame method.

vious superior performance than PS. Specifically, PS 3d is

95.28% and LPS 3d is 96.20% at the truncated level 4. It is

because that LPS is more compressed and refined than PS,

which is beneficial for the learning process. In other words,

as the dimension of feature increases, there is redundancy

in PS feature. For example, at truncated level 4, the dimen-

sionality of LPS 3d feature is 32 while that of PS 3d has

121. In this experiment, we utilize Network 2.

5.4. Evaluation and comparison of DropFrame (DF)
method

We evaluate the proposed DropFrame method on LP-

S 3d and LPS 4d with DropFrame rate 0.08. We use Net-

work 1 here for the reason that the training data increased

dramatically after using DropFrame. The results are shown

in Figure 7 as LPS 3d+DF and LPS 4d+DF. The recogni-

tion accuracies improve after adding DropFrame and the

best recognition accuracies (96.7% for RGB and 98.7% for

RGB+depth) are observed for LPS 3d+DF and LPS 4d+DF

truncated at level 4.
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The results indicate that the DropFrame method do

successfully simulate various hand gestures with different

speeds and trajectories and dramatically increase the train

samples diversity. Thus, the generalization of the network

is enhanced.

5.5. Comparison with state­of­the­art methods

Confusion matrix. Table 1 and Table 2 show the confu-

sion matrices of our proposed LPSNet (Table 1 is for LP-

S 3d+DF and Table 2 is for LPS 4d+DF, both are trun-

cated at level 4). Each row of the confusion matrix rep-

resents one category of hand gesture. We use three-fold

cross-validation so the sum of each row is 108. From con-

fusion matrices, we found that LPS 3d+DF network often

confused c (up-down), h (comehere), i (turnaround) and j

(pat). Since these four kinds of gestures move mainly in the

vertical direction, it is difficult to distinguish them by only

using RGB sequences. Therefore, when we added depth in-

formation to our network (as LPS 4d+DF), the recognition

accuracy improved significantly. It demonstrates again that

LPS 4d can effectively characterize the vertical movement.

We report gesture recognition results and compare them

with several state-of-the-art methods in Table 3. Our pro-

posed LPSNet outperforms other methods in both RGB

and RGB-D sequences. When only using RGB sequences,

our LSPNet achieves a recognition rate of 96.7%, leading

to 5.1% higher classification rate than MRNN [18]. This

could be because the LPS feature maps are more robust to

background interference and individual difference, relative

to original RGB inputs. When using RGB-D sequences,

our LPSNet achieves 98.7%, even outperforming the meth-

ods additionally using optical flow information (e.g., M-

RNN [18] and R3DCNN [16]). This result illustrates that

LPS feature maps have included more motion information

than optical flow. To the best of our knowledge, this accu-

racy represents the state-of-the-art performance for SKIG

dataset.

6. Conclusion

In this paper, we proposed a novel feature and mod-

el named LPSNet for the dynamic gesture recognition.

We firstly leverage PS feature and its compressed version

LPS feature into the gesture recognition task and intro-

duced an effective method to combine RGB and depth in-

formation based on PS and LPS. Further, we introduce

DropFrame to generate a set of new hand gesture samples

by simulating various hand gestures with different speed-

s and trajectories. Incorporated with LPS feature and the

DropFrame method, the performance improves significant-

ly. Our method achieves a promising recognition rate of

96.7% (only use RGB video) and 98.7% (RGB and depth

videos) on SKIG dataset, which outperforms the existing

methods. We believe the LPS feature can be extended to

the tasks that involve the analysis of finite paths and the

DropFrame method can be used when data sequences are

limited. Our future work will include more explorations on

LPS feature and network architecture, using more challeng-

ing databases.

a b c d e f g h i j

107 0 0 0 0 1 0 0 0 0 a(circle)

0 108 0 0 0 0 0 0 0 0 b(triangle)

0 0 98 1 1 0 0 3 1 4 c(up-down)

0 0 3 105 0 0 0 0 0 0 d(right-left)

0 0 2 0 106 0 0 0 0 0 e(wave)

0 0 0 0 1 107 0 0 0 0 f(Z)

0 0 0 0 0 0 107 1 0 0 g(cross)

0 0 3 0 0 0 0 103 0 2 h(comehere)

0 0 2 0 0 0 0 1 103 2 i(turnaround)

0 0 6 0 0 0 0 0 1 101 j(pat)

Table 1. The confusion matrix for LPS 3d+DF.

a b c d e f g h i j

108 0 0 0 0 0 0 0 0 0 a(circle)

0 108 0 0 0 0 0 0 0 0 b(triangle)

0 0 103 1 0 0 0 1 0 3 c(up-down)

0 0 0 106 1 0 0 0 1 0 d(right-left)

0 0 0 1 107 0 0 0 0 0 e(wave)

0 0 0 0 0 108 0 0 0 0 f(Z)

0 0 0 0 0 0 108 0 0 0 g(cross)

0 0 0 0 0 0 0 108 0 0 h(comehere)

0 0 0 0 0 0 0 1 106 1 i(turnaround)

0 0 1 0 0 0 0 0 3 104 j(pat)

Table 2. The confusion matrix for LPS 4d+DF.

Method RGB Depth Optical flow Recognition accuracy(%)

RGGP [11]
√

84.6

MRNN [18]
√

91.6

Our LPSNet
√

96.7

RGGP [11]
√ √

88.7

R3DCNN [16]
√ √

97.7

MRNN [18]
√ √ √

97.8

R3DCNN [16]
√ √ √

98.6

Our LPSNet
√ √

98.7

Table 3. Our approach compared with state-of-the-art approaches.
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