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Abstract

We present a novel solution to the problem of 3D track-

ing of the articulated motion of human hand(s), possibly in

interaction with other objects. The vast majority of contem-

porary relevant work capitalizes on depth information pro-

vided by RGBD cameras. In this work, we show that accu-

rate and efficient 3D hand tracking is possible, even for the

case of RGB stereo. A straightforward approach for solving

the problem based on such input would be to first recover

depth and then apply a state of the art depth-based 3D hand

tracking method. Unfortunately, this does not work well

in practice because the stereo-based, dense 3D reconstruc-

tion of hands is far less accurate than the one obtained by

RGBD cameras. Our approach bypasses 3D reconstruction

and follows a completely different route: 3D hand tracking

is formulated as an optimization problem whose solution is

the hand configuration that maximizes the color consistency

between the two views of the hand. We demonstrate the ap-

plicability of our method for real time tracking of a single

hand, of a hand manipulating an object and of two interact-

ing hands. The method has been evaluated quantitatively

using the same datasets as relevant, state of the art RGBD-

based approaches. The obtained results demonstrate that

the proposed stereo-based method performs equally well to

its RGBD-based competitors, and in some cases, it even out-

performs them.

1. Introduction

The vision-based recovery of the 3D pose of human

hands is an interesting and important problem in computer

vision. Humans use their hands all the time and in several

ways either to interact with the physical world or to com-

municate with other humans. An accurate, robust and real
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Figure 1. Illustration of the key idea in this work. Left: an actual

hand (in skin color) and a wrong hypothesis about its 3D pose and

articulation (gray color). The wrong hypothesis about the 3D con-

figuration of the hand leads to pixels with dissimilar colors in the

stereo camera views. Right: the hand in the same pose and a cor-

rect hand hypothesis which back-projects to pixels with identical

colors on the stereo camera views. Hand tracking is formulated

as an optimization problem that seeks the hand configuration that

maximizes the color consistency of the two views of the hand.

time solution to the problem has a huge impact in a number

of application domains including HCI, HRI, medical reha-

bilitation, sign language recognition, etc.

The problem of 3D hand tracking is challenging. Dif-

ficulties arise due to the highly articulated structure of the

hand which results in ambiguous poses and self-occlusions.

These problems escalate when hands interact with each

other and/or manipulate objects. On top of these intrinsic

difficulties, some application areas impose constraints on

the spatial and temporal resolution of the images that feed a

3D hand pose estimation/tracking algorithm.

During the last couple of years, a number of methods

for 3D hand tracking or single-frame 3D hand pose esti-
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Problem Type RGB-D Multi RGB Stereo RGB Mono RGB

Single hand
G

D

H

[27] [42] [5] [17] [23] [24] [56] [16] [22]

[67] [9]

[53] [15] [25] [65] [51] [54] [20]

[55] [52] [44] [43] [58] [35] [34]

[26] [47] [30]

[7]

×

[36]

[Proposed]

[41]

×

[8] [21] [48] [64] [50]

[61] [57] [13]

[2] [63] [39]

×

Hand-Object
G

D

H

[33] [19] [10] [18] [11]

[37] [38]

[45]

[28] [62]

×

×

[Proposed]

×

×

×

[40]

×

Two hands
G

D

H

[29] [31]

×

[46]

×

×

[3] [59]

[Proposed]

×

×

×

×

×

Table 1. An overview of related work and the positioning of the proposed approach in it. Rows: the variants of the basic problem (in

increasing problem dimensionality and complexity). Columns: the type of required input (in decreasing wealth of information content).

For each problem variant, we categorize generative methods (G), discriminative (D), and hybrid ones (H).

mation have appeared. Most of the methods address the

problem under the assumption that a single acting hand is

observed. To a lesser extent, solutions for the problem of

tracking hand-object interactions have also been proposed.

The common characteristic of contemporary approaches is

that they rely on RGBD or depth data. Dense and accurate

depth information proves sufficient for arriving at accurate

pose estimation. Still, it would be highly desirable if accu-

rate and efficient 3D hand and hand/object tracking could

be achieved on the basis of RGB information, alone. This

would make 3D hand tracking possible by the vast majority

of today’s camera systems that exist everywhere (including

smartphones, tablets, etc) and do not record depth informa-

tion. It would also make 3D hand tracking possible in out-

door environments where several active RGBD sensors do

not provide reliable information.

In this work we address exactly this challenge. We

present the first method that performs detailed, accurate and

real time 3D tracking of scenes comprising hands based on

a conventional, passive, short-baseline, RGB stereo. The

naive approach to this problem would be to first perform 3D

reconstruction and then employ a state of the art approach

for depth-based hand tracking/pose estimation. However,

as we show experimentally, this approach does not produce

reliable results. Depth information is either noisy, or sparse

or smoothed-out to support accurate 3D tracking. Thus

we follow a completely different path. We capitalize on

the very successful hypothesize-and-test, generative track-

ing paradigm. We assume a 3D model of the object(s) to

be tracked (i.e., a hand, a hand-object constellation, two

hands). As shown in Figure 1, a hypothesis regarding the

configuration of such a model gives rise to hypotheses on

the 3D structure of the scene. A correct model hypothesis

leads to photo-consistent views. Tracking the model is then

formulated as an optimization problem that seeks the model

configuration that maximizes stereo color consistency.

The proposed method has been evaluated extensively and

compared to state of the art methods that rely on depth in-

formation. We investigate three interesting problem sub-

classes, namely (a) single hand tracking, (b) a hand inter-

acting with a rigid object and (c) two interacting hands. The

obtained results lead to the conclusion that the proposed

stereo-based algorithm can be as good and can even out-

perform their RGBD-based counterparts, both in terms of

accuracy and speed.

2. Related work

The three tracking scenarios correspond to problems of

increasing dimensionality/complexity. Existing solutions

can be classified along two important dimensions.

Discriminative vs generative vs hybrid: Discriminative

methods learn a mapping from observations to poses. Gen-

erative ones fit a model to the set of available observations.

Discriminative methods are faster, less accurate and do not

require initialization, i.e., perform single frame pose esti-

mation. Generative ones are more accurate, require initial-

ization and perform tracking to exploit temporal continu-

ity. Hybrid methods try to couple the benefits from both

worlds by employing a discriminative component to arrive

at a coarse solution which is then refined by a generative,

model-based component.

Based on their input: There are methods that rely on

RGBD sensors, multicamera setups, stereo RGB cameras

or single camera input.

Table 1 provides an overview of the research in the field,

which leads to a number of interesting conclusions: (a) The

vast majority of solutions are based on input from depth

sensors. (b) There are very few stereo-based methods, all of

which deal with single hand tracking. (c) For the problems

of hand-object and two-hands tracking, there is no available

stereo method. Moreover, although it appears that there are

several methods for monocular RGB tracking of a single

hand, these methods only produce limited information re-

garding hand pose and in very constrained settings.
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(a) (b) (c) (d) (e) (f)
Figure 2. An overview of the proposed pipeline. (a) The stereo pair input (b) the computed distinctiveness maps (cropped around the last

hand position) (c) the skinned mesh of the employed hand model (d) the color consistency scores after the evaluation of 64 PSO particles

for the last generation of the optimization process (the top scoring hypothesis is the top left), (e) the hand model configured in the highest

scoring pose and, (f) the solution in (e) rendered and superimposed on the left image of the stereo pair.

Our contribution: This paper proposes a generative,

model-based tracking framework that (a) applies to all three

problem instances and (b) uses a compact, short-baseline,

calibrated stereo pair. As such, it covers a significant gap

in the existing literature. As shown in Section 4, the pro-

posed framework constitutes the first practical approach to

the problem(s) based on such input and manages to provide

solutions that are as good in terms of accuracy and speed as

those obtained by their RGBD/depth-based competitors.

3. The proposed method

Figure 2 illustrates the proposed pipeline. Although

this is shown for the problem of single hand tracking, it

is straightforward to extend it to cover more complicated

tracking scenarios such as tracking a hand in interaction

with an object or two interacting hands.

We assume images acquired by a calibrated stereo pair

(Figure 2a). We also assume a 3D hand model (skinned

3D mesh, Figure 2c) that can be articulated in 3D space

based on its own intrinsic (kinematic model, articulation)

and extrinsic (absolute 3D position and orientation) param-

eters (Section 3.1). A given hypothesis about the hand con-

figuration provides a hypothesis about the 3D location of

every point of the hand model. Figure 1 illustrates this for

the cases of a wrong (left) and a correct (right) hypothesis.

If the model hypothesis is wrong, then, different physical

points are projected in the two stereo views. Therefore, it

is quite likely that the corresponding 2D image points will

have inconsistent appearance (e.g., different color). In con-

trast, if the model hypothesis is correct (Figure 1, right),

the color consistency of all pairs of projections of the hand

model points on the two stereo images is maximized. Pro-

vided that a reasonable measure of color consistency can be

defined, tracking the model can be formulated as an opti-

mization problem that seeks the hand pose that maximizes

this color consistency (Figure 2d-f). In Section 3.3 we do

provide such a quantification of color consistency and we

employ Particle Swarm Optimization (PSO) [6] in order to

maximize it (Section 3.4). The defined objective function

measures color consistency by measuring color similarity,

weighted by the distinctiveness of the corresponding points.

The intuition behind this choice is that color consistency

over uniformly colored areas should weight less than color

consistency of distinctive points. Our measure of distinc-

tiveness (Section 3.2) is based on the analysis of the Harris

corner detector [12]. Sample distinctiveness maps for the

stereo pair of images of Figure 2a are shown in Figure 2b.

3.1. Observing and modelling the scene

Observations come from a calibrated stereo pair of RGB

cameras. The intrinsic (focal length, distortion, camera cen-

ter) and extrinsic (relative position, orientation) parameters

for each camera are computed using standard camera cali-

bration techniques [4]. The images of each stereo pair are

temporally synchronized and undistorted before further pro-

cessing.

In this work, we consider the tracking of hands and rigid

objects. For modelling hands we employ the anatomically

consistent and visually realistic hand model provided by lib-

hand [60] (Figure 2c). This is a skinned model of a right

hand consisting of 22 bones. In order to be directly compa-

rable with results of existing methods [27, 29], the original

model was adapted by removing the wrist vertices and root

bone and by allowing mobility with 26 degrees of freedom.

The adapted hand model consists of 21 bones and of a 3D

mesh with 1491 vertices. The configuration of each hand is

represented by 27 parameters: Three for the hand position,

four for the quaternion representation of the hand rotation

and four articulation angles for each of the five fingers. The

model of the left hand is a mirrored version of the model for

the right hand. Using the 27 hand model parameters and the

camera parameters (intrinsics + extrinsics) we can render

any configuration of the hand model on the stereo pair.

Libhand provides a realistic texture for the hand model.

This information is not used during the tracking. However,

the textured hand was used in order to render the synthetic
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datasets used for the quantitative evaluation of the method,

as it will be detailed in Section 4.

Rigid objects in the scene have 6 degrees of freedom,

modelled with 7 parameters, 3 for the object position and 4
for the quaternion representation of their rotation. An ob-

served scene can thus be represented as a multi-dimensional

vector with as many dimensions as the sum of the numbers

of parameters of the individual objects in it.

3.2. Distinctiveness maps

When checking the color consistency between image

points, it is preferable to give more emphasis to the simi-

larity of distinctive ones. This is because the similarity of

distinctive points bears more information content than the

similarity of points in uniformly colored regions. Thus, we

create two distinctiveness maps, one for each of the input

images. Our approach for defining distinctiveness borrows

from related work in the field of corner detection [12]. More

specifically, for each pixel p in an image we compute the

principal curvatures λ1 and λ2 of the local auto-correlation

function in a neighborhood of B × B pixels centered on p.

Without loss of generality, we assume that λ1 ≥ λ2. We use

B = 3 in order to preserve fine image structures. Small λ1
and λ2 values mean a uniformly colored region. Large λ1
and λ2 values indicate a corner. Finally, if λ1 is significantly

larger that λ2, the area around p is an edge.

For a definition of distinctiveness we could use the Harris

corner detector [12] response function:

ch = λ1 · λ2 − k · (λ1 + λ2)
2. (1)

This option has been evaluated experimentally and did not

perform well for standard k = 0.04. The reason is that the

Harris response function promotes corners and suppresses

edges. The best results were obtained by employing k = 0.

This is a simpler definition for distinctiveness, but still it is

not assessing adequately both the magnitude and the relative

scale of λ1 and λ2.

For the purpose of building appropriate distinctiveness

maps, we designed a function that gives a high response

to pixels that look like corners, lower to pixels that are

parts of edges and, finally, a zero response to uniform ar-

eas. Furthermore, the distinctiveness is measured rela-

tively within each image to ensure that all available infor-

mation is exploited. In that direction, we first define d

to be the log of the magnitude of the vector (λ1, λ2), i.e.,

d = log
(

√

λ21 + λ22

)

. The log function is used as a scal-

ing operator. Subsequently, we compute the median md of

values d over the whole image. Then, we define

ds =
1

1 + e−(d−md)
. (2)

ds is a sigmoid function that maps its input to the range

(0..1). A 0.5 response results for values d equal to the

median md in the image. Similarly, we define a as a =
arctan (λ1, λ2). a measures the difference between λ1 and

λ2. Higher values for a are indicative of a corner rather than

an edge point. Given the median ma of values a over the

image, we define the function as as:

as =
1

1 + e−(a−ma)
. (3)

By subtracting md, ma from d and a in Eq. 2 and Eq. 3,

respectively, we achieve relative ds and as responses over

the images. The product ds · as represents the relative dis-

tinctiveness c of a point:

c =

{

ds · as if ds · as > wT

0 otherwise.
(4)

Points for which ds · as ≤ wT are set to zero signifying

that points that are less distinctive than a threshold are not

considered at all. The threshold wT was determined experi-

mentally as detailed in Section 4.3. By measuring the value

of c for each pixel in the left and the right images of the

stereo pair we obtain two distinctiveness maps, Cl and Cr.

3.3. Rating a model hypothesis

We denote with Il, Ir the two images of the stereo pair

and with Cl, Cr the corresponding distinctiveness maps as

computed in Section 3.2. We consider a hypothesisH about

the configuration of the modelled scene (position, orienta-

tion, possible articulation) of all modelled and considered

hands and objects to be tracked (see Section 3.1). Using the

intrinsic and extrinsic parameters of the stereo, we can esti-

mate the projection pl and pr of a 3D point PH = (X,Y, Z)
of H in each of the two views. Then, we define the color

consistency s(pl, pr) of points pl, pr as:

s(pl, pr) = min{Cl(pl), Cr(pr)} · e−β·||Il(pl)−Ir(pr)||.
(5)

Intuitively, this color consistency measure considers the

minimum of the distinctivenesses of the two points, scaled

by a function that takes its maximum value when corre-

sponding colors are identical and drops to zero with increas-

ing color difference. In Eq. 5, β is a scale parameter that

controls the steepness of the exponential. The value of β

was determined experimentally (see Section 4.3). The total

color consistency SH(Il, Ir) of Il, Ir is then defined as

SH(Il, Ir) =
∑

pl∈RH

l
,pr∈RH

r

s(pl, pr). (6)

In Eq. 6, RHl , and RHr are the sets of points corresponding

to the visible surface of H in each view.

Care must be taken to exclude from consideration model

points that are visible in one view but occluded in the other.
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To this end, we render the 3D model H in both views. For

each model point that is actually visible in one view, we

consider its projection in the other view. If the same physi-

cal point is visible (no occlusion), then we expect a rendered

3D point at exactly the same position (ideally) or within a

short range r (in practice). Otherwise, the point is excluded

from consideration. We set r = 3mm in all experiments.

For a specific time instant, estimating the scene state H

amounts to estimating the optimal hypothesis H∗ that max-

imizes the objective function of Eq. 6, i.e.:

H∗ = argmax
H

{SH(Il, Ir)}. (7)

3.4. Stochastic optimization

The optimization (maximization) problem defined in

Eq. 7 is solved based on Particle Swarm Optimization

(PSO) [14] which is a stochastic, evolutionary optimization

method. It has been demonstrated that PSO is a very ef-

fective and efficient method for solving vision optimization

problems such as head pose estimation [32], hand articula-

tion tracking [29] and others. PSO achieves optimization

based on the collective behavior of a set of particles (candi-

date solutions) that evolve in runs called generations. The

rules that govern the behavior of particles emulate “social

interaction”. A population of particles is a set of points

in the parameter space of the objective function to be op-

timized. PSO has a number of attractive properties. For

example, depends on very few parameters, does not require

differentiation of the objective function and converges with

a relatively small computational budget [1].

Every particle holds its current position (current candi-

date solution, set of parameters) in a vector xt and its cur-

rent velocity in a vector vt. Each particle i keeps in vector pi
the position at which it achieved, up to the current genera-

tion t, the best value of the objective function. The swarm as

a whole, stores the best position pg across all particles of the

swarm. All particles are aware of the global optimum pg .

The velocity and position update equations in every genera-

tion t are vt = K(vt−1+c1r1(pi−xt−1)+c2r2(pg−xt−1))
and xt = xt−1+vt, whereK is a constant constriction fac-

tor [6], c1 is called the cognitive component, c2 is termed

the social component and r1, r2 are random samples of a

uniform distribution in the range [0..1]. Finally, c1+ c2 > 4
must hold [6]. As suggested in [6] we set c1 = 2.8, c2 = 1.3
and K = 2

∣

∣

∣
2−ψ−

√
ψ2−4ψ

∣

∣

∣

, with ψ = c1 + c2.

In our problem formulation, the solution space has N

dimensions where N is the sum of the parameters encod-

ing the degrees of freedom of all the observed/tracked ob-

jects. Specifically, N = 27 for tracking a single hand,

N = 27 + 7 = 34 for a hand interacting with a rigid object

and N = 27 + 27 = 54 for two hands. Particles are ini-

tialized with a normal distribution around the center of the
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Figure 3. Tracking error for different values of the parameters β

(left) and wT (right). See text for details.

search range with their velocities set to zero. Each dimen-

sion of the multidimensional parameter space is bounded in

some range. During the position update, a velocity com-

ponent may force a particle to move to a point outside the

bounded search space. Such a component is truncated and

the particle does not move beyond the boundary of the cor-

responding dimension. Since the object(s) motion needs to

be continuously tracked in a sequence instead of being es-

timated in a single frame, temporal continuity is exploited.

More specifically, the solution over frame t is used to re-

strict the search space for the initial population at frame

t+1. In related experiments, the search range (or the space

in which particle positions are initialized) extend ±40mm
(for positional parameters) and ±10◦ (for rotational param-

eters) around their estimated values in the previous frame.

3.5. Implementation and performance issues

In order to achieve a real time frame rate, the proposed

pipeline was implemented using CUDA on an NVIDIA

GPU. In order to lower the computational requirements, the

input images are segmented around the last known solution.

The bounding box of the tracked objects is computed for

each frame by rendering a synthetic view of the scene in

full resolution as it appeared in the previous frame and then

segmenting an area around the objects. The distinctiveness

maps are computed only for the segmented images.

PSO is inherently parallelizable since the particles are

only synchronized at the end of each generation. In our im-

plementation we exploit this feature by evaluating the ob-

jective function for each particle in parallel, using CUDA.

For each generation all hypothesized scene configurations

are rendered using OpenGL. Our reference implementation

can achieve near real time performance (15−20fps) for sin-

gle hand tracking running with a budget of 32 particles and

32 generations on a computer equipped with an Intel i7 950

@ 3.07GHz CPU, 12GB of RAM and an NVidia GTX970

GPU. Although the rendering of each generation can be per-

formed in a single OpenGL drawing call, the reference im-

plementation renders once for each camera view. Further

optimizations in the pipeline implementation could increase

the performance significantly on the same hardware.
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Figure 4. Quantitative evaluation of the proposed method: Columns (left to right), single hand, hand-object, two hands. Top row: 3D

tracking error as a function of the PSO particles and the generations for the baseline methods and the proposed one. Bottom row: percentage

of successfully tracked frames for the baseline methods (dashed) and the proposed one with different budgets as a function of the error

tolerance (see text for details).

4. Experimental evaluation

While in recent years some datasets with ground truth

for tracking articulated hand motions have been made avail-

able, they use RGBD sensors and not stereo. In order to

evaluate the proposed method and provide a fair comparison

to other methods, the standard protocols used in the relevant

literature [28, 26, 19] were followed. Synthetic stereo and

RGBD datasets were created using the tracking results of

baseline RGBD methods on real world sequences. The sce-

narios in the datasets consist of articulations of (a) a single

hand, (b) a hand interacting with an object and (c) two in-

teracting hands. To evaluate quantitatively the performance

of our approach, we directly compare it with state of the

art model-based methods that use RGBD input. For the ex-

periments, we used our implementation of [27] for single

hand tracking and our implementation of [29] for two hands

tracking. A variant of [29] was also used to track a hand in-

teracting with a rigid object. In our implementations, the

above methods were adapted so as to operate with skinned

hand models instead of hand models consisting of collec-

tions of geometric solids. This reduces the tracking error of

the baseline approaches over the original methods reported

in [27, 29]. In the qualitative experiments, we considered

multiple sequences covering several indoors and outdoors

scenarios.

4.1. Datasets

Synthetic data: For the single and two hands tracking sce-

narios we used1 the synthetic sequences and ground truth

presented in [27, 29]. For the hand-object tracking scenario

we captured an RGBD sequence of a human manipulating

a spray bottle. The spray bottle model was created with

a laser scanner which provides millimetre accuracy. The

hand-object sequence was tracked with the variant of [29]

in order to obtain a ground truth. Subsequently, the ground

truth from the three sequences was used to render (a) syn-

thetic stereo datasets to be used by our method and (b) syn-

thetic RGBD to be used by the baseline RGBD methods we

compare against. For the synthetic RGB images, the tex-

ture information of the hands and object were used during

rendering. The rendered models were illuminated using an

ambient light source. Real world images of indoor environ-

ments were captured with the ZED sensor [49] and used as

the background of the models for the synthetic stereo.

The single hand (SH) sequence consists of 638 frames,

the hand-object sequence (HO) of 545 frames and the two-

hands sequence (TH) of 705 frames. All sequences cover

challenging articulations of hands as well as hand-object

and hand-hand interactions. To the best of our knowledge,

no other datasets with ground truth exist for tracking hand-

object and hand-hand interactions with a stereo pair. We

plan to make all three sequences publicly available.

1Became available to us after contacting the authors of [27, 29].
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Real world sequences: In order to support the qualitative

evaluation of the proposed method on real data, stereo se-

quences were captured using the ZED stereo pair both in-

doors and outdoors. Three different groups of sequences

were recorded, for the problems of tracking a single hand,

hand-object interaction and two hands. The real world se-

quences were recorded at different combinations of resolu-

tions and frame rates (1080p, 720p, 30fps and 60fps) both

indoors and outdoors. The sequences show a user perform-

ing various hand motions, manipulating an object in front of

the camera and performing bi-manual hand gestures. The

hand models used (see Section 3.1) do not exactly match

the user’s hands (e.g., differ in size and finger length). For

the hand-object real-world sequences the object used was

a pencil-box. The box was modelled as a cuboid that is

just an approximation to the actual object’s 3D shape. It

is demonstrated that the proposed method is robust to these

inconsistencies between the scene models and the actual ob-

servations.

4.2. Performance metrics

We use standard metrics to assess the tracking error of

the evaluated methods. For a hand, the tracking error is

computed as the mean distance of the corresponding hand

joints from the ground truth. For an object model, we use

3 anchor points on the object’s model. The error of the ob-

ject pose is the mean distance of the tracked anchor points

from the corresponding ground truth. The tracking error

for a frame is the average tracking error of all the objects

it involves. Finally, the tracking error of a sequence is the

average per-frame tracking error.

4.3. Results

Deciding internal parameters: As presented in Section 3,

the proposed method entails the setting of (a) the distinc-

tiveness threshold wT that controls the image points that

contribute to the objective function (Eq. 4) and (b) β, which

gauges the steepness of the color similarity curve (Eq. 5).

Using the synthetic dataset for the single hand, we investi-

gated the effect of different parameter values on the accu-

racy of the method. Figure 3 (left), shows the tracking error

for a range of β values (30 ≤ β ≤ 350) and wT = 0.1.

The right plot in this figure shows the tracking error for

0.0 ≤ wT ≤ 0.45 and β = 100. The tests are performed

with a relatively restricted PSO budget (32 particles and 32

generations) where a fine tuned objective function is needed

to achieve good results and, thus, performance differences

are more prominent. The plots show the mean tracking er-

ror over multiple runs as well as the standard deviation.

It can be verified that good performance is attained for a

wide range of values for both parameters, indicating that

the method is not sensitive to their exact setting. The values

wT = 0.1 and β = 100 were used in all experiments.

Figure 5. Qualitative evaluation. Results on real world sequences.

Tracking of a single hand sequence (left), of a hand interacting

with a pencil box (middle) and of two interacting hands (right).

Figure 6. Tracking of a single hand on an outdoors sequence. The

tracking result is superimposed on the image while the segmented

hand is shown in the top left of each frame.

Figure 7. Top row: applying the approach of [27] on the depth

maps produced by the ZED camera fails immediately (tracking

result in red). Bottom row: the proposed method tracks correctly

the hand (tracking result in green). From left to right: frames 1

(initialization), 2 and 15.

Quantitative evaluation of tracking accuracy: Using the

synthetic sequences we measure the tracking error of the
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proposed method as a function of different PSO budget con-

figurations. In these the experiments, both methods (pro-

posed and baseline) are initialized at the first frame of the

sequence using the known ground truth for the frame (same

initial position). Tracking failures were not re-initialized.

Each plot on the top row of Figure 4 shows the tracking er-

ror of the proposed method and its RGBD competitor for

the SH, HO and TH datasets (left to right). For each data

point we consider the mean over 10 runs.

The proposed method performs similarly or better for the

SH dataset when compared to [27] despite the fact that the

proposed method relies on much less (or implicit) informa-

tion compared to [27]. For the problems of higher dimen-

sionality the results indicate that RGBD solutions are more

accurate but only by a small margin.

The bottom row of Figure 4 shows the percentage of

frames of a dataset for which the tracking error was be-

low a certain threshold. There are six curves in each plot.

The dashed curves correspond to the RGBD baseline meth-

ods. Each color corresponds to a different PSO budget

(particles×generations). It is interesting to note that when

given a higher computational budget, the proposed method

can achieve similar or better accuracy to the RGBD coun-

terpart on the HO and TH datasets.

Assessing the effect of foreground detection: The RGBD

methods use segmented depth as input. Typically, this is

achieved either using skin color detection on the RGB in-

put (less robust) or based on depth segmentation (more ro-

bust). In order to make a fair comparison between the pro-

posed and the methods we are comparing against, in the ex-

periments reported in Figure 4, we used the same masking

method for all evaluated methods. However, in real life, our

stereo-based approach does not have access to the more ro-

bust depth-based foreground segmentation. In that respect,

we are interested in assessing the influence of foreground

masking on the performance of the proposed method. We

performed the same experiments, for different PSO bud-

get configurations, with and without foreground masking.

Masking reduces tracking error but only marginally (0.3mm

on average). Thus, foreground masking can be skipped

without significantly affecting the tracking accuracy.

Qualitative evaluation in real world sequences: Figure 5

shows representative frames with tracking results on the

real world datasets. The computed pose is superimposed

on the left RGB image of the stereo pair. Different objects

are shown in different color (red and yellow). On the top

left of each frame the original bounding box of the obser-

vation is shown. While depth-based methods fail outdoors

due to ambient infrared light, our stereo based method does

not suffer from this problem. In Figure 6 we demonstrate

results from an outdoors sequence tracking a single hand

in short (< 0.5m) and longer ( 3m) distances. In all se-

quences, tracking is performed without any foreground seg-

mentation. Complete results are provided in the supplemen-

tary material accompanying the paper2.

Tracking by relying on depth from stereo: A straightfor-

ward idea for stereo-based tracking would be to first recon-

struct 3D structure and then use the approach of [27, 29]

on the resulting depth maps. This approach is also explored

in [66]. We evaluated this alternative compared to our color

consistency based approach that bypasses the problem of

3D reconstruction. Essentially, we fed the RGBD based ap-

proach with the stereo-based depth information provided by

the ZED camera and made sure that the depth around the

hand was segmented correctly. It turns out that this is a

rather unreliable solution that fails very fast. This is due to

the quality of the depth information which is either dense

but very noisy, or reliable but sparse or smoothed out. Fig-

ure 7 shows indicative results. Both methods are initialized

at the same initial position on the first frame but they di-

verge quickly. The depth based method looses track after

very few frames.

5. Summary and conclusions

The proposed method is the first that can cope accu-

rately and efficiently with these tracking scenarios based

on a conventional short baseline stereo. By employing a

hypothesise-and-test framework, we cast tracking as an op-

timization problem that maximizes the color consistency of

the tracked scene. Thus, we avoid the explicit computation

of disparity maps which is particularly challenging for the

relatively uniformly colored human hands. Our approach

achieves similar, and in some cases, better tracking accu-

racy than state of the art methods that rely on depth sensors,

at a comparable computational performance. Our genera-

tive approach could be made part of a hybrid pipeline. This

would enable automatic initialization and re-initialization.

The evaluation of a hybrid approach is left for future work.

From a theoretical point of view, the significance of the

proposed method is that it shows that accurate 3D struc-

ture information is not a prerequisite for 3D hand tracking

and related problems. From a practical point of view, our

method enables 3D hand tracking based on compact, con-

ventional, widely deployed, passive vision systems that do

not have the limitations of contemporary RGBD cameras.

Moreover, although we focus on the challenging tracking

scenarios involving hands, nothing prevents the applicabil-

ity of the proposed algorithm to problems such as human

skeleton tracking and 3D tracking of rigid objects.
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