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Abstract

Deep neural networks have been widely adopted in re-

cent years, exhibiting impressive performances in several

application domains. It has however been shown that they

can be fooled by adversarial examples, i.e., images altered

by a barely-perceivable adversarial noise, carefully crafted

to mislead classification. In this work, we aim to evaluate

the extent to which robot-vision systems embodying deep-

learning algorithms are vulnerable to adversarial exam-

ples, and propose a computationally efficient countermea-

sure to mitigate this threat, based on rejecting classifica-

tion of anomalous inputs. We then provide a clearer under-

standing of the safety properties of deep networks through

an intuitive empirical analysis, showing that the mapping

learned by such networks essentially violates the smooth-

ness assumption of learning algorithms. We finally discuss

the main limitations of this work, including the creation of

real-world adversarial examples, and sketch promising re-

search directions.

1. Introduction

After decades of research spent in exploring different

approaches, ranging from search algorithms, expert and

rule-based systems to more modern machine-learning algo-

rithms, several problems involving the use of an artificial

intelligence have been finally tackled through the introduc-

tion of a novel paradigm shift based on data-driven artificial

intelligence technologies. In fact, due to the increasing pop-

ularity and use of the modern Internet, along with the pow-

erful computing resources available nowadays, it has been

possible to extract meaningful knowledge from the huge

amount of data collected online, from images to videos, text

and speech data [7]. Deep learning algorithms have pro-

vided an important resource in this respect. Their flexibility

to deal with different kinds of input data, along with their

learning capacity, have made them a powerful instrument to

successfully tackle challenging applications, reporting im-

pressive performance on several tasks in computer vision,

speech recognition and human-robot interactions [11, 21].

Despite their undiscussed success in several real-world

applications, several open problems remain to be addressed.

Research work has been investigating how to interpret de-

cisions taken by deep learning algorithms, unveiling the

patterns learned by deep networks at each layer [30, 17].

Although a significant progress have been made in this di-

rection, and it is now clear that such networks gradually

learn more abstract concepts (e.g., from detecting elemen-

tary shapes in images to more abstract notions of objects or

animals), a relevant effort is still required to gain deeper in-

sights. This is also important to understand why such algo-

rithms may be vulnerable to the presence of adversarial ex-

amples, i.e., input data that are slightly modified to mislead

classification by the addition of an almost-imperceptible ad-

versarial noise [16, 19]. The presence of adversarial exam-

ples have been shown on a variety of tasks, including object

recognition in images, handwritten digit recognition, and

face recognition [24, 25, 10, 19, 20].

In this work, we are the first to show that robot-vision

systems based on deep learning algorithms are also vulner-

able to this potential threat. This is a crucial problem, as

embodied agents have a more direct, physical interaction

with humans than virtual agents, and the damage caused

by adversarial examples in this context can thus be much

more concerning. To demonstrate this vulnerability, we

focus on a case study involving the iCub humanoid robot

(Sect. 2) [18, 21]. A peculiarity of humanoid robots is that

they have to be able to learn in an online fashion, from the

stimuli received during their exploration of the surround-
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Figure 1: Architecture of the iCub robot-vision system [21]. After image acquisition, a region of interest containing the object

is cropped and processed by the ImageNet deep network [13]. The deep features extracted from the penultimate layer of such

network (fc7) are then used as input to the classification algorithm to perform the recognition task, in which the probabilities

that the object belongs to each (known) class are reported. A human annotator can then validate or correct decisions, and the

classification algorithm can be updated accordingly; for instance, to learn that an object belongs to a never-before-seen class.

ing environment. For this reason, a crucial requirement for

them is to embody completely the acquired knowledge, and

a reliable and efficient learning paradigm. As discussed in

previous work [21], this is a conflicting goal with the cur-

rent state of deep learning algorithms, which are too com-

putationally and power demanding to be fully embodied by

a humanoid robot. For this reason, the authors in [21] have

proposed to use a pre-trained deep network for object recog-

nition to perform feature extraction (essentially considering

as the feature vector for the detected object one of the last

convolutional layers in the deep network), and then train a

multiclass classifier on such feature representation.

The first contribution of this work is to show the vul-

nerability of these kinds of robot-vision system to adversar-

ial examples. To this end, we propose an alternative algo-

rithm for the generation of adversarial examples (Sect. 3),

which extends previous work on the evasion of binary to

multiclass classifiers [4]. Conversely to previous work deal-

ing with the generation of adversarial examples based on

minimum-distance perturbations [25, 10, 19, 20], our al-

gorithm enables creating adversarial examples misclassi-

fied with higher confidence, under a maximum input pertur-

bation, for which devising proper countermeasures is also

more difficult. This allows one to assess classifier security

more thoroughly, by evaluating the probability of evading

detection as a function of the maximum input perturbation.

Notably, it also allows manipulating only a region of interest

in the input image, such that creating real-world adversarial

examples becomes easier; e.g., one may only modify some

image pixels corresponding to a sticker that can be subse-

quently applied to the object of interest.

The second contribution of this work is the proposal of

a computationally-efficient countermeasure, inspired from

work on classification with the reject option and open-set

recognition, to mitigate the threat posed by adversarial ex-

amples. Its underlying idea is to detect and reject the so-

called blind-spot evasion points, i.e., samples which are suf-

ficiently far from known training data. This countermeasure

is particularly suited to our case study, as it requires modi-

fying only the learning algorithm applied on top of the deep

feature representation, i.e., only the output layer (Sect. 4).

We then report an empirical evaluation (Sect. 5) showing

that the iCub humanoid is vulnerable to adversarial exam-

ples and to which extent our proposed countermeasure can

improve its security. In particular, although it does not com-

pletely address the vulnerability of such system to adver-

sarial examples, it requires one to significantly increase the

amount of perturbation on the input images to reach a com-

parable probability of misleading a correct object recog-

nition. To better understand the reason behind this phe-

nomenon, we provide a further, simple and intuitive empir-

ical analysis, showing that the mapping learned by the deep

network used for deep feature extraction essentially violates

the smoothness assumption of learning techniques in the in-

put space. This means that, in practice, for a sufficiently

high amount of perturbation, the proposed algorithm creates

adversarial examples that are mapped onto a region of the

deep feature space which is densely populated by training

examples of a different class. Accordingly, only modifying

the classification algorithm on top of the pre-trained deep

features (without re-training the underlying deep network)

may not be sufficient in this case.

We conclude this paper discussing related work (Sect. 6),

and relevant future research directions (Sect. 7).

2. The iCub Humanoid

Our case study focuses on the iCub humanoid, as it pro-

vides a cognitive humanoid robotic platform well suited to

our task [18, 21]. In particular, the visual recognition sys-

tem of this humanoid relies on deep learning technologies

to interact with the surrounding environment, enabling it

to detect and to recognize known objects, i.e., objects that

have been verbally annotated in a previous session by a hu-

man teacher. Furthermore, iCub is capable of performing

online learning, i.e., after classification, it asks to the hu-

man teacher whether the corresponding decision is correct.

If the decision is wrong (e.g., in the case of an object be-

longing to a never-before-seen class), the human teacher
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can provide feedback to the robot, which in turn updates

its classification model through online or incremental learn-

ing techniques (e.g., by expanding the set of known object

classes). This a clear example of how a robot can learn from

experience to improve its capabilities, i.e., a key aspect of

why embodying knowledge within robots is of crucial rele-

vance for these tasks [21]. However, given the limited hard-

ware and power resources of the humanoid, it is clear that

retraining the whole deep learning infrastructure becomes

too computationally demanding. For this reason, the visual

system of iCub exploits the pre-trained ImageNet deep net-

work [13] only for extracting a set of deep features (from

one of the highest convolutional layers) and uses this fea-

ture vector to represent the object detected by iCub in the

input image. As described in Fig. 1, this deep feature vec-

tor is then classified using a separate classifier, which can

be retrained online in an efficient manner when feedback

from the human annotator is received. In particular, in [21]

this classifier is implemented using a one-versus-all scheme

to combine a set of c linear classifiers, being c the num-

ber of known classes. Let us denote the pixel values of

the input image (in raster-scan order) with x ∈ X ⊆ R
d

(where d = 128 × 128 × 3), and the discriminant func-

tions of the aforementioned one-versus-all linear classifiers

as f1(x), . . . , fc(x). Accordingly, the predicted class c⋆ is

determined as the class whose discriminant function for that

sample is maximum:

c⋆ = arg max
k=1,...,c

fk(x) . (1)

The linear classifiers used for this purpose include Sup-

port Vector Machines (SVMs) and Recursive Least Square

(RLS) classifiers, as both can be efficiently updated on-

line [21]. Notably, previous work has shown that replacing

the softmax layer in deep networks with a multiclass SVM

can be effective also in different applications [27].

3. Adversarial Security Evaluation

We discuss here our proposal to assess the security of

robot-vision systems to adversarial examples. As in pre-

vious work addressing the issue of evaluating security of

machine-learning algorithms [1, 12, 5, 4, 28], our under-

lying idea is to evaluate the maximum recognition accu-

racy degradation against an increasing maximum admissi-

ble level of perturbation of the input images. This is rather

different than previous work in which adversarial exam-

ples correspond to minimally-perturbed samples that are

wrongly classified [25, 10, 19, 20]. As we will see in our

experiments, besides providing a more complete evaluation

of system security against adversarial examples, our attack

strategy also highlights additional interesting insights on

system security, including the identification of vulnerabil-

ities in the feature representation (rather than in the classi-

fication algorithm itself) through the creation of adversarial

examples that are indistinguishable from training samples

of a different class.

Our approach is based on extending the work in [4] for

evasion of binary classifiers to the multiclass case. To this

end, we define two possible evasion settings, i.e., ways

of creating adversarial examples, which further differenti-

ate our technique from previous work on the creation of

minimally-perturbed adversarial examples [25, 10, 19, 20].

In particular, we consider an error-generic and an error-

specific evasion setting. In the error-generic scenario, the

attacker is interested in misleading classification, regardless

of the output class predicted by the classifier for the adver-

sarial examples; e.g., for a known terrorist the goal may be

to evade detection by a video surveillance system, regard-

less of the identity that may be erroneously associated to

his/her face. Conversely, in the error-specific setting, the at-

tacker still aims to mislead classification, but requiring the

adversarial examples to be misclassified as a specific, tar-

get class; e.g., imagine an attacker aiming to impersonate a

specific user.1

The two settings can be formalized in terms of two dis-

tinct optimization problems, though using the same formu-

lation for the objective function Ω(x):

Ω(x) = fk(x)−max
l 6=k

fl(x) . (2)

This function essentially represents a difference between a

preselected discriminant function (associated to class k) and

the competing one, i.e., the one exhibiting the highest value

at x among the remaining c − 1 classes (i.e., all classes

{1, . . . , c} except k). We discuss below how class k is cho-

sen in the two considered settings.

Error-generic Evasion. In this case, the optimization prob-

lem can be formulated as:

min
x

′

Ω(x′) , (3)

s.t. d(x,x′) ≤ dmax , (4)

xlb � x
′ � xub , (5)

where fk(x) in the objective function Ω(x) (Eq. 2) denotes

the discriminant function associated to the true class of the

source sample x, and d(x,x′) ≤ dmax represents a con-

straint on the maximum input perturbation dmax between x

(i.e., the input image) and the corresponding modified ad-

versarial example x
′, given in terms of a distance in the

input space. Normally, the ℓ2 distance between pixel values

is used as the function d(·, ·), but other metrics can be also

1In [20], the authors defined targeted and indiscriminate attacks de-

pending on whether the attacker aims to cause specific or generic errors,

similarly to our settings. Here we do not follow their naming convention,

as it causes confusion with the interpretation of targeted and indiscriminate

attacks introduced in previous work [1, 12, 5].
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Figure 2: Error-specific (left) and error-generic (right) eva-

sion of a multiclass SVM with the Radial Basis Function

(RBF) kernel. Decision boundaries among the three classes

(blue, red and green points) are shown as black solid lines.

In the error-specific case, the initial (blue) sample is shifted

towards the green class (selected as the target one). In

the error-generic case, instead, it is shifted towards the red

class, as it is the closest class to the initial sample. The ℓ2
distance constraint is also shown as a gray circle.

adopted (e.g., one may use an ℓ1-based constraint to inject a

sparse adversarial noise rather than a slight image blurring

as that caused by the ℓ2-based constraint) [8, 22]. The box

constraint xlb � x
′ � xub (where u � v means that each

element of u has to be not greater than the corresponding el-

ement in v) is optional, and can be used to bound the input

values x of the adversarial examples; e.g., each pixel value

in images is bounded between 0 and 255. Nevertheless, the

box constraint can be also used to manipulate only some

pixels in the image. For example, if some pixels should not

be manipulated, one can set the corresponding values of xlb

and xub equal to those of x. This is of crucial importance

for creating real-world adversarial examples, as it allows

one to avoid manipulating pixels which do not belong to

the object of interest. For instance, this may enable one to

create an “unusual” sticker to be attached to an adversarial

object, similarly to the idea exploited in [24] for the creation

of wearable objects used to fool face recognition systems.

Error-specific Evasion. The problem of error-specific eva-

sion is formulated as the error-generic evasion problem in

Eqs. (3)-(5), with the only differences that: (i) the objective

function is maximized; and (ii) fk denotes the discriminant

function associated to the targeted class, i.e., the class which

the adversarial example should be assigned to.

An example of the different behavior exhibited by the

two attacks is given in Fig. 2. Both attacks are constructed

using the simple gradient-based algorithm given as Algo-

rithm 1. The basic idea is to update the adversarial exam-

ple by following the steepest descent (or ascent) direction

(depending on whether we are considering error-generic or

error-specific evasion), and use a projection operator Π to

keep the updated point within the feasible domain (given by

the intersection of the box and the ℓ2 constraint).

Gradient computation. One key issue of the aforemen-

tioned algorithm is the computation of the gradient of Ω(x),
which involve the gradients of the discriminant function

Algorithm 1 Computation of Adversarial Examples

Input: x0: the input image; η: the step size; r ∈
{−1,+1}: variable set to −1 (+1) for error-generic

(error-specific) evasion; ǫ > 0: a small number.

Output: x
′: the adversarial example.

1: x
′ ← x0

2: repeat

3: x← x
′, and x

′ ← Π(x+ rη∇Ω(x))
4: until |Ω(x′)− Ω(x)| ≤ ǫ

5: return x
′

fi(x) for i ∈ 1, . . . , c. It is not difficult to see that this

can be computed using the chain rule to decouple the gradi-

ent of the discriminant function of the classifier trained on

the deep feature space and the gradient of the deep network

used for feature extraction, as ∇fi(x) = ∂fi(z)
∂z

∂z
∂x

, being

z ∈ R
m the set of deep features. In our case study, these

are the m = 4, 096 values extracted from layer fc7 (see

Fig. 1). Notably, the gradient of the deep network ∂z
∂x

is

readily available through automatic differentiation, as also

highlighted in previous work [25, 10, 19, 20], whereas the

availability of the gradient
∂fi(z)
∂z

depends on whether the

chosen classifier is differentiable or not. Several of the most

used classifiers are differentiable, including, e.g., SVMs

with differentiable kernels (we refer the reader to [4] for

further details). Nevertheless, if the classifier is not differ-

entiable (e.g., like in the case of decision trees), one may

use a surrogate differentiable classifier to approximate it, as

also suggested in [4, 8, 22].

4. Classifier Security to Adversarial Examples

If the evasion algorithm drives the adversarial examples

deeply into regions populated by known training classes (as

shown in Fig. 2), there is no much one can do to correctly

identify them from the rest of the data by only re-training or

modifying the classifier, i.e., modifying the shape of the de-

cision boundaries in the feature space. We propose to con-

sider this problem as an intrinsic vulnerability of the feature

representation: if the feature vector of an adversarial ex-

ample becomes indistinguishable from those of the training

samples of a different class, it can only be detected by using

a different feature representation (i.e., in the case of iCub,

this would require at least re-training the underlying deep

network responsible for deep feature extraction).2 However,

this is not always the case, especially in high-dimensional

spaces, or if classes are separated with a sufficiently high

margin. In this case, as depicted in Fig. 3, there may be very

large regions of the feature space which are only scarcely

2Here, we only refer to the classifier trained on top of the deep feature

representation as the classification algorithm. This definition excludes the

pre-trained deep network used for feature extraction in iCub, as it is not

re-trained online.

754



1 0 1

1

0

1

SVM-RBF (no reject)

1 0 1

1

0

1

SVM-RBF (reject)

1 0 1

1

0

1

SVM-RBF (higher rejection rate)

Figure 3: Conceptual representation of our idea behind improving iCub security to adversarial examples, using multiclass

SVMs with RBF kernels (SVM-RBF), without reject option (no defense, left), with reject option (middle), and with modified

thresholds to increase the rejection rate (right). Rejected samples are highlighted with black contours. The adversarial

example (black star) is misclassified as a red sample by SVM-RBF (left plot), while SVM-RBF with reject option correctly

identifies it as an adversarial example (middle plot). Rejection thresholds can be modified to increase classifier security (right

plot), though at the expense of misclassifying more legitimate (i.e., non-manipulated) samples.

populated by data, although being associated (potentially

also with high confidence) to known classes by the learning

algorithm. Accordingly, adversarial examples may quite

reasonably end up in such regions while also successfully

fooling detection. These samples are often referred to as

blind-spot evasion samples, as they are capable of mislead-

ing classification, but in regions of the space which are far

from the rest of the training data [12, 25]. Conversely to the

case of indistinguishable adversarial examples, blind-spot

adversarial examples can be detected by only modifying

the classifier (i.e., without re-training the underlying deep

network used by iCub). Accordingly, we propose to con-

sider the problem of blind-spot adversarial examples as an

intrinsic vulnerability of the classification algorithm. Dif-

ferent approaches have been proposed based on modifying

the classifier, ranging from 1.5-class classification (based on

the combination of anomaly detectors and two-class classi-

fiers) [3] to open-set recognition techniques [23, 2].

We propose here a more direct approach, based on the

same idea underlying the notion of classification with a re-

ject option, and leveraging some concepts from open-set

recognition. In particular, we consider SVMs with RBF

kernels to implement the multiclass classifier in our case

study, as these SVMs belong to the so-called class of Com-

pact Abating Probability (CAP) models [23] (i.e., classifiers

whose discriminant function decreases while getting farther

from the training data). Then, by applying a simple rejec-

tion mechanism on their discriminant function, we can iden-

tify samples which are far enough from the rest of the train-

ing data, i.e., blind-spot adversarial examples. Our idea is

thus to modify the decision rule in Eq. (1) as:

c⋆ = arg max
k=1,...,c

fk(x) , only if fc⋆(x) > 0 , (6)

otherwise classify x as an adversarial example (i.e., a novel

class). In practice this means that, if no classifier assigns the

sample to an existing class (i.e., no value of f is positive),

then we simply categorize it as an adversarial example. In

our specific case study, iCub may reject classification and

ask the human annotator to label the example correctly. No-

tably, the threshold of each discriminant function (i.e., the

biases of the one-versus-all SVMs) can be adjusted to tune

the trade-off between the rejection rate of adversarial exam-

ples and the fraction of incorrectly-rejected samples (which

are not adversarially manipulated), as shown in Fig. 3.

5. Experimental Analysis

In this section we report the results of the security eval-

uation performed on the iCub system (see Sect. 2) along

with few adversarial examples to show how the proposed

evasion algorithm can be exploited to create real-world at-

tack samples. We then provide a conceptual representation

and an empirical analysis to explain why neural networks

are easily fooled and how our defense mechanism can im-

prove their security in this context.

Experimental Setup. Our analysis has been performed us-

ing the iCubWorld28 dataset [21], consisting of 28 different

classes which include 7 different objects (cup, plate, etc.) of

4 different kinds each (e.g., cup1, cup2, etc.), as shown in

Fig. 4. Each object was shown to iCub which automati-

cally detected it and cropped the corresponding object im-

age. Four acquisition sessions were performed in four dif-

ferent days, ending up with approximately 20, 000 images

for training and test sets. As shown in [21], it is very diffi-

cult for iCub to be able to distinguish such slight category

distinctions, like different kinds of cups. For this reason, we

also consider here a reduced dataset, iCubWorld7 , consist-

ing only of 7 different objects, each of a different kind. The

selected objects are highlighted in red in Fig. 4.

We implement the classification algorithm using three

different multiclass SVM versions, all based on a one-

versus-all scheme: a linear SVM (denoted with SVM in

the following); an SVM with the RBF kernel (SVM-RBF);

and an SVM with the RBF kernel implementing our de-

fense mechanism based on rejection of adversarial exam-

ples (SVM-adv, Sect. 4). The regularization parameter

C ∈ {10−3, . . . , 103} and the RBF kernel parameter γ ∈
{10−6, . . . , 10−2} have been set equal for all one-versus-all

SVMs in each multiclass classifier, by maximizing recogni-
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Figure 4: Example images (one per class) from the

iCubWorld28 dataset, and subset of classes used in the

iCubWorld7 dataset (highlighted in red).
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Figure 5: Box plots of the recognition accuracies measured

for linear SVM predictors trained on random subsets from

2 to 28 objects (whiskers with maximum 1.5 interquartile

range). Dotted super-imposed curves represent the mini-

mum accuracy guaranteed within a fixed confidence level.

tion accuracy through 3-fold cross validation.

Baseline Performance. In Fig. 5 we report a box plot show-

ing the empirical probability distributions of the accuracy

achieved by the SVM classifier on increasingly larger ob-

ject identification tasks, as suggested in [21]. To this end,

we randomly select 300 subsets of increasing size from the

iCubWorld28 dataset (day4 acquisitions), and then train

and test the classifier on each subset. The achieved accu-

racy is considered an observation for estimating the empir-

ical distributions. The minimum accuracy value for which

the fraction of observations in the estimated distribution was

higher than a specific confidence threshold is indicated as

a dotted line. Notably the reported performances for the

linear SVM are almost identical to those reported in [21],

where a different algorithm is used. Similar performances

(omitted for brevity) are obtained using SVM-RBF.

Security Evaluation against Adversarial Examples. We

now investigate the security of iCub in the presence of ad-

versarial examples. In this experiment, we consider the

first 100 examples per class for both the iCubWorld28 and

iCubWorld7 datasets, ending up with training and test sets

consisting of 2, 800 and 700 samples, respectively. The

recognition accuracy against an increasing maximum ad-

missible ℓ2 perturbation (i.e., dmax value) is reported in

Fig. 6 for both error-specific (top row plots) and error-

generic (bottom row plots) attack scenarios. For error-

specific evasion, we average our results not only on differ-

ent training-test set splits, but also by considering a differ-

ent target class in each repetition. While SVM and SVM-

RBF show a comparable decrease of accuracy at increas-

ing dmax, SVM-adv is able to strongly improve the security

in most of the cases (as the corresponding curve decreases

more gracefully). Notably, the performance of SVM-adv

even increases for low values of dmax. A plausible reason is

that, even if all testing images are only slightly modified in

input space, they immediately become blind-spot adversar-

ial examples, ending up in a region which is far from the rest

of the data. As the input perturbation increases, such sam-

ples are gradually drifted inside a different class, becoming

indistinguishable from the samples of such class.

To further improve the security of iCub to adversarial

examples, we set the rejection threshold of SVM-adv to a

more conservative value, increasing the false negative rate

for each base classifier of 5% (estimated on a validation set).

This results in a significant security improvement, as shown

in the rightmost plots in Fig. 6. However, as expected, this

comes at the expense of misclassifying more legitimate (i.e.

non-manipulated) samples.

Real-world Adversarial Examples. In Fig. 7 we report

few adversarial examples generated using an error-specific

evasion attack on the iCubWorld28 data. Notably, the ad-

versarial perturbation required to evade the system can be

barely perceived by human eyes. As an important real-

world application of the proposed attack algorithm, in the

bottom right plots of Fig. 7, we report an adversarial exam-

ple generated by manipulating only a subset of the image

pixels, corresponding to the label of the detergent. In this

case, the perturbation becomes easier to spot for a human,

but localizing the noise in a region of interest allows the at-

tacker to construct a practical, real-world adversarial object,

by simply attaching an “adversarial” sticker to the original

object before showing it to the iCub humanoid robot.

Why are Deep Nets Fooled? Our analysis shows that also

the iCub vision system can be fooled by adversarial ex-

amples, even by only adding a slightly-noticeable noise to

the input image. To better understand the root causes of

this phenomenon, we now provide an empirical analysis of

the sensitivity of the feature mapping induced by the Im-

ageNet deep network used by iCub, by comparing the ℓ2
distance corresponding to random and adversarial pertur-

bations in the input space, with the one measured in the

deep feature space. To this end, we randomly perturb each

training image such that the ℓ2 distance between the ini-
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Figure 6: Recognition accuracy of iCub (using the three different classifiers SVM, SVM-RBF, and SVM-adv) against an

increasing maximum admissible ℓ2 input perturbation dmax, for iCubWorld28 (left column) and iCubWorld7 (middle and

right columns), using error-specific (top row), and error-generic (bottom row) adversarial examples. Baseline accuracies (in

the absence of perturbation) are reported at dmax = 0.
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Figure 7: Plots in the top row show an adversarial example from class laundry-detergent3, modified to be misclassified as

cup3, using an error-specific evasion attack, for increasing levels of input perturbation (reported in the title of the plots).

Plots in the bottom row show the minimally-perturbed adversarial example that evades detection (i.e., the sample that evades

detection with minimum dmax), along with the corresponding noise applied to the initial image (amplified to make it clearly

visible), for the case in which all pixels can be manipulated (first and second plot), and for the case in which modifications

are constrained to the label of the detergent (i.e., simulating a sticker that can be applied to the real-world adversarial object).

tial and the perturbed image in the input space equals 10.

We then measure the ℓ2 distance between the deep feature

vectors corresponding to the same images. For randomly-

perturbed images, the average distance in deep space (along

with its standard deviation) is 0.022 ± 0.002, while for the

adversarially-perturbed images, it is 2.386 ± 0.386. This

means that random perturbations in the input space only

result in a very small shift in the deep space, while even

light alterations of an image along the adversarial direction

cause a large shift in deep space, which in turn highlights a

significant instability of the deep feature space mapping in-

duced by the ImageNet network. In other words, this means

that images in the input space are very close to the de-

cision boundary along the adversarial (gradient) direction,

as conceptually represented in Fig. 8. Note that this is a

general issue for deep networks, not only specific to Ima-

geNet [26, 9, 25, 10, 19, 20].

It should be thus clear that even a well-crafted modifi-

cation of the last layers of the network, as in our proposed

defense mechanism SVM-adv, can only mitigate this vul-

nerability. Indeed, it remains intimately related to the sta-

bility of the deep feature space mapping, which can be only

addressed by imposing specific constraints while training

the deep neural network; e.g., by imposing that small shifts

in the input space correspond to small changes in the deep

space, as recently proposed in [31]. Another possible coun-

termeasure to improve stability of such mapping is to en-

force classification of samples within a minimum margin,

by modifying the neurons’ activation functions and, poten-

tially, considering a different regularizer for the objective
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function optimized by the deep network. In this respect, it

would be interesting to investigate more in detail the inti-

mate connections between robustness to adversarial input

noise and regularization, as highlighted in [29, 22].

6. Related Work

Previous work has investigated the problem of adversar-

ial examples in deep networks [25, 10, 19, 20, 26, 9], focus-

ing however on minimally-perturbed adversarial examples,

i.e., examples that simply lie inside the decision region of a

known class, even if they remain far from the corresponding

training examples; on the contrary, our approach is based

on creating maximally-perturbed (indistinguishable) adver-

sarial examples (misclassified with high confidence). Dif-

ferent techniques aimed at improving the security of deep

networks have also been proposed. Some of them attempt

to reduce classifier vulnerability by directly detecting and

rejecting adversarial examples [2, 15]. The technique of [2]

is based on open-set recognition: it rejects samples whose

distance from the centroids of all the classes exceeds a given

threshold. However, it has not been evaluated using adver-

sarial examples carefully generated to evade the classifier.

In [15], adversarial examples are detected using the output

of the first convolutional layers. A different approach has

been proposed in [31]: it aims at improving the stability

of the deep feature space mapping by retraining the net-

work using an objective function that penalizes examples

(images) that are close in input space but lie far in deep fea-

ture space. This approach has however been investigated

only against small image distortions.

7. Conclusions and Future Work

Deep learning has shown groundbreaking performance

in several real-world application domains, encompassing

areas like computer vision, speech recognition and language

processing, among others. Despite its impressive perfor-

mances, recent work has shown how deep neural networks

can be fooled by well-crafted adversarial examples affected

by a barely-perceivable adversarial noise. In this work, we

have developed a novel algorithm for the generation of ad-

versarial examples which enables a more complete evalu-

ation of the security of a learning algorithm, and apply it

to investigate the security of the robot-vision system of the

iCub humanoid. Even if we do not restrict ourselves to the

manipulation of pixels belonging to the object of interest in

the image (which could lead one to more easily generate the

corresponding real-world adversarial object, e.g., by mean

of the application of specific stickers to objects), we have

shown how our algorithm enables this additional possibil-

ity. Notably, even if we have not constructed any real-world

adversarial object during our experiments, recent work has

shown that the artifacts introduced by printing images and

Figure 8: Conceptual representation of the vulnerability of

the deep feature space mapping. The left and right plots

respectively represent images in input space and the cor-

responding deep feature vectors. Randomly-perturbed ver-

sions of an input image are shown as gray points, while the

adversarially-perturbed image is shown as a red point. De-

spite these points are at the same distance from the input

image in the input space, the adversarial example is much

farther in the deep feature space. This also means that im-

ages are very close to the decision boundary in input space,

although in an adversarial direction that is difficult to guess

at random due to the high dimensionality of the input space.

re-acquiring them through a camera are irrelevant, and do

not eliminate the problem of the existence of adversarial

examples [14]. Similarly, another work has shown how to

evade face recognition systems based on deep learning by

using adversarial glasses and other accessories [24]. These

recent evidences clearly give a much higher practical rele-

vance to the problem of adversarial examples.

We have demonstrated and quantified the vulnerability

of iCub to the presence of adversarial manipulations of the

input images, and suggested a simple countermeasure to

mitigate the threat posed by such an issue. We have addi-

tionally shown that, while blind-spot adversarial examples

can be detected using our defense mechanism, to further

improve the security of iCub against indistinguishable ad-

versarial examples, re-training the classification algorithm

on top of a pre-trained deep neural network is not suffi-

cient. To this end, different strategies to enforce the deep

network to learn a more stable deep feature representation

(in which small perturbations to the input data correspond

to small perturbations in the deep feature space) should also

be adopted, like the one proposed in [31].

Other interesting research directions for this work in-

clude evaluating security of robot-vision systems against

other threats, including the threat of data poisoning [12,

6, 5], in which a malicious human annotator may provide

few wrong labels to the humanoid to completely mislead

its learning process and enforce it to misclassify as many

objects as possible. In general, a comprehensive, standard-

ized framework for evaluating the security of such systems

while providing also more formal verification procedures

is still lacking, and we believe that this constitutes a fun-

damental requirement for the complete transition of deep-

learning-based systems in safety-critical applications, like

robots performing life-critical tasks and self-driving cars.
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