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Abstract

The goal of this work is to densely predict a compara-

tively large set of affordances given only single RGB im-

ages. We approach this task by using a convolutional neu-

ral network based on the well-known ResNet architecture,

which we blend with refinement modules recently proposed

in the semantic segmentation literature. A novel cost func-

tion, capable of handling incomplete data, is introduced,

which is necessary because we make use of segmentations

of objects and their parts to generate affordance maps.

We demonstrate both, quantitatively and qualitatively, that

learning a dense predictor of affordances from an object

part dataset is indeed possible and show that our model

outperforms several baselines.

1. Introduction

Most computer vision tasks, such as object recognition

or optical flow, aim at an accurate description of what is

there. In this domain, we witnessed remarkable progress in

recent years, driven be the success of deep learning tech-

niques. But is this always the right objective? The well-

known psychologist J.J. Gibson postulates that the primary

purpose of vision in humans and other animals is to serve bi-

ological needs [8]. Instead of obtaining a complete and ac-

curate picture of a situation, we are rather concerned about

possible interactions with the environment, e.g. “Where can

I drink from?” or “Where can I leave this dish?”. Gib-

son designates such relations between human (and animal

in general) and their surrounding with the term affordances,

as they indicate what the environment affords.

Considering scenes in terms of possible actions or affor-

dances instead of object labels is compelling not only for

humans but also for machines. In real life scenarios, for

instance in robotics, where action is always demanded, the

space of affordances is a more natural than that of object

labels. There is no guarantee that you can sit on a chair no

matter how good you are at detecting them, e.g. it might

be occupied or put on the table. A street is not walk-able

because we call it a street but because it is a planar surface

orthogonal to gravity. Thus learning a proper model for sit-

able areas, even if it is nothing but a cardboard box, turns

out to be a more effective strategy to master reality.

The latter represents the key idea of this paper: We hy-

pothesize that all relevant cues required to predict affor-

dances can be estimated from the image using local struc-

ture, global context or experience. Evidence for walk-

ability could be provided locally by a homogeneous texture

and in the context of cars parking on it or trees flanking

this surface. Even invisible, yet crucial cues, like weight

or rigidity, can be reliably guessed from images if they are

seen often enough. In order to investigate this hypothesis,

in this work, we design a method (see Figure 1) that extracts

affordance maps from object-part segmentations and trains

a convolutional neural network to densely predict these af-

fordances from a single RGB image.

Focusing on affordances is also interesting from a the-

oretical perspective: Both, object labels and affordance la-

bels, impose different divisions of the abstract space of all

possible image segments. However, not all divisions are

equally good (i.e. semantically similar segments should be

grouped together). The split provided by affordances might

particularly encourage generalization as affordances are of-

ten associated with particular geometric or contextual fea-

tures such that corresponding classes become more mean-

ingful.

Contributions To the best of our knowledge, this is the

first work to employ object part segmentations specifically

to learn affordances. This enables us to teach a set of 15

well-defined affordances to our model, which is consider-

ably larger than that in prior works. Since our training data

is fragmentary, we introduce a novel loss function compen-

sating for the incomplete data by regarding the coverage of

valid pixels. The learned network carries out inference at

almost 10 frames per second, enabling robotic applications.
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Figure 1. Our approach: We train a neural network to predict a set of affordance maps (Y) from a single RGB image (X) using a new loss

function that allows for incomplete data by incorporating a coverage map.

2. Related Work

Dense Labeling Since we label each pixel of the image

our approach falls in the domain of dense prediction. It is

similar to semantic segmentation, where the goal of pixel-

wise predictions is shared but the predicted classes are com-

monly exclusive. In this area, like many other within com-

puter vision, neural networks have become the dominant

tool. A common strategy is to employ a network that is pre-

trained for whole-image labeling, remove the classification

layers at the top, add further layers which are capable of up-

sampling to output an image and retrain the altered network

on a densely labeled dataset. Long, Shelhamer, and Darrell

[14], use the VGG16 [21] network as a basis to densely pre-

dict class labels by averaging up-sampled “skip” branches.

In the DeepLab model, Chen et al. [3] additionally apply a

conditional random field to achieve a better alignment be-

tween the model’s predictions and the image’s edges. Eigen

and Fergus [5] do not only predict object class labels but

also depth and normals using an architecture that alternates

between convolutions and up-sampling incorporating skip

connections at multiple scales. The dilated convolutions by

Yu and Koltun [26] avoid reduction of spatial accuracy dur-

ing pooling while still banking on the same pre-trained clas-

sification network. Badrinarayanan, Kendall, and Cipolla

[1] address the same problem by storing the pooling indices

and passing them to the up-sampling layers.

In object segmentation, which aims at generating masked

object proposals, Pinheiro et al. [16] introduced refinement

modules, which successively merge high- and low-level

information and combined them with ResNet architecture

[11].

Affordances Viewing the scene from a functional per-

spective, akin to the notion of affordances, has a long tradi-

tion in computer vision, with early, rule-based approaches,

dating back more than 30 years [23]. More recent meth-

ods globally calculate affordances for entire objects [22]

[28]. Ye et al. [25] detect bounding boxes of affordances

using a two-stage approach consisting of region proposal

and CNN-feature-based affordance recognition. Often af-

fordances are linked with corresponding poses. Gupta et al.

[10] first estimate the scene geometry and then infer from it

a set of four affordances while Grabner, Gall, and Van Gool

[9] only considers sit-able locations in images. Similarly,

Fouhey et al. [7] use video to predict affordance maps. Yao,

Ma, and Fei-Fei [24] differentiate modes of interaction be-

tween humans and objects by examining the pose depicted

in images. The method of Myers et al. [15] densely labels 7

affordances in images of tools using RGB-D data.

A similar concept to affordance segmentation are “action

maps”, with the difference that actions can be very specific,

such as “using a laptop” while affordances not necessarily

involve concrete objects. Savva et al. [19] analyse RGB-

D video recordings and track people to generate 7 “action

maps” while Rhinehart and Kitani [17] recently made use

of egocentric video in order to learn maps for 6 actions.

Arguably the most related work to our approach has

been suggested by Roy and Todorovic [18]. They share

the goal of predicting affordances per-pixel from a single

RGB image. Intermediate representations for depth, normal

and semantic segmentations are obtained and used to derive

five types of affordances, which are differently defined than

ours. A dataset used for training and evaluation involving

RGB, intermediate maps and affordances is created based

on NYUv2 dataset [20] using a semi-automatic procedure

with manual correction.

In contrast to the presented methods, our approach pre-

dicts a larger number of affordances using a novel training

method that explicitly makes use of part information. We

focus on directly predicting affordances without incorpora-

tion any hint of scene geometry. A comparison of closely

related approaches is provided in Table 1.
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Approach # input output

Grabner, Gall, and Van Gool [9] 1 RGB-D per voxel

Gupta et al. [10] 4 RGB per-pixel

Savva et al. [19] 7 Video per voxel

Rhinehart and Kitani [17] 6 Video per grid-cell

Roy and Todorovic [18] 5 RGB per pixel

our approach 15 RGB per pixel

Table 1. Comparison of related algorithms with # denoting the

number of used affordances.
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Table 2. Excerpt from the transfer table.

3. From Object Part Labels to Affordances

In this section we describe how to leverage annotations

on the object and object-part level to generate a large set

of pixel-wise maps for our 15 types of affordances shown

in Table 3. To obtain the latter set we follow three guiding

principles:

(a) Affordances should refer to interactions that can be valu-

able (in any context) for robots or humans. (b) Action

names are often highly imprecise in the sense that contin-

uous movements differ vastly within the same action. For

example, consider “put into”, which could imply a large set

of trajectories. We approach this problem by selecting and

defining our affordances to imply only a specific trajectory,

where this is possible. E.g. we opt for “pinch-pull” instead

of “open” as the latter is unspecific and might imply differ-

ent trajectories. (c) The same action can invoke affordances

of different object-parts. E.g. a house is enter-able, a door

(which is a part of the house) is open-able and the door’s

handle (as a part of the door) is pull-able. Along this hier-

archy, we opt for the most specific level, which is pull-able

in this case.

Object Parts Affordance segmentation is a challenging

problem, since we only want to label the fraction of a sur-

face that actually offers an affordance. Since affordances

refer to surfaces and media, they do not necessarily corre-

spond one-to-one to objects. In fact, only a small fraction of

an object might provide an affordance. For instance, con-

sider a chair: Only the seating surface affords to sit, while

arm- and backrest enable support. A standing lamp is a siz-

able object but only its bulb actually provides light. Al-

though we say “open a cabinet”, this refers to pulling on a

small handle on its door. A key observation of this work

is that affordances tend to pertain to single parts of ob-

jects rather than objects as a whole. This motivates us to

put an emphasis on object parts within the context of this

work. While common segmentation datasets [12], [20], [6]

[13] only provide segmentations for whole objects, the re-

cently introduced ADE20K dataset [27] actually resolves

objects into their parts. Thus, we decide to use this particu-

lar dataset in our work.

Transfer Table The mapping from object labels to affor-

dance maps is conducted using a look-up table. Although it

is manually defined, we try to keep the amount of required

labor minimal by automatizing the process as much as pos-

sible. As exemplified in Table 2, in the transfer table, either

object names like “cabinet”, paths to object-parts like “cabi-

net/drawer/handle” or pure parts like “*/drawer” are associ-

ated with different 15-dimensional affordance vectors, with

each dimension corresponding to one affordance. For each

object or part, multiple affordances can be present simul-

taneously. To transform a concrete object or part to an af-

fordance the object-part path is searched from specific to

general. This means in the example above, we first assess

if “cabinet/drawer” is specified in the table and only if it is

not found “*/drawer” is visited. We consider the 500 most

frequent objects and parts from the dataset and only pro-

vide affordance vectors if the affordances can be reliably

attributed to the respective object or part. This applies in

particular to very large objects like “cabinet” that offer mul-

tiple affordances but none of them being valid for the whole

object. As a consequence, for some parts of the image, no

affordances are provided. During training these cases are

carefully handled in a way that is described in section 4.1,

exploiting the fact that we know where data is missing. By

allowing for this type of incompleteness we are able achieve

a high precision, i.e. if annotations are provided then they

are correct, at the cost of a reduced recall, i.e. not all cor-

rect annotations are included. Simply put, we prevent our

network from being confronted with too much wrong data.

Data Augmentation The scene quality within the dataset

varies a lot. Some scenes are captured and annotated in

high resolution and resolve objects into many fine-grained

parts while others have significantly fewer pixels, are blurry

and describe objects as a whole. Also, the number of

training samples generated from ADE20K is comparatively

low given that we employ a data-driven approach. Con-

sequently, we augment the dataset by sampling multiple

cropped image patches from an original image and slightly

vary color and contrast of these patches. The number of

crops is dependent on the original image quality: We sam-
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Affordance Description

obstruct vertical surface that prevents locomotion. e.g.

wall

break detachable objects that can easily be damaged

or destroyed e.g. vase

sit surface a human can sit on while having the feet

on the ground e.g. seat cushion

grasp detachable objects that can be encompassed

with one hand or only few fingers and be moved

with one arm.e.g. vase)

pinch-pull surfaces that can be pulled through a pinch

movement (all directions). e.g. knob

hook-pull surfaces that can be pulled by hooking up fin-

gers (all directions). e.g. handle

tip-push surfaces that trigger some action when being

pushed. e.g. button-panel

warmth surfaces that emit warmth. e.g. fireplace

illumination surfaces that emit visible light.e.g. bulb

observe surfaces that present information or art, i.e. that

can be read or watched. e.g. display

support stable surfaces that provide support for standing

(for the agent) except ground. e.g. wall

place-on raised surfaces where objects can be placed on

(this excludes the ground). e.g. tabletop

dry surfaces capable of soaking water. e.g. towel

roll surfaces that can be used with wheels. e.g. road

walk surfaces a human can walk on. e.g. grass

Table 3. Description of the set of affordances being addressed in

this work.

ple more crops if the image is large and contains many ob-

jects.

4. CNN-based model

The scene affordance task at hand demands contextual

integration while making crisp predictions. The former

means that the receptive field of each pixel should be as

large as the image itself, as even remote pixels can be cru-

cial for the local affordance. This can be exemplified by the

decision whether a surface is walk-able or suitable to place

things (place-on-able): Locally, both the ground and a ta-

ble surface, appear as flat, uniform areas but by taking the

context into consideration this affordance ambiguity can be

resolved. Walk-able surfaces tend to be flanked by cars and

trees while we rather expect chairs to accompany place-on-

able surfaces.

As a second requirement, details should not get lost

during the forward pass of the network such that relevant

boundaries in the image are preserved. This is particular

important because some of our affordances commonly refer

to tiny and thin structures, e.g. the hook-pull-able handles.

If the network’s predictions are too coarse, they can not be

properly identified.

In the work of Pinheiro et al. [16], ResNet50 and re-

finement modules were successfully combined to generate

object proposals. This is not unexpected since ResNet,

pre-trained with ImageNet weights [4], is one of the best-

performing methods in image classification while refine-

ment modules offer an elegant way to merge local with

scene-level information. Since model requirements are akin

between object segmentation and affordance segmentation,

we adopt [16] as a core architecture and modify it for our

purposes as described below.

Refinement Module The refinement modules which we

employ as illustrated in Figure 2 are inspired from [16] but

simplified, omitting a convolutional layer. They integrate

abstract information from deep layers with less deep lay-

ers, which tend to encompass spatially accurate informa-

tion. Both input layers must deliver maps of the same image

size. First they are stacked on top of each other (concate-

nated along depth), then convolved to obtain 15k feature

maps, with k being a hyper-parameter of our model that

will be assessed in Section 5. Since our training dataset is

comparatively small, we only train the refinement modules,

while preserving the weights learned from ImageNet in the

original ResNet.

4.1. Cost function

While formulating a cost function we encounter the chal-

lenge of dealing with the incomplete data which is obtained

through converting object parts to affordance maps. In this

case, incomplete means, that some regions of the target pre-

diction are invalid. Here, in contrast to defined regions, we

can not tell whether an affordance is present or not, because

the corresponding object or part is not found in the transfer

table.

However, since we assembled the affordance maps, we

know the location of the invalid regions. The idea is to

expose this information to the cost function. Another im-

portant trait of affordance segmentation is that affordances

are not exclusive, hence cost functions common in seman-

tic segmentations cannot be employed here as they assume

for each pixel a probability distribution over a set of ob-

ject classes. Contrarily, we imply a binary (present vs not

present) probability distribution for each pixel and each

affordance. Regarding both aspects, we propose a novel

cost function we call masked binary cross entropy. Subse-

quently, we will formally derive it.

We denote the ground truth matrix of an image for affor-

dance a ∈ A and pixel i ∈ I with Yai and the associated

model prediction with Ŷai. Furthermore, the binary cross

entropy H is defined by: H(p, q) = −p log (q) − (1−
p) log (1−q). This is integrated into a scalar loss or cost,

which describes the average binary entropy over all affor-
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Figure 2. Architecture of our proposed Dense-Refine-ResNet. A ResNet50, which is illustrated block-wise is extended with Refinement

modules. All refinement modules are structured like the one shown in detail.

dances and the image.

L(Y, Ŷ) = (|A||I|)−1
∑

a∈A

∑

i∈I

H(Yai, Ŷai)

While the binary cross entropy loss is compatible with non-

exclusive classes, it does not account for incomplete data

yet. To do so, we suggest a simple but effective step: Mask

the cross entropy matrix before averaging yielding the fol-

lowing loss:

Lm(Y, Ŷ) = (|A|
∑

i∈I

Mi)
−1

∑

a∈A

∑

i∈I

MiH(Yai, Ŷai)

with Mi ∈ {0, 1} indicating if pixel i is valid, i.e. if a

corresponding entry is found in the transfer table.

5. Experiments

To quantitatively assess the models, we use intersection

over average (denoted by IoU) and accuracies (Acc) as mea-

sures, which are common in semantic segmentation. For

both we can compute scores per affordance class and aver-

age them (mean) or ignore class boundaries and apply the

measures pixel-wise (pixel). Before presenting results, we

report the experimental set-up in detail.

Evaluation Datasets Since we are not directly training

on the ADE20K dataset but transform the object and ob-

ject part labels to affordances and the test set is not pub-

licly available we divide the datasets slightly differently:

Our training samples are generated (as described in Section

3) from a 90% portion of the ADE20K training set with

the remaining 10% being used to derive our validation set.

The evaluation is conducted on two different sets, both be-

ing initially generated from the ADE20K validation set: A

dataset of 432 scenes, which we call LG432, is used to as-

sess how well the models generalize on the distribution they

have been trained on. Due to the cost of annotation, during

training, affordance maps derived from object parts (as de-

scribed above) serve as a proxy for the true distribution of

the affordance maps. However, eventually we are interested

in how well the true distribution is learned. This quality is

estimated using the HQ50 dataset, which comprises 50 high

quality scenes (high resolution, many objects being present)

LG432 HQ50

mean pixel pixel mean

IoU IoU Acc IoU

k=7 32.3% 63.0% 75.6% 28.9%

k=5 31.1% 62.2% 74.8% 28.5%

k=3 32.2% 63.0% 75.3% 30.0%

k=1 29.3% 60.2% 71.3% 28.5%

224px / k=5 30.4% 59.7% 71.8% 27.9%

vgg_upconv 28.4% 58.1% 70.3% 26.1%

vgg_refine 22.7% 49.1% 59.5% 24.9%

Table 4. Comparison of different hyperparameters and other archi-

tectures. Image size is 352px if not indicate otherwise.

test dataset LG432 HQ50 LG432 HQ50

break 36.2% 42.2% read/watch 29.4% 16.7%

dry 25.3% 10.9% roll 70.5% 71.7%

grasp 21.8% 25.0% sit 06.6% 07.7%

hook-pull 00.0% 16.0% support 69.8% 66.4%

illumination 39.1% 50.2% tip-push 00.9% 03.6%

obstruct 73.9% 59.3% walk 70.5% 71.5%

pinch-pull 00.0% 00.3% warmth 23.6% 00.0%

place-on 14.6% 08.8% mean 32.2% 30.0%

Table 5. Individual intersection over union scores for the affor-

dances in both test datasets. Note that pinch_pull and hook_pull

are not covered by LG432 and hence set to zero.

annotated by an expert according to the definitions listed in

Table 3. Hence, it represents the true distribution.

Output Binarization The metrics described above re-

quire the model predictions to be binary. Since our net-

work naturally predicts real numbers expressing their cer-

tainty for the presence of an affordance, the original output

is thresholded. The thresholds are determined on a 20%

subset of the LG432 test set which is subsequently spared

for the actual evaluation.

Implementation Details Training is carried out on a

Geforce Titan X and took several hours for each model.

Early stopping with patience of 2 is used. All models are

trained using RMSprop with a learning rate of 0.001 using

keras with Theano backend [2].

5.1. Model Comparison

Quantitative scores of our models are reported in Tables

4 and 5. Mean IoU mostly ranges around 30 % while the
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pixel-wise measures yield larger numbers. This is due to

our networks performing best for classes which cover large

fractions of the image (e.g. walk or obstruct) and therefore

having a stronger impact than rare classes (e.g. tip-push) on

the pixel-wise measures. Unbalanced class frequency also

partially explains deviations between LG432 and HQ50: If

a class occurs less often, its IoU and accuracies variance is

increased.

Determining the best configuration of our model, we ob-

serve that larger values of k tend to cause better scores on

LG432, although there is a small drop for k = 5. However,

when evaluating against the true (human defined) distribu-

tion represented by HQ50, performance peaks at k = 3.

For an explanation, note that a larger value of k leads to

a bigger number of parameters. Hence, it is possible that

the complex models (k > 3) overfit to the artifacts intro-

duced by the object-part to affordance conversion, while a

lower complexity of k = 3 enables better generalization.

Consequently, k = 3 turns out to be the favorable model,

which comes with the additional advantage of being quite

fast compared to the other, more complex models, with an

average processing time for an image of 107 ms. Large in-

put image sizes are beneficial for performance, which can

be seen for k = 5. While this is the only pair involving

different image sizes reported in the table, we actually con-

ducted more experiments, all of which support this assump-

tion. This is not surprising, though, as larger images cap-

ture more detail, which can be used to assess the presence

of affordances, in particular small structures like handles or

knobs.

We also compare to VGG-driven [21] baseline models.

These involve a simple encoder-decoder architecture, which

uses VGG16 activations after the last convolutional layer

and alternatives between convolution and up-sampling un-

til the original image size is retained (vgg_upconv). The

vgg_refine model is similar to our ResNet-based network

but uses VGG16 as a basis and different values for k.

vgg_dilated refers to a model akin to [26]. Note, in all cases

our novel cost function is used. All of these reference mod-

els are outperformed by our network in all configurations.

Compared to semantic segmentation an IoU of 32.2 % is

rather low, e.g. Long, Shelhamer, and Darrell [14] achieve

a mean IoU of around 62 % on the Pascal VOC dataset

[6]. However, our task is more difficult since affordances

are not exclusive, i.e. certainty on the presence of an affor-

dance does not necessarily diminish the probability of other

affordances. Additionally, semantic segmentation models

profit from large, manually corrected datasets, which are

not available to us.

5.2. Affordance­wise Evaluation

We assess the model’s performance for each individual

affordance class and report scores in Table 5. Hook_pull

a)

b)

c)

d)

Figure 3. Various scenes with corresponding predictions from our

network. Left: Original images. Middle: Place-on (red), pinch-

pull(blue), hook-pull(green). Right: walk (purple), grasp (blue)

and read/watch (yellow).

and pinch_pull do not occur in the LG432 test dataset and

therefore yield a score of zero. The IoU scores confirm good

performance in frequent categories, like walk or obstruct,

being present in almost every image. For rare affordances,

performance is weaker, though. But note that the test sets

are comparatively small, which (a) complicates the deriva-

tion of proper thresholds of rare affordances and (b) makes

it very difficult to properly asses such rare affordances, as

tiny variations can have a large impact on the reported per-

formances. Remarkably, in some categories, e.g. illumi-

nation, break or grasp, the performance on HQ50 is higher

than on LG432, which provide evidence for the initial hy-

pothesis of affordances being highly suitable for generaliza-

tion.

5.3. Qualitative Samples

The kitchen depicted in a) encompasses many knobs and

appliances, which without exception are correctly labeled.

Also, the towel in front of the oven is considered to be grab-

able. Along the border of the cabinet door we can even

identify hints of hook-pull-ability. In image b), the front-

lighting impedes scene understanding. Nonetheless, almost

the entire table surface is identified as place-on-able while

the most of the ground is properly labeled walk-able. The

newspaper on the living room table in c) are considered to
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be both, grasp-able and observable, which is true. In the ar-

tificially illuminated scene in image d) the shelf is only par-

tially recognized as place-on-able while the non-detachable

waste bin is considered grasp-able. However, the glass bot-

tle is rightly identified as grasp-able, although it is trans-

parent. After all, the qualitative evaluation indicates that

our method works well in many cases, but some situations

causing problems, possibly due the training data not being

generic enough.

6. Conclusion

We introduce a novel approach to affordance segmen-

tation building on the insight that affordances often per-

tain to object parts. It is shown that the model is able to

pixel-wise label a fairly large set of affordances - sometimes

even in daring situations. Particularly, we present a simple,

yet effective way how to harness incomplete segmentations

to build a model that carries out complete predictions. A

fast inference speed of only 107ms makes it suitable for

robotic applications. We are confident that better perfor-

mance could be obtained by more and higher-quality part

segmentations datasets, for example by a dataset that de-

composes a larger set of objects into fine-grained parts.

Prospectively, predictions from our network could serve

as a prior for a curious robot. By interacting with the envi-

ronment the model could continuously improve, being free

from the dependency on manually collected datasets one

day.
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