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Abstract

This paper proposes a novel framework for the fusion of

depth data produced by a Time-of-Flight (ToF) camera and

a stereo vision system. The key problem of balancing be-

tween the two sources of information is solved by extracting

confidence maps for both sources using deep learning. We

introduce a novel synthetic dataset accurately representing

the data acquired by the proposed setup and use it to train a

Convolutional Neural Network architecture. The machine

learning framework estimates the reliability of both data

sources at each pixel location. The two depth fields are

finally fused enforcing the local consistency of depth data

taking into account the confidence information. Experimen-

tal results show that the proposed approach increases the

accuracy of the depth estimation.

1. Introduction

There exist many different devices and algorithms for

real-time depth estimation including active lighting devices

and passive systems exploiting only regular cameras. The

first family includes structured light cameras and Time-of-

Flight (ToF) sensors while the most notable example of the

second family are the stereo setups. None of these solu-

tions is completely satisfactory, active devices like Time-

of-Flight and structured light cameras are able to robustly

estimate the 3D geometry independently of the scene con-

tent but they have a limited spatial resolution, a high level

of noise and a reduced accuracy on low reflective surfaces.

Passive stereo vision systems, although widely used for the

simple technology, have various limitations, in particular

their accuracy strongly depends on the scene content and the

acquisition is not very reliable on uniform or repetitive re-

gions. On the other side, passive stereo vision systems have

a high resolution and a limited amount of noise. The charac-

teristics of the two approaches are complementary and the

fusion of data from the two systems has been the subject of

several research studies in the last years.

This paper proposes a depth estimation algorithm com-

bining together stereo and ToF data. An effective solution

for this task needs two fundamental tools: the estimation

of the reliability of the data acquired by the two devices at

each location and a fusion algorithm that exploits this infor-

mation to properly combine the two data sources. The relia-

bility of ToF data has traditionally being estimated by using

noise models for these sensors [37]. ToF sensors are typi-

cally affected by various sources of noise. Shot noise can be

estimated from the amplitude and intensity of the received

signal, but, evaluating depth estimation issues specific of

their working principles like the mixed pixels and the multi-

path error is more challenging. In particular the latter, due to

light rays scattered multiple times before reaching the sen-

sor, is very difficult to be directly estimated and removed.

In this work instead we use a deep learning framework to

estimate confidence data for ToF information.

Stereo data confidence is typically estimated with differ-

ent metrics based on the analysis of the shape of the cost

function [16]. These metrics capture the effects of the local

matching cost computation, but most recent stereo vision

techniques exploit complex global optimization schemes

whose behavior is not captured by standard metrics. For

this reason, coherently with the approach used for ToF data,

we exploit a deep learning framework also for stereo confi-

dence information.

Finally we use an extended version of the Local Consis-

tency (LC) framework able to exploit the confidence data

[6, 21] to perform the fusion of the two data sources.

The proposed algorithm starts by reprojecting ToF data

on the stereo camera viewpoint and upsamples the data to

the spatial resolution of the stereo setup by using a combi-

nation of segmentation clues and bilateral filtering [6]. Then

confidence information for ToF depth data is estimated. For

this task we developed an ad-hoc Convolutional Neural Net-

work (CNN) that takes in input multiple clues, i.e., the

stereo and ToF disparities, the ToF amplitude and the dif-

ference between the left image and the right one warped

according to disparity information, providing a hint of the

stereo matching accuracy, and jointly estimates both stereo

and ToF confidence measures.
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It is customary that the training of CNNs requires a good

amount of data with the corresponding ground truth infor-

mation. At the time of writing there are no available datasets

collecting these data and furthermore the acquisition of ac-

curate ground truth data for real world 3D scenes is a chal-

lenging operation.

For this reason we rendered 55 different 3D synthetic

scenes using Blender [1] with examples of various acqui-

sition issues including reflections and global illumination.

Realistic stereo and ToF data have been simulated on the

rendered scenes using LuxRender [20] and a simulator real-

ized by Sony EuTEC starting from the simulator presented

by Meister et al. [23]. This dataset, that represents another

contribution to this paper, has been used to train the CNN

that proved to be able to accurately estimate a confidence

measure for both stereo and ToF depth acquisitions even in

challenging situations like mixed pixels on boundaries and

multi-path artifacts affecting ToF estimations.

Finally, the two data sources are fused together. The pro-

posed fusion algorithm has been derived from [21]. The

framework extends the LC method [22] to combine the con-

fidence measures of the data produced by the two devices.

It computes a dense disparity map with subpixel precision

by combining the two sources of information enforcing the

local consistency of the measures weighted according to the

computed confidence information.

The next section summarizes the related works in Sec-

tion 2. Then, Section 3 introduces the general architecture

of the approach. Section 4 describes the deep learning net-

work used to compute confidence information. The fusion

algorithm is described in Section 5. The synthetic dataset is

described in Section 6 and the results are finally discussed

in Section 7. Section 8 draws the conclusions.

2. Related Works

Stereo vision systems can estimate depth data from two

standard images by exploiting the well known triangulation

principle. A significant amount of research studies focused

on this family of 3D data acquisition systems and a detailed

review can be found in [33]. The depth estimation accu-

racy of these systems depends on many factors, including

not only the specific matching algorithm used to estimate

the disparity map but also the photometric content of the

scene. In particular, the estimation is prone to errors in re-

gions with fewer details, e.g. a planar wall with no texture,

or repetitive patterns. For this reason it is important to es-

timate the reliability of the computed data. An exhaustive

review about techniques for confidence estimation in stereo

vision system can be found in [16]. Notice how the confi-

dence information for stereo systems used to be computed

with deterministic algorithms based on the analysis of the

matching cost function and only recently deep learning ap-

proaches have been exploited for this task [27, 31, 28].

ToF cameras have also attracted the attention of the re-

search community working on depth acquisition systems

[14, 29, 37, 26, 17, 13], since they can acquire depth infor-

mation in real-time and many low cost devices using ToF

principles are currently available in the consumer market.

Differently from stereo vision systems, ToF cameras can

estimate accurately the depth values also in regions with-

out texture or with repetitive patterns since they don’t rely

uniquely on the scene content for depth estimation. On

the other side these devices have various limitations as the

low resolution and high noise levels. Furthermore, they

are affected by systematic errors as multi-path interference,

mixed pixels and noisy estimation on low reflective regions.

In [17] it is possible to find a detailed analysis of the vari-

ous error sources and [13] focuses on the effects of the low

reflectivity of the scene on the depth estimation.

ToF cameras and stereo vision systems are based on dif-

ferent depth estimation principles and they have comple-

mentary strenghts and weaknesses, therefore a fusion of the

data acquired from the two sources can lead to a more reli-

able depth estimation. Different works on stereo-ToF depth

fusion can be found in the literature, e.g., [25] and [37]

present two complete reviews of the different approaches.

The combination of a ToF camera with a stereo vision

system in order to estimate and then fuse two depth maps of

the scene has been used in several works [19, 13, 10, 18].

In order to perform the fusion Zhu et Al. [40, 39, 41] used

a MAP-MRF Bayesian formulation where a global energy

function is optimized with belief propagation. Dal Mutto et

Al. [4] also used a probabilistic formulation and computed

the depth map with a ML local optimization. In a more

recent version of the approach [5] a global MAP-MRF op-

timization scheme has been used in place of the ML opti-

mization. Nair et Al. [24] instead used a variational fusion

framework. An interesting contribution of this approach is

the use of confidence measures for the ToF and stereo vi-

sion systems in order to control the process. Evangelidis et

Al. [9] estimate the depth information by solving a set of

local energy minimization problems. Another solution [6]

consists in using a locally consistent framework [22] to fuse

the two data sources. This approach has been improved in

[21] by extending the LC framework driving the fusion pro-

cess with the depth map confidences in order to take in ac-

count the different nature and reliability of the data sources.

In this paper we started from the idea in [21], but instead

of using heuristic cues to compute the confidence data we

present a CNN framework for confidence estimation.

A strictly related problem is the fusion of the data deliv-

ered by a ToF camera with that from a single color camera

[7, 36, 35, 30, 11, 8]. For this task different strategies have

been proposed, including methods based on bilateral filter-

ing [36, 35], edge-preserving schemes [11] and methods ex-

ploiting confidence information for ToF data [30].
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Figure 1. Flowchart of the proposed approach.

3. Proposed Method

The considered acquisition system is made of a ToF cam-

era and a stereo vision system each producing an estimation

of depth data from the corresponding viewpoint. The goal

of the proposed method is to provide a dense depth map

from the point of view of one of the color cameras of the

stereo setup.

We will assume that the two acquisition systems have

been jointly calibrated (this can be done using ad-hoc tech-

niques for this kind of setups, e.g., the one proposed in [4]).

The algorithm includes four steps (see Figure 1):

1. The depth information acquired from the ToF sensor is

firstly reprojected to the reference color camera view-

point. Since ToF sensors have typically a lower res-

olution than color cameras, it is also necessary to in-

terpolate the ToF data. For this task we used the ap-

proach proposed in [6]. More in detail the color im-

age is firstly segmented using Mean-Shift clustering

[3] and then an extended cross bilateral filter with an

additional segmentation-based term besides the stan-

dard color and range ones is used to interpolate the data

and to produce a high resolution depth map aligned

with the color camera lattice. Since the fusion algo-

rithm works in disparity space, the computed depth

map is also converted to a disparity map with the well

known inversely proportional relationship between the

two quantities. For more details on the ToF reprojec-

tion and upsampling we refer the reader to [6].

2. A high resolution depth map is computed from the two

color views by applying a stereo vision algorithm. The

proposed approach is independent of the stereo algo-

rithm used to compute the disparity map, however for

the current implementation we used the Semi-Global

Matching (SGM) algorithm [15]. This algorithm per-

forms a 1D disparity optimization on multiple paths

that minimizes an energy term made of point-wise or

aggregated matching costs and a regularization term.

3. Confidence information for the stereo and ToF dispar-

ity maps are estimated using the Convolutional Neural

Network architecture of Section 4.

4. The upsampled ToF data and the stereo disparity are

finally fused together using an extended version of the

LC technique [22] as described in Section 5.

4. Learning the Confidence with Deep Net-

works

We use a Convolutional Neural Network (CNN) model

to estimate the confidence information that will be used in

the fusion algorithm of Section 5. The proposed CNN takes

as input both ToF and stereo clues and outputs the confi-

dence map for each of the two devices.

The input data are extracted from the ToF and stereo dis-

parity maps, the ToF amplitude and the color images by ap-

plying a simple and fast preprocessing step. For any given

scene i in the dataset the following data are considered:

• DT,i the ToF disparity map reprojected on the refer-

ence camera of the stereo vision system.

• AT,i the ToF amplitude image reprojected on the ref-

erence camera of the stereo vision system.

• DS,i the stereo disparity map.

• IR,i the right stereo image converted to greyscale.

• IL′,i left stereo image converted to grayscale and re-

projected on the right camera using the disparity com-

puted by the stereo algorithm.

The first clue, ∆′
LR,i, is extracted from the left and right

greyscale images IL′,i and IR,i in a two-step procedure.

First, the absolute difference between their scaled versions

is computed:
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Figure 2. Architecture of the proposed Convolutional Neural Network (CNN). The size of the outputs produced at the end of each convo-

lutional layer is also reported for the case where a single 4-channel training patch of size 142× 142 is fed as input to the CNN.

∆LR,i =
∣

∣

∣

IL,i

µL,i

−
IR,i

µR,i

∣

∣

∣
(1)

where the scaling factors µL,i and µR,i are the averages cal-

culated on the left and right images respectively. The value

returned by Eq. (1) is then divided by σ∆LR
, the average

of the standard deviations calculated for each ∆LR,j for j
varying across the scenes in the training set:

∆′
LR,i = ∆LR,i/σ∆LR

(2)

The other three clues D′
T,i, D

′
S,i and A′

T,i are obtained

straightforwardly from ToF and stereo disparities and ToF

amplitude by applying a normalization similar to the one in

Eq. (2), that is:

D′
T,i = DT,i/σDT

(3)

D′
S,i = DS,i/σDS

(4)

A′
T,i = AT,i/σAT

(5)

where σDT
, σDS

and σAT
are the average of the standard

deviations calculated for each disparity or amplitude repre-

sentation in the training set. Finally, the four clues ∆′
LR,i,

D′
T,i, D

′
S,i and A′

T,i are concatenated in a four-channel in-

put image which is fed to the CNN in order to produce two

confidence maps PT and PS for ToF and stereo data respec-

tively.

The inference process is better explained by Figure 2 that

shows the architecture of the proposed CNN. It contains a

stack of six convolutional layers each followed by a ReLU

non-linearity with the exception of the last one. The first

five convolutional layers have 128 filters each, the first layer

has a window size of 5 × 5 pixels while all others have a

window size of 3 × 3 pixels. The last convolutional layer

has only two filters, producing as output a two-channels im-

age where the two channels contain the estimated ToF and

stereo confidence respectively. Notice that, in order to pro-

duce an output with the same resolution of the input, no

pooling layers have been used. At the same time, to cope

with the boundary effect and size reduction introduced by

the convolutions, each input image is padded by 7 pixels

along their spatial dimensions, where the padded values are

set to be equal to the values at the image boundary.

4.1. Training

A large set of training examples has been generated by

randomly extracting a number of patches from each scene

in the training set. Each patch has a size of 128 × 128 pix-

els (that becomes 142 × 142 after padding). During this

process, a set of standard transformations have also been

applied to augment the number of training examples and

ease regression, namely rotation by ±5 degrees, horizontal

and vertical flipping. In our experiments, we extracted 30
patches from each of the 40 scenes included in the training

set, and considering also their transformed versions at the

same corresponding location we obtained a total of 6000
patches.

Both ToF and stereo ground truth confidence maps have

been generated from the absolute error of the two dispar-

ity estimations against the disparity ground truth of the

scene, that is available in the dataset. More specifically,

each ground truth confidence map has been computed by

first clipping all values above a given threshold in the corre-

sponding disparity absolute error map, then dividing by the

same threshold in order to obtain values in the range [0, 1].

The network has been trained to minimize a loss func-

tion defined as the Mean Squared Error (MSE) between the

estimated ToF and stereo confidence maps and their corre-

sponding ground truth. To this aim, we employed a stan-

dard Stochastic Gradient Descent (SGD) optimization with

momentum 0.9 and batch size 16. We started the training

with an initial set of weight values derived with Xavier’s
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procedure [12] and an initial learning rate of 10−7 subject

to a constant decay by a coefficient of 0.9 every 10 epochs.

The network has been implemented using the MatConvNet

framework [34]. The training of the network took about 3
hours on a desktop PC with an Intel i7-4790 CPU and an

NVIDIA Titan X (Pascal) GPU.

5. Fusion of Stereo and ToF Disparity

The final step is the fusion of the disparity maps from

the upsampled ToF camera and the stereo vision system us-

ing the confidence information estimated by the deep learn-

ing framework. For each pixel location, we aim at com-

bining different depth hypotheses from the two subsystems

to obtain a more accurate depth estimation. For this task

we used a modified version of the approach of [21]. This

method is based on the Locally Consistent (LC) technique

[22], a method firstly introduced for the refinement of stereo

matching data. In [6] this method has been extended in or-

der to be used with multiple disparity hypotheses as in the

case of our setup. A further extension has been proposed in

[21], that modifies the original formulation to account for

the confidence measures and introduces sub-pixel precision.

The idea behind the method is to start by computing the

plausibility of each valid depth measure at each point. The

plausibility is a function of the color and spatial consis-

tency of the data. Multiple plausibilities are then propagated

to neighboring points. In the final step the overall plau-

sibility is accumulated for each point and a winner-takes-

all strategy is used to compute the optimal disparity value.

For more details on this technique we refer the reader to

[22, 6, 21]. Notice that in this work the parameters of the

method have been set to γs = 8 and γc = γt = 4.

The extension of the method proposed in [6] produces

reasonable results, but has the limitation that assign the

same weight to the two data sources without accounting for

their reliability.

The further extension of the method proposed in [21] as-

signs different weights to the plausibilities depending on the

confidence estimation for the considered depth acquisition

system computed at the considered point:

Ω′
f (d) =

∑

g∈A

(

PT (g)Pf,g,T (d) + PS(g)Pf,g,S(d)
)

(6)

where Ω′
f (d) is the plausibility at point f for depth hypoth-

esis d, Pf,g,T (d) is the plausibility propagated by neighbor-

ing points g according to ToF data and Pf,g,S(d) is the one

according to stereo data. Finally PT (g) is the ToF confi-

dence value at location g and PS(g) the stereo confidence

value. In [21] the confidence information comes from a de-

terministic algorithm based on the noise model for the ToF

sensor and from the cost function analysis for the stereo

system, while in the proposed approach the confidence is

estimated with the CNN of Section 4.

6. Synthetic Dataset

Another contribution of this paper is the new synthetic

dataset that we will call SY NTH3. This dataset has been

developed for machine learning applications and is split into

two parts, a training set and a test set. The training set con-

tains 40 scenes, among them the first 20 are unique scenes

while the remaining ones are obtained from the first set by

rendering them from different viewpoints. Notice that, even

if the number of scenes is low if compared with the datasets

used in other fields, it is still the largest dataset for stereo-

ToF fusion currently available and each scene has different

characteristics. The test set is composed by the data ac-

quired from 15 unique scenes.

Each synthetic scene is realized by using the Blender
3D rendering software [1]. The Blender scenes have been

downloaded from the BlendSwap website [2]. We have

appropriately modified the scenes and generated a dataset

for Stereo-ToF data by rendering these scenes into virtual

cameras.

The various scenes contain furnitures and objects of sev-

eral shapes in different environments e.g., living rooms,

kitchen rooms or offices. Furthermore, some outdoor lo-

cations with non-regular structure are also included in the

dataset. In general, they appear realistic and suitable for the

simulation of Stereo-ToF acquisition systems. The depth

range across the scenes goes from about 50 cm to 10 m,

providing a large range of measurements.

We have virtually placed in each scene a stereo system

with characteristics resembling the ones of the ZED stereo

camera [38] and a ToF camera with characteristics similar to

a Microsoft Kinect v2 [32, 37]. The stereo system is com-

posed by two Full-HD (1920 × 1080) color cameras with

a baseline of 12 cm and the optical axes and image planes

parallel to each other. The data acquired from these cameras

are already rectified. Also the image plane and optical axis

of the Kinect sensor are parallel to those of the ZED cam-

eras and the Kinect sensor is placed under the right camera

of the stereo system at a distance of 4 cm. The considered

acquisition system is depicted in Figure 3 that shows the

relative positions of the 2 cameras and ToF sensor. Table 1

summarizes the parameters of the acquisition system.

Stereo setup ToF camera

Resolution 1920× 1080 512× 424
Horizontal FOV 69◦ 70◦

Focal length 3.2mm 3.66mm
Pixel size 2.2 µm 10 µm

Table 1. Parameters of the stereo and ToF subsystems.

The dataset contains for each scene: 1) the 1920× 1080
color image acquired by the left camera of the stereo sys-

tem, 2) the 1920 × 1080 color image acquired by the right

camera of the stereo system, 3) the depth map estimated by
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Figure 3. Representation of the Stereo-ToF acquisition system.

The Figure shows the relative position of the color cameras and

ToF camera.

the ToF sensor on the synthetic scene and 4) the relative

amplitude map of the ToF sensor.

The color images have been generated directly in

Blender using the 3D renderer LuxRender [20]. The data

captured by the Kinect ToF camera have been obtained by

using the ToF -Explorer simulator developed by Sony Eu-

TEC. The ToF -Explorer simulator was first designed ac-

cording to the ToF simulator presented by Meister et al. in

[23] that accurately simulate the data acquired by a real ToF

camera including different sources of error as shot noise,

thermal noise, read-out noise, lens effect, mixed pixels and

the interference due to the global illumination (multi-path

effect). The ToF simulator uses as input the scene informa-

tion generated by Blender and LuxRender.

Moreover, the dataset contains also the scene depth

ground truth relative to the point of view of both the Kinect

and the right color camera of the stereo system. To the best

of our knowledge SY NTH3 is the first synthetic dataset

containing all the aforementioned data that can be used for

deep learning applications. The dataset can be downloaded

from http://lttm.dei.unipd.it/paper data/deepfusion.

7. Experimental Results

The proposed fusion algorithm has been trained on

the training set and then evaluated on the test set of the

SY NTH3 dataset. As pointed out in Section 6, the test set

contains 15 different scenes. The thumbnails of the various

scenes are shown in Figure 4, notice how they contain dif-

ferent challenging environments with different acquisition

ranges, complex geometries and strong reflections. Also

different materials, both textured and un-textured have been

used. The acquisition setup and the camera parameters are

the same of the training set discussed in Section 6. Ground

truth data have been computed by extracting the depth map

from the Blender rendering engine and then converting

it to the disparity space. The algorithm takes in input the

512 × 424 depth and amplitude maps from the ToF sensor

and the two 960× 540 color images from the cameras. The

color cameras resolution has been halved with respect to the

original input data in the dataset. The output is computed

on the point of view of the right camera at the same (higher)

resolution of color data and it has been cropped to consider

only on the region that is framed by all the three sensors.

Figure 4. Test set used for the evaluation of the performance of the

proposed method. The figure shows the right camera color image

for each scene in the dataset.

Before evaluating the performances of the fusion scheme

we analyze the confidence information computed with the

proposed CNN used to control the fusion process. Figure 5

shows the color image and the confidence maps for a few

sample scenes.

The second column shows the ToF confidence, it is no-

ticeable how the CNN is able to estimate the areas of larger

error by assigning low confidence (darker pixels in the im-

ages). A first observation is that in most of the confidence

maps it is possible to see how the error is larger in proxim-

ity of the edges. It is a well-known issue of ToF sensors due

to the limited resolution and due to the mixed pixel effect.

Furthermore, by looking for example at rows 2 and 4, it is

visible how the CNN has also correctly learned that the ToF

error is higher on dark surfaces due to the lower reflection

(e.g., on the dark furniture in row 2 or on the black squares

of the checkerboard in row 4, or on some of the rocks in

row 1). The multi-path is more challenging to be detected,

but row 4 shows how the confidence is lower on the wall

edges or behind some stairs element in row 3. Concerning

the stereo confidence the results are also good. Also in this

case the limited accuracy on edges is detected and a low

confidence is assigned. Furthermore, some surfaces with

uniform or repetitive patterns have a lower confidence, e.g.,

some rocks in row 1.

The computed confidence information is then used to
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a) Color view b) ToF conf. c) Stereo conf.
Figure 5. Confidence information computed by the proposed deep

learning architecture for some sample scenes: a) Color view;

b) Estimated ToF confidence; c) Estimated stereo confidence.

Brighter areas correspond to higher confidence values, while

darker pixels to low confidence ones.

drive the fusion process. Figure 6 shows the output of the

proposed algorithm on some sample scenes. Column 1 and

2 show a color view of the scene and the ground truth dis-

parity data. The up-sampled, filtered and reprojected ToF

data are shown in column 3, while column 4 contains the

corresponding error map. Columns 5 and 6 show the dis-

parity estimated by the stereo vision algorithm and the cor-

responding error map. Concerning stereo data, for this work

we used the OpenCV implementation of the SGM stereo al-

gorithm with pointwise Birchfield-Tomasi metric, 8 paths

for the optimization and a window size of 7 × 7 pixels.

The fused disparity map and its relative error are shown

in columns 7 and 8. Starting from ToF depth data, this is

the more accurate of the two data sources, the filtered and

interpolated data is quite accurate, even if there are issues

in proximity of edges that are sometimes not too accurate.

Also low-reflective surfaces like the black checkers in row

4 are very noisy and sometimes not acquired at all. The

multi-path affects some regions like the steps of the stairs.

Stereo based disparity maps usually have sharper edges but

there are several artifacts due to the well-known limitations

of this approach. The fusion algorithm reliably fuse the in-

formation coming from the two sensors providing a depth

map with less artifacts on edges and free from the various

problems of the stereo acquisition.

The numerical evaluation of the performances is shown

in Table 2 and confirms the visual analysis. The table shows

the RMS in disparity space averaged on all the 15 scenes.

For a fair comparison, we considered as valid pixels for the

results only the ones having a valid disparity value in all

the compared disparity maps (stereo, ToF and fused dispar-

ities). By looking at the averaged RMS values, the ToF sen-

sor has a high accuracy with a RMS of 2.19, smaller than

the RMS of 3.73 of the stereo system. This is a challenging

situation for fusion algorithms since it is difficult to improve

the data from the best sensor without affecting it with errors

from the less efficient one. However confidence data helps

in this task and the proposed approach is able to obtain a

RMS of 2.06 with a noticeable improvement with respect to

both sensors. Comparison with state-of-the-art approaches

is limited by the use of the new dataset and the lack of avail-

able implementations of the competing approaches. How-

ever, we compared our approach with the highly performing

method of Marin et Al. [21]. This approach has a RMS of

2.07, higher than the one of the proposed method even if the

gap is limited and the results comparable. The method of

[21] outperforms most state-of-the-art approaches, so also

the performances of the proposed method are expected to

be competitive with the better performing schemes, with

the advantage that the proposed approach does not involve

heuristics.

Method RMS Error

Interpolated ToF 2.19

SGM Stereo 3.73

Proposed Stereo-ToF Fusion 2.06

Marin et Al. [21] 2.07
Table 2. RMS in disparity units with respect to the ground truth

for the ToF and stereo data, the proposed method and [21]. The

error has been computed only on non-occluded pixels for which a

disparity value is available in all the methods.

8. Conclusions and Future Work

In this work we presented a scheme for the fusion of

ToF and stereo data exploiting confidence information com-

ing from a deep learning architecture. We created a novel

synthetic dataset containing a realistic representation of the

data acquired by the considered acquisition setup. A convo-

lutional neural network trained on this dataset has been used

to estimate the reliability of ToF and stereo data, obtaining

reliable confidence maps that identify the most critical ac-

quisition issues of both sub-systems.

The fusion of the two data sources has been performed

using an extended version of the LC framework that com-

bines the confidence information computed in the previous

step and provides an accurate disparity estimation. The re-

sults show how the proposed algorithm properly combines

the outputs of the two sensors providing on average a dis-

parity map with higher accuracy with respect to each of the
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Color view Ground Truth Disparity Error Disparity Error Disparity Error

Figure 6. Results of the proposed fusion framework on 5 sample scenes (one for each row). In error images, grey pixels correspond to

points excluded since they are not valid on one of the disparity maps. The intensity of red pixels is proportional to the absolute error. (Best

viewed in color).

two sub-systems, also considering that ToF data have typi-

cally high accuracy.

Further research will be devoted to improve the deep

learning architecture in order to obtain a more reliable con-

fidence information. The use of deep learning architectures

to directly compute the final output will be also explored.

Finally we plan to extend the proposed dataset to better train

the machine learning algorithms and to evaluate the method

also on real data.
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