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Figure 1. Large-scale map reconstructed online by SkiMap++ through a mobile robot equipped with an head-mounted RGB-D camera.

Purple spheres represent areas found alongside with reconstruction which are likely to contain object instances. Magnified circles represent

outcomes of the final Instance Estimation Algorithm, which is performed in the aforementioned areas only. The whole map is acquired by

relying on the robot’s own odometry in order to track camera poses over time.

Abstract

We introduce SkiMap++, an extension to the recently

proposed SkiMap mapping framework for robot navigation

[1]. The extension deals with enriching the map with se-

mantic information concerning the presence in the environ-

ment of certain objects that may be usefully recognized by

the robot, e.g. for the sake of grasping them. More precisely,

the map can accommodate information about the spatial

locations of certain 3D object features, as determined by

matching the visual features extracted from the incoming

frames through a random forest learned off-line from a set

of object models. Thereby, evidence about the presence

of object features is gathered from multiple vantage points

alongside with the standard geometric mapping task, so to

enable recognizing the objects and estimating their 6 DOF

poses. As a result, SkiMap++ can reconstruct the geom-

etry of large scale environments as well as localize some

relevant objects therein (Fig.1) in real-time on CPU. As an

additional contribution, we present an RGB-D dataset fea-

turing ground-truth camera and object poses, which may

be deployed by researchers interested in pursuing SLAM

alongside with object recognition, a topic often referred to

as Semantic SLAM. 1

1. Introduction and related works

Autonomous robots rely on suitable mapping modules

to navigate within an unknown space. Different kinds of

mapping approaches have been proposed in literature in or-

der to fulfill different requirements and best trade between

richness/accuracy of the representation and computational

complexity. For example, a simple 2D occupancy grid al-

lows for efficiently planning a path through a large environ-

ment but might turn out much less effective than richer rep-

resentations (such as a 2.5 height map or a 3D voxel grid)

in helping the robot to avoid different types of obstacles.

To tackle some of the research issues associated with map-

1https://vision.disi.unibo.it/research/

110-skimap-pp

660

https://vision.disi.unibo.it/research/110-skimap-pp
https://vision.disi.unibo.it/research/110-skimap-pp


ping for robot navigation, we have recently introduced the

SkiMap framework [1], which turns out both time and mem-

ory efficient thanks to a novel core data structure organized

as a Tree of SkipLists and, peculiarly, features a multi-level

querying system capable to obtain rapidly representations

as diverse as a 3D voxel grid, a 2.5D height map and a 2D

occupancy grid.

In this paper we are concerned with extending SkiMap

to enrich the representation to the level of semantics, i.e.

so as to go beyond pure geometric mapping and incorpo-

rate information to enable detection of certain objects as

well as estimation of their 6 DOF poses in the world space.

This novel type of semantic mapping might be useful, e.g.,

to support an autonomous robot that would navigate within

an unknown environment while seeking for certain objects

that, if found, should be picked.

In literature, many works tackled the problem of 3D ob-

ject detection and pose estimation from RGB-D images.

Such techniques can be split between those relying on a

single view to perform detection [2, 3, 4], and those de-

ploying multiple images from several vantage points to as-

certain whether an object is located in the observed scene

and compute its pose. Multi-view object detection pipelines

have been presented by Thomas et al. [5], who track fea-

ture points across views to determine the location and pose

of the objects of interest jointly. Collet and Srinivasa [6]

propose to handle each view independently and then per-

form a global refinement. Civera et al. [7] detect object

instances in a sequence of images by means of SURF cor-

respondences [8] and insert such objects into a map refined

by a SLAM (Simultaneous Localization and Mapping) al-

gorithm. This work introduced the idea of integrating the

object detection into a SLAM pipeline to increase resilience

of object localization with respect to the partial occlusions

occurring in a single view: by reconstructing a consis-

tent model of the 3D scene, and performing the detection

therein, one can robustly identify the instances of interest

by exploiting -possibly partial- evidence accumulated over

time.

Object detection and 6DOF pose estimation from 3D

data may be achieved by detecting 3D keypoints, then com-

puting and matching 3D descriptors between the current

scene and a set of 3D models [9, 10, 11, 12]. A different

approach is due to Lai et al. [13, 14], who project per-pixel

object probabilities from RGB-D frames onto voxels to ob-

tain a semantic labeling of the scene, though in this work

object poses are not estimated.

Alternatively, one can augment a SLAM pipeline to ac-

count for the task of object instance detection: [15, 16]

were among the first papers to propose leveraging on rec-

ognized object instances as a means to improve the con-

sistency of the SLAM process and vice-versa. Tateno et

al. [17] propose to rely on a framework that simultaneously

deploys a SLAM algorithm (used to obtain a reconstruc-

tion of the scene), a segmentation algorithm and an object

recognition algorithm, so as to match descriptors to such

segments to provide accurate and stable 6DOF poses for

the objects of interest. Li et al. [18] also rely on the idea of

synergistic exploitation of SLAM reconstructions for object

detection, in order to improve scene understanding. This

task is accomplished by fusing object hypotheses from sin-

gle frames (possibly depicting partially-occluded instances)

into a Global Semantic Map, as introduced in [19].

This paper follows the above-mentioned line of work:

we propose a novel framework, referred to as SkiMap++,

which allows for simultaneous recognition of objects and

reconstruction of the environment as explored by a mobile

agent. By accumulating evidence for objects into an exten-

sible, real-time, mapping system, SkiMap++ can detect the

presence of objects of interest in a 3D reconstruction of the

scene and estimate their 6DOF pose.

2. Overview

The SkiMap++ framework is based on the SkiMap struc-

ture, which we introduced in [1] to realize efficient real-time

mapping of large scale environments. Among the key fea-

tures of this proposal are:

• Suited for large scale environments, thanks to a low

memory footprint.

• Fast random voxel access O(log n).

• Equipped with several components implementing the

Fusion/Erosion technique from [20], so as to optimize

the map on-line alongside with reconstruction.

• Ability to perform radius-based search with better per-

formance than Octree [21] and Kd-Tree [22].

The flexibility of the SkiMap data structure allow us to

adopt it in SkiMap++ pipeline in order to store not only

the map of the explored workspace but also the kind of

data instrumental to the Object Recognition task, i.e., in our

proposal, 2D Features, Object Hypotheses and Guessed In-

stances.

These additional data-types need to be queried and up-

dated in real-time constraints and at the same time they need

to be stored in a map as large as the mapped environment.

Thus, SkiMap++ relies on continuous update of these het-

erogeneous maps and schedules queries on them so as to

speculate on 6-DOF Objects Poses.

In the next two Sections we describe first how to train

our system with N generic target objects (Offline Pipeline);

then how the system employs the outcome from this train-

ing procedure to perform object recognition and pose esti-

mation during real-time operation (Online Pipeline).
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Figure 2. Each object feature looks differently depending on the

vantage point. Experimental results show that fusing together, in-

side the same voxel, multiple descriptors computed from different

viewpoints yields a Descriptor Matrix representing a multi-modal

distribution in the descriptors space R
n. A 2D visualization of

descriptors obtained by t-SNE [23] highlights how these different

descriptors tend to concentrate into a few clusters.

Figure 3. The stacking procedure used in SkiMap++ to create

the Object Dataset and train the associated Classifier which can

then be used on-line to perform object recognition. Column a)

shows the reconstructed RGB Volumes of two objects. Column b)

depicts the Descriptors Voxels Volume containing descriptions of

multiple appearances as in Fig. 2. Column c) shows equally sized

voxels stacks, ordered by cardinality, for each object. Finally, in

d), voxels stacks are merged into a global Classes Stack that will

represent the prediction target for the forest training process.

3. Offline pipeline

The SkiMap++ object recognition approach is based on

detection of sparse 2D features, that are then matched

against a pre-trained Object Database, to achieve full 6-

DOF pose estimation of target objects alongside with re-

construction of the environment. The matching component

is built upon a Random Forest Classification system able to

predict, given a 2D feature descriptor, to which object the

feature belongs to together with the coordinates of the voxel

– in the object reference frame – in which the said feature

was found during the training phase.

Brachmann et al. [24] investigated the Decision Forest

approaches to predict, from a given feature, the object class

and its position in the model reference frame. Formally:

p(c|d) p(y|c) (1)

namely the decision forest predicts the class c ∈ C – given

a feature d ∈ R
n, the n-dimensional feature space – as well

as the probability of object point y – in the object coordi-

nate system – given class c. Indeed, the prediction p(y|c)
in the second step is achieved by storing, at training time,

all feature positions in the leaf of the decision trees, filling a

multi-modal distribution in R
3 discretized over a 5× 5× 5

fixed grid. Furthermore, by adopting a dense feature ap-

proach, the technique introduced in [24] can predict during

the online phase, the eligible object class and its internal

point given a generic pixel (input images are densely de-

scribed).

In SkiMap++ we exploited a similar approach, but fo-

cused on the analysis of the multi-modal distribution in

the descriptor space R
n, a distribution that grows during

the database acquisition of each region of the target object

model. As can be seen in Fig. 2, if we observe a target object

from different vantage points, the same keypoint (e.g. the

one belonging to the eye of the robot) is likely to show dif-

ferent appearances depending on the point of view. Multiple

appearances in the descriptor space yield different descrip-

tor vectors d ∈ R
n modeled as a Mixture of Multi-Variate

distributions over Rn. In the experiment outlined in Fig. 2

we use SURF features [8] to detect and describe keypoints,

resulting in a R
64 descriptor space. As shown in in Fig. 2,

given an object feature we employed the t-SNE technique

et al. [23] to analyze the distribution of descriptors dealing

with different vantage points and found that these tend to

from a small number of clusters.

We deploy a classifier trained to predict from keypoint

descriptors the 3D voxel – in the object coordinate system –

wherein the 3D feature originating is likely to falls within.

To achieve this, we exploit SkiMap also during the database

creation phase, so to build multiple voxel maps for each ob-

ject: one fuses RGB data (to obtain an user-friendly object

representation) while another one fuses together descriptors

in such a way that each voxel stores a Descriptor Matrix

(we will use interchangeably the terms Descriptor Voxel

and Descriptor Matrix Voxel). Fig. 6 illustrates this dual-

ism between RGB voxels and the corresponding Descriptor

Voxels. We denote a class c ∈ C for each Descriptor Voxel,

determining a mapping function that from c allows us to

easily compute the corresponding point in the object coor-

dinate frame. We then train a Random Decision Forest to

predict, given a target 2D feature, the object class as well as

the voxel containing it:

p(c|d) v(c) = vj (2)
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we replace the second part of Eq. (1) with a deterministic

function to compute the exact voxel given a predicted class

c. To avoid confusion we need to define the difference be-

tween a predicted class and the labels used in the seman-

tic labeling procedure: the label is l ∈ {0, 1, ...m − 1}
where m is the number of training objects; a class, in-

stead, predicts both the object as well as the voxel therein,

c ∈ {0, 1, ...,m ∗ k − 1} where k is the size of subset of

Descriptor Voxels choosen among all object’s voxels.

As the number of Descriptor Voxels could be very large

we need to choose k carefully: in our system we choose

to stack the Descriptor Voxels of each object ordered by

their cardinality, then keeping those containing more cues.

Fig. 3 shows a sample object database (containing only two

models) to clarify the process to convert each voxel into a

class and vice-versa:

v(c) = vj o(vj) = oi (3)

with oi the index of the object containing voxel vj. Interest-

ingly, this process might be thought of as a Local-to-Global

indexing conversion. Having obtained a set of classes, each

of which originated by a d ∈ R
n vector, we can train a

decision forest classifier according to the standard proce-

dure described in [25]. Without any loss of information, we

reduce the memory footprint of Descriptor Voxels by com-

puting the means of the relative mixture of gaussian (e.g.

centroids in R
n of each eligible cluster, as highlighted in

the t-SNE representation shown in Fig.2). As the number of

clusters is not known a-priori, we adopt the Mean Shift [26]

clustering approach.

It is worth pointing out that the proposed SkiMap++

framework is detector-agnostic. In fact, in our implemen-

tation the adopted 2D feature detector-descriptor is just a

parameter of the system, as the number of classes per ob-

ject. In Section. 5 we show some results while varying these

parameters.

3.1. Built­in Model Database Compression

In object recognition pipelines based on 2D feature de-

tection, the recognition rates turn out quite negatively af-

fected by discrepancies between off-line and on-line condi-

tions such as different light sources. So to strengthen the

algorithm, we deemed useful to provide more evidence into

the database: in our experiments, for example, we evalu-

ated the performance and memory footprint of whole sys-

tem while adding more amd more evidence. Intuitively, in

SkiMap++ more visual cues only leads to increasing car-

dinality of each voxel in the Descriptor Volume, without

increasing the memory footprint (shown in Fig. 4) – thanks

to Mean Shift clusters analysis – at the same time increas-

ing the amount of training informations fed to the random

forest.

Figure 4. For an object in the dataset many variants may be ac-

quired. In the figure each variant is intended as a full rotation

around the object with the RGB-D camera in different conditions,

e.g. in this figure from the Front or from the Top with an angle

of 45◦, and so on. Each variant enriches the object description by

filling Descriptor Voxels with additional evidences. Clustering the

descriptors ensures the further decrease of memory footprint com-

pared to the usage of all descriptors computed from the raw RGB-

D frames. Storing the clustered representation of Descriptors is

necessary to verify Classifier prediction (i.e. compute Euclidean

distance between input descriptor and the centroids of the clusters

stored in the predicted Descriptor Voxel, and verify that it is under

a certain threshold).

4. Online pipeline

In this section we examine the SkiMap++ pipeline from

acquisition of a the new frame to the final object instance

recognition and pose-estimation. As depicted in Fig.5, the

work-flow is subdivided into three macro blocks each of

which affecting a different 3-dimensional SkiMap volume.

In the next subsections each block will be explained in

detail. To summarize: the input data for the SkiMap++

recognition pipeline is a generic pair (RGB-D frame, cam-

era pose), regardless of how they are generated; RGB-D

data are integrated into a SkiMap RGB Volume according to

the associated pose in order to reconstruct the environment.

Simultaneously, sparse 2D features are extracted from the

current frame and processed by the Random Forest, built

with the procedure described in Section. 3, in order to pre-

dict Labels which will be fused into an associated seman-

tic SkiMap Volume: Fig. 6 illustrated the dualism between

RGB and Labels volumes. For each Camera Pose an Ac-

tive Sphere can be derived, so as to outline a local area of

interest whose object hypotheses will in turn be fused into

a further SkiMap. Finally we can perform a 3D query on

the last Hypotheses Map to retrieve final object instances,

resulting from the aggregation of Hypotheses in the neigh-

bourhood of the queried point.
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Figure 5. SkiMap++ online pipeline. First, new frames are integrated in two separate maps, one for RGB data and the other for labels. A

local active sphere is generated according to the current camera pose, this sphere is used to query the label map to obtain objects matches

and compute local hypotheses. Such hypotheses will be fused into another map. Given a target region inside the Hypotheses Map, the last

phase of the pipeline entails the identification of the hypothesis with highest score, performing a radius search of similar hypotheses and

merging them together to estimate and refine the final 6-DOF pose. Refined hypotheses shall be considered as object Instances and will be

fused again in a global instances map.

Figure 6. The left part depicts a portion of environment recon-

structed through SkiMap++, fusing RGB-D Frames captured from

multiple vantage points. On the right, the corresponding semantic

map obtained by fusing Labels is shown instead. For visualisation

purposes, voxels in the latter representation are coloured depend-

ing on object to which they belong. In this case, brown voxels are

those belonging to the object being considered.

4.1. Frame Integration Module

The first stage of SkiMap++ is the Frame Integration

block: this sub-component of the system is responsible of

two main, independent, mapping tasks.

The first task is to build the RGB Volume, just as in the

original SkiMap approach [1]. Accordingly, colour infor-

mation is fused into a RGBWeightedVoxel data structure im-

plementing weighted sum/subtraction operations. As men-

tioned in our previous work [1], this is a peculiar trait of

SkiMap, which allows the system to integrate new sensor

measurements or de-integrate past data marked as invalid.

The second, and more important in this paper, task is

the computation of a semantic map, which leverages again

on the SkiMap data structure. This semantic map is fed

with Labels predicted trough the Random Forest described

in Section 3, using as input data the 2D Sparse Features

detected in the current frame. Fig. 6 illustrates a portion

of the semantic map in which voxels are coloured accord-

ing to the predominant Label within. In this case, in fact,

unlike a RGBWeightedVoxel that could be merged by mix-

ing colours, labels cannot be naively aggregated because of

their categorical nature. Thus, the semantic map adopts as

base element a MultiLabelVoxel implementing the sum/sub-

traction operations, as follows:

Vi = {〈l, wi〉 : l ∈ L,wi ∈ Z
+

0 } (4)

V1 ± V2 = V3 → V3 = {〈l, w1 ± w2〉} (5)

Eq. 4 describes a generic MultiLabelVoxel as a MultiSet,

namely a Set with repetitions, of classes l ∈ L with cardi-

nality wi (i.e. repetition counter). This notation is neces-

sary to allow a Label to be fused into a Voxel repeatedly,

without losing the cardinality information; furthermore we

allow two Voxels to be merged together through a lossless

procedure (Eq. 5). Such kind of Voxel shall be equipped

with a method to retrieve the maximal ordered pair: 〈l, wi〉
in order to fetch the largest Label and its weight during the

matching phase.

The main purpose of the subsystem described above is

to provide a – searchable – semantic map through which

we can retrieve all labels belonging to a given object. In

the next section we will detail how to speculate on object

6-DOF pose hypotheses starting from a local map of labels.

4.2. Local Hypotheses Estimation Module

The second module of SkiMap++ depends on the Cam-

era Pose from which it derives an Active Sphere. In partic-

ular, the goal is to compute a reference frame MTS (Map to

Sphere) relative to the camera frame MTC (Map to Camera)

falling into its frustum:

MTS =M TC ·C Ttz (6)

where CTtz is a translation along the z-axis. Such transla-

tion could be fixed (for example in our experiments to 1m)

or could be computed by analysing scene conditions (e.g.

by computing the nearest point in depth image). This global

reference frame MTS is used to perform a radius search on

the Labels Map, allowing the system to build a per-frame

Local Space on which to perform Hypotheses Estimation,

rather than attempt this task on the whole map, thus ensur-

ing bounded time complexity for subsequent stages of the

process. The outcome of a radius search on the Labels Map

is a set of Voxels of type MultiLabelVoxels as seen in Eq. 4.

SkiMap allows, during a search, to enrich User Data stored
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Figure 7. The right part of the image depicts the Active Sphere

on which we build the 3D Hough space. For each three random

correspondences we can project an Object Reference Frame Obj
T

inside the sphere computing the relative Reference Frame H
TObj

in the Hough coordinate space and cast votes for the object base in

the relative bin: in the figure the first match (blue arrows) and the

second match (red arrows) project the object base in the same bin

(green square). The other bin (red box) represents an hypotheses

brought in by a false positive. Had the three hypotheses voted for

their own centroid instead of the base, the associated bin would

have accounted a distorted number of votes taking into account as

inliers the relatively rotated matches, coming from the false posi-

tive hypotheses.

in Voxels with their coordinates, by obtaining a subset:

H =
⋃

Ci⊂C

Hi = {(ci,p) : ci ∈ Ci} (7)

where H is the set of pairs (c,p) containing a predicted

class c and a point p representing the center of the associ-

ated voxel. As it can be seen from Eq. 7, the set H can be

split in many similar subsets, one for each object, with Ci

containing only the predicted classes from the i-th object.

For each pair (c,p), we can apply Eq. 3 to retrieve:

o(v(c)) → (oi,vj) (8)

generating the new pair (oi,vj), where vj ∈ R
3 repre-

sents the center of the j-th voxel of the i-th object. By

iterating this approach, we estimate a set of 3D matches

{(c,p), (oi,vj)} → {(p,vj)} suited to 6-DOF pose esti-

mation of the target object within the Local Space.

We employ a fast and robust technique to estimate 6-

DOF pose of the objects under occlusion and clutter. This

problem was addressed also by Tombari et al. [27] with

promising results in comparison with other competitors in-

volved in 3D free-form object recognition problem. The

most important feature in this approach is to reduce the

Hough-problem complexity from 6 to 3 dimensions, dis-

carding the rotational part of pose estimation implicitly cov-

ered by the voting process. Unfortunately the scheme in

[27] requires the estimation of a Local Reference Frame

per each feature, since each feature should cast a vote in-

dependently from others. The computation of a Local RF

is a computationally onerous procedure, not suited to real-

time application, but at the same time the approach has been

proven valid. We thus built a new, hybrid, approach draw-

ing inspiration also from the work of Hollander et al. [28].

This approach relies on the 3-Point Ransac/Hough-voting

scheme described as follows: given Mi = {(p,vj)}, the

set of matches involving object i in the current Local Space,

we pick m random subsets RMi
⊂ Mi with |RMi

| = 3.

Each set of such 3 points p ∈ RMi
outlines a Reference

Frame through which we can project an instance of object i

in the Local Space (i.e. in the Map reference frame) MTObj

and cast a vote for its centroid (or any rigid point attached

to it, for example its base) in the associated bin of a 3D

Hough Space built right on the Active Sphere. To increase

the performance of this voting scheme, differently from the

approach in [27], we do not vote for the centroid of the pro-

jection of the object in the scene, but for its base, thus en-

suring that every false positive with inferred centroid near

the real object pose will score far from the correct bin. In

Fig.7 the voting scheme procedure is depicted graphically.

As mentioned above, the final aim of the Local Hypothe-

ses Estimation component is to fuse hypotheses in a new

map, so as to store spatial information about these guesses.

The base unit of this new SkiMap structure is a Hypothe-

sesVoxel consisting of a simple set V = {(th,Rh, oi)} of

tuples where th represents the position of the hypothesis

in map reference frame, Rh its rotation in the same space

and oi the identifier of the object being considered. More

precisely, a 6-DOF Hypothesis should be stored at least in

a R
6 space, but following the logical approach of [27] we

store them in a R
3 space via their translational component,

preserving each orientation Rh as is, to deploy them in a

further refinement step.

4.3. Global Instance Retrieval Module

The last module of SkiMap++ is mainly dedicated to re-

fining the hypotheses coming out from the previous stage.

Starting from the MTS = (MRS ,
M pS) Active Sphere ref-

erence frame, we can perform again a neighborhood search

on Hypotheses Map based on a target object oi:

r(MpS , oi) = {(thk
,Rhk

, oi)}, k ∈ [0,m) (9)

where the result of the search operation r(·) is a set of k hy-

potheses in the neighborhood of the point MpS . Since this

resulting subset may contain some outliers, we cannot sim-

ply average the outcome in a R
6 space. Therefore, once

again, we can adopt a statistical approach analyzing the

orientation distribution of these hypotheses in the SO(3)
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Figure 8. On the left, a sample of a classical Hypotheses Voxel con-

taining many computed Reference Frames. On the right, the dis-

tribution of their orientations represented with axix angle notation

in a SO(3) group. With high probability inliers will be grouped

together in a cluster, the centroid of which can be inferred as the

best candidate for the final resulting orientation of the instance.

group of the axis angle representation of them (Fig.8 clar-

ifies this issue). To infer the final Instance (tI ,RI , oi) of

the object oi in the scene we can simply average positions

tI = 1

m

m∑
k=1

thk
and choose as orientation RI the centroid

of the largest cluster in the orientation space.

Finally, also the found Instances will be integrated into

a further SkiMap structure in units called InstancesVoxels,

a simple extension of HypothesesVoxels. For clarity rea-

sons Fig.9 shows graphically, by means of a real frame

captured from SkiMap++ execution, the difference between

Hypotheses and Instances.

Figure 9. This figure portrays a frame taken from a real-time scan

of one scene of the dataset. RGB Reconstruction is carried out

with two different resolutions: 0.005m for left object and 0.01m
for right object. Hypotheses (purple boxes) are contained with

HypothesesVoxels of 0.03m instead. Finally the Instances (orange

boxes) are grouped in 0.05m InstancesVoxels.

5. Experimental results

In this section we first describe the dataset used in our

experiments. Next we show some quantitative results ob-

tained from the aforementioned dataset while varying some

key parameters involved in SkiMap++ pipeline. Finally we

present some qualitative evaluation of the algorithm.

5.1. Dataset SK17

To test the whole SkiMap++ framework we have tried to

find suitable public dataset without success. The same type

of search performed by Liet al. [18] ended up in the same

conclusion. The main reasons are the absence of 6-DOF

ground truth of objects or the low frame density. Also the

proposed dataset in the latter study is not still fully available

to be used with our approach (missing RGB-D frames for

objects). For this reason we developed a brand new dataset

comprising 12 Objects and 5 Medium/Large Scale Scenes.

The Camera, an Asus Xtion, is tracked by the Vicon Motion

Capture System (Vicon Motion Systems, LA, USA) by en-

suring a precision of the order of magnitude of 1cm. The 6-

DOF ground truth of the objects in each scene was manually

labelled in a global reference frame centered on the floor of

each scene (Precision of ground truth has the same reso-

lution of the smallest RGB map attainable by the SkiMap

approach (i.e. about 0.005m).

5.2. Quantitative results

In this subsection we examine the performance of

SkiMap++ in terms of precision/recall computed on all the

5 scenes of the dataset by taking into account all the objects

instances present within the environment and by counting a

True Positive when we do find the instance with a maximum

translational error under 0.03m and maximum rotational er-

ror of 10◦ in comparison with their ground truth. Fig.10

shows the accuracy of the system by varying some key pa-

rameter. As observed from the first plot, by increasing the

number of classes trained per-object (i.e. the number of De-

scriptors Voxels taken into account to grow decision trees)

we can achieve higher performance, but what also stands

out is that after a certain number of classes the accuracy

starts to decrease. Intuitively this is due to the under-fitting

problem in the Random Forest that would need to grow in

size to learn more labels to be classified. The second plot

shows a simple comparison between 2D Features that re-

flects their intrinsic characteristics. The last plot addresses

the inverse problem seen in the first graph: the curves show

that keeping the detector fixed and increasing the size of the

Random Forest (e.g. 24x24 means a forest of 24 trees with

depth 24) we can slightly increase accuracy at the expense

of prediction time. Overall, Fig.10 shows a precision/re-

call index over 80/80 in the best position within parame-

ters space. Moreover Fig.11 highlights the key feature of

this Multi-View Object Recognition approach: the higher is
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Table 1. Here a complete list of all objects in our dataset. The table shows a comparison between two best sets of parameters, tuned during

our tests, varying 2D Descriptor. Percentages represent the recall after a complete round within every scene.
Boxgreen Boxmouse Boxred Chamo Cupgreen Cupred Detergent Glue Korn Multimeter Robot Talc Fps

SIFT 33% 100% 35% 100% 75% 75% 100% 100% 100% 100% 78% 75% 6

SURF64 0% 50% 87% 100% 0% 0% 100% 100% 100% 100% 75% 75% 20

Figure 10. These plots show precision/recall while varying some

key parameters like: (a) Number of trained classes per object; (b)

differences between 2D Feature detectors; (c) size of the random

forest while using the same descriptor. The overall result shown

here is over 80.0/80.0 precision/recall index.

Figure 11. This plot shows the importance of Multi-View based

Object Recognition. Decreasing the number of vantage points(i.e.

decreasing fps and so the number of frames) the accuracy falls

down to zero.

the density of frames (and therefore the number of vantage

points), the larger is the accuracy of the system. The latter

result is justified by a series of important factor, such as:

an high frame rate helps to merge an higher number of evi-

dences; many vantage points can be lost if the frame rate is

low when camera movements are fast and without allowing

for the fact that the multi-view approach is the only solution

for occlusion. Finally, Table1 lists an overview on accuracy

based on single objects among all scenes; it should be noted

that the score of the object Boxgreen is very low because it

Figure 12. Real-time Augmented Reality enabled by stable 6-DOF

pose.

Figure 13. Large scale map (dataset scene) fully reconstructed by

SkiMap++ with Object Instances identified by purple bounding

boxes.

is the only object with an overall dimension comparable to

Voxels Resolutions (about 5cm on the longest side), which

renders pose estimation very challenging.

5.3. Qualitative results

We provide here also some qualitative results to show

that SkiMap++ is suited to real settings. Fig.1 shows a large

scale environment fully reconstructed by means of a mobile

robot based on its odometry system. In this environment we

placed some objects, taken from our dataset, and the robot

successfully found them while mapping the workspace.

Other qualitative samples are shown in Fig.13,12: the latter

illustrates also the interesting Augmented Reality attainable

thanks to the high stability of the object hypotheses in the

global reference frame yielded by SkiMap++. More qual-

itative results are available in the supplementary material,

which shows the system running in real-time. 1

6. Concluding remarks

We have described an extension of our previous work [1]

aimed at enriching the map of the workspace with semantic

information related to the presence and 6 DOF poses of ob-

ject instances. Thanks to the inherent efficiency and versa-

tility of the SkiMap data structure, we plan to pursue further

extensions towards richer semantic perception, in particular

by endowing the map also with labels related to major ob-

ject categories (e.g. floor, walls, table, chair..). This will

allow SkiMap++ to efficiently reconstruct in real-time both

the geometry and the semantic of large scale environments.
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