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Abstract

We propose a method to generate multiple diverse and

valid human pose hypotheses in 3D all consistent with the

2D detection of joints in a monocular RGB image. We use

a novel generative model uniform (unbiased) in the space

of anatomically plausible 3D poses. Our model is com-

positional (produces a pose by combining parts) and since

it is restricted only by anatomical constraints it can gen-

eralize to every plausible human 3D pose. Removing the

model bias intrinsically helps to generate more diverse 3D

pose hypotheses. We argue that generating multiple pose

hypotheses is more reasonable than generating only a sin-

gle 3D pose based on the 2D joint detection given the depth

ambiguity and the uncertainty due to occlusion and imper-

fect 2D joint detection. We hope that the idea of generating

multiple consistent pose hypotheses can give rise to a new

line of future work that has not received much attention in

the literature. We used the Human3.6M dataset for empiri-

cal evaluation.

1. Introduction

Estimating the 3D pose configurations of complex artic-

ulated objects such as humans from monocular RGB im-

ages is a challenging problem. There are multiple factors

contributing to the difficulty of this critical problem in com-

puter vision: (1) multiple 3D poses can have similar 2D pro-

jections. This renders 3D human pose reconstruction from

its projected 2D joints an ill-posed problem; (2) the human

motion and pose space is highly nonlinear which makes

pose modeling difficult; (3) detecting precise location of 2D

joints is challenging due to the variation in pose and appear-

ance, occlusion, and cluttered background. Also, minor er-

rors in the detection of 2D joints can have a large effect on

the reconstructed 3D pose. These factors favor a 3D pose

estimation system that takes into account the uncertainties

and suggests multiple possible 3D poses constrained only

by reliable evidence. Often in the image, there exist much

Figure 1. The input monocular image is first passed through a CNN-based

2D joint detector which outputs a set of heatmaps for soft localization of

2D joints. The 2D detections are then passed to a 2D-to-3D pose estimator

to obtain an estimate of the 3D torso and the projection matrix. Using

the estimated 3D torso, the projection matrix, and the output of the 2D

detector we generate multiple diverse 3D pose hypotheses consistent with

the output of 2D joint detector.

more detailed information about the 3D pose of a human

than the 2D location of the joints (such as contextual infor-

mation and difference in shading/texture due to depth dis-

parity). Hence, most of the possible 3D poses consistent

with the 2D joint locations can be rejected based on more

detailed image information (e.g. in an analysis-by-synthesis

framework or by investigating the image with some mid-

level queries such as “Is the left hand in front of torso?”) or

by physical laws (e.g. gravity). We can also imagine scenar-

ios where the image does not contain enough information

to rule out or favor one 3D pose configuration over another

especially in the presence of occlusion. In this paper, we

focus on generating multiple plausible and diverse 3D pose

hypotheses which while satisfying humans anatomical con-

straints are still consistent with the output of the 2D joint
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detector. Figure 1 illustrates an overview of our approach.

The space of valid human poses is a non-convex com-

plicated space constrained by the anatomical and anthro-

pomorphic limits. A bone never bends beyond certain an-

gles with respect to its parent bone in the kinematic chain

and its normalized length, with respect to other bones, can-

not be much shorter/longer than standard values. This

inspired Akhter and Black [1] to build a motion capture

dataset composed of 3D poses of flexible subjects such

as gymnasts and martial artists to study the joint angle

limits. The statistics of 3D poses in this motion capture

dataset is different from the previously existing motion cap-

ture datasets such as CMU [11], Human 3.6M [15], and

HumanEva [28], because of their intention to explore the

joint angle limits rather than performing and recognizing

typical human actions. Figure 2 shows the t-SNE visual-

ization [36] of poses from Akhter&Black motion Capture

Dataset (ABCD) versus H36M in two dimensions. One can

see that the “ABCD” dataset is more uniformly distributed

compared to the H36M dataset. We randomly selected 4

poses from the dense and surrounding sparse areas in the

H36M t-SNE map and have shown the corresponding im-

ages. One can see that all of the four samples selected from

the dense areas correspond to standing poses whereas all of

the four samples selected from sparse areas correspond to

sitting poses.

Training and testing a 3D model on a similarly biased

dataset with excessive repetition of some poses will re-

sult in reduced performance on novel or rarely seen poses.

As a simple demonstration, we learned a GMM 3D pose

model [29] from a uniformly sampled set of Human 3.6M

poses (all 15 actions) and evaluated the likelihood of 3D

poses per action under this model. The average likelihood

per action (up to a scaling factor) was: Directions 0.63, Dis-

cussion 0.74, Eating 0.56 , Greeting 0.63 , Phoning 0.28 ,

Posing 0.38 , Purchases 0.55 , Sitting 0.07 , Sitting Down

0.07 , Smoking 0.47 , Taking Photo 0.23 , Waiting 0.33 ,

Walking 0.64 , Walking Dog 0.29 , and Walk Together 0.25.

According to the GMM model, the “Discussion” poses are

on average almost 10 times more likely than “Sitting” poses

which is due to the dataset and consequently the model bias.

The EM algorithm used to learn the GMM model attempts

to maximize the likelihood of all samples which will lead to

a biased model if the training dataset is biased. Obviously,

any solely data-driven model learned from a biased dataset

that does not cover the full range of motion of human body

can suffer from lack of generalization to novel or rarely seen

yet anatomically plausible poses.

We propose a novel generative model on human 3D

poses uniform in the space of physically valid poses (sat-

isfying the constraints from [1]). Since our model is con-

strained only by the anatomical limits of human body it does

not suffer from dataset bias which is intrinsically helpful to

(a)

(b)
Figure 2. (a): The t-SNE visualization of poses from the H36M (fist from

left) and ABCD (second from left). (b): The images corresponding to the

random selection of poses from the dense (top row in right) and sparse

(bottom row in right) area of the H36M t-SNE map confirm the dataset

bias toward standing poses compared to sitting poses.

diversify pose hypotheses. Note that the pose-conditioned

anatomical constraints calculated in [1] was originally used

in a constrained optimization framework for single 3D pose

estimation and turning those constraints into a generative

model to produce uniform samples is not trivial. One of our

main contributions is a pose-conditioned generative model

which has not been done previously. We generate multiple

anatomically-valid and diverse pose hypotheses consistent

with the 2D joint detections to investigate the importance of

having multiple pose hypotheses under depth and missing-

joints (e.g. caused by occlusion) ambiguities. In the recent

years, we have witnessed impressive progress in accurate

2D pose estimation of human in various pose and appear-

ances which is made possible thanks to deep neural net-

works and lots of annotated 2D images. We take advantage

of the recent advancement in human 2D pose estimation

and seed our multi-hypotheses pose generator by an off-

the-shelf 3D pose estimator. Namely, we use the “Stacked

Hourglass” 2D joint detector [19] and the 2D-to-3D pose

estimators of Akhter&Black [1] and Zhou et al. [42] to es-

timate the 3D torso and projection matrix. However, note

that to our generic approach does not rely on any specific

2D/3D pose estimator and can easily adopt various 2D/3D

pose estimators.

After briefly discussing some related works in subsec-

tion 1.1 we propose our approach in section 2. Our exper-

imental results based on multiple 3D pose estimation base-

lines is given in section 3. We conclude in section 4.
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1.1. Related Work

There are quite a few works in the human pose estima-

tion literature that are directly or indirectly related to our

work. Reviewing the entire literature is obviously beyond

the scope of this paper. Several areas of research are related

to our work such as 2D joiont detection, 3D pose estimation,

and generative 3D pose modeling. Due to the advancements

made by deep neural networks, the most recent works on 2D

joint detection are based on convolutional neural networks

(CNN) [35, 9, 34, 10, 40, 39, 38, 19, 6, 26] compared to the

traditional hand-crafted feature based methods [27, 41, 12].

On the other hand, most of the 3D pose estimation meth-

ods use sparse coding based on an overcomplete dictionary

of basis poses to represent a 3D pose and fit the 3D pose

projection to the 2D joint detections [24, 37, 1, 42, 43].

Some works [8, 25, 26] try to train a deep network to di-

rectly predict 3D poses. However, purely discriminative ap-

proaches for 3D structure prediction (such as [8]) are usu-

ally very sensitive to data manipulation. On the other hand,

it has been shown that the deep networks are very effective

and more robust at detecting 2D templates (compared to 3D

structures) such as human 2D body parts in images [19].

We use conditional sampling from our generative model

to generate multiple consistent pose hypotheses. A number

of previous works [7, 30, 2, 4, 5] have used sampling for

human pose estimation. However, the sampling performed

by these works are for purposes different from our goal to

generate multiple diverse and valid pose hypotheses. For

example, Amin et al. [2] use a mixture of pictorial structures

and perform inference in two stages where the first stage

reduces the search space for the second inference stage by

generating samples for the 2D location of each part.

Some more closely related works include [33, 22, 16,

20, 23, 31, 17, 32]. Sminchisescu and Triggs [33] search

for multiple local minima of their fitting cost function us-

ing a sampling mechanism based on forwards/backwards

link flipping to generate pose candidates. Pons-Moll et

al. [22] use inverse kinematics to sample the pose mani-

fold restricted by the input video and IMU sensor cues in a

particle filter framework. Lee and Cohen [16] use proposal

maps to consolidate the evidence and generating 3D pose

candidates during the MCMC search where they model the

measurement uncertainty of 2D position of joints using a

Gaussian distribution. Their MCMC approach suffers from

high computational cost. Park and Ramanan [20] gener-

ate non-overlapping diverse pose hypotheses (only in 2D)

from a part model. One interesting work is the “Posebit” by

Pons-Moll et al. [23] that can retrieve pose candidates from

a MoCap dataset of 3D poses given answers to some mid-

level queries such as “Is the right hand in front of torso?”

using decision trees. This approach is heavily dependent

on the choice of MoCap dataset and cannot generalize to

unseen poses. Simo-Serra1 et al. [31] model the 2D and

Figure 3. “Stacked Hourglass” 2D joint detector [19] in the ab-

sence and presence of occlusion. On the right-hand-side of each

image are the corresponding heatmaps for joints.

3D poses jointly in a Bayesian framework by integrating

a generative model and discriminative 2D part detectors

based on HOGs. Lehrmann et al. [17] learn a generative

model from the H36M MoCap dataset whose graph struc-

ture (not a Kinematic chain) is learned using the Chow-Liu

algorithm. Simo-Serra et al. [32] propagate the error in the

estimation of 2D joint locations (modeled using Gaussian

distributions) into the weights of dictionary elements in a

sparse coding framework; then by sampling the weights,

some 3D pose samples are generated and sorted based on

the SVM score on joint distance features. However, their

approach does not guarantee that the joint angle constraints

are satisfied and do not address the depth ambiguity. We

impose “pose-conditioned” joint angle and bone length con-

strains to ensure pose validity of samples from our genera-

tive model which has not been done before. In addition,

our unbiased generative model restricted only by anatom-

ical constrains helps in generating more diverse 3D pose

hypotheses.

2. The Proposed Method

Since our approach is closely related to the joint-angle

constraints used in [1], we find it helpful for better read-

ability to briefly review this work. To represent the hu-

man 3D pose by its joints let X denote the matrix cor-

responding to P kinematic joints in the 3D space namely

X = [X1...XP ] ∈ X ⊂ IR3×P where X denotes the

space of valid human poses. Akhter&Black [1] (similar

to [24, 42]) assumed that all of the 2D joints are observed

and estimated a single 3D pose by solving the following op-
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timization problem:

min
ω,s,R

Cr + Cp + βCl, (1)

where, Cr is a measure of fitness between the estimated 2D

joints x̂ ∈ IR2×P and the projection and translation of esti-

mated 3D pose X̂ = [X̂1...X̂P ] ∈ IR3×P to the 2D image

coordinate system in a weak perspective camera model (or-

thographic projection) with scaling factor s ∈ IR+, rotation

R ∈ SO(3), and translation t ∈ IR2×1, defined as:

Cr =

P∑

i=1

‖x̂i − sR1:2 X̂i + t‖22, (2)

where, R1:2 denotes the first two rows of the rotation ma-

trix. Note that if the origin of the 3D world coordinate sys-

tem gets mapped to the origin of the 2D image coordinate

system then t = 0; this is usually implemented by center-

ing the 2D and 3D poses. Authors used a sparse represen-

tation of the 3D poses similar to [24] where the 3D pose

is represented by a sparse linear combination of bases se-

lected using the Orthogonal Matching Pursuit (OMP) algo-

rithm [18] from an overcomplete dictionary of pose atoms,

namely X̂ = µ +
∑

i∈I∗ ωiDi, where µ is the mean pose

obtained by averaging poses from the CMU motion capture

dataset [11] and I∗ denotes the indices of selected bases

using OMP with weights ωi. An overcomplete dictionary

of bases was built by concatenating PCA bases from poses

of different action classes in the CMU dataset after bone

length normalization and Procrustes aligned. The second

term Cp in equation (1) is equal to zero if the estimated pose

X̂ has valid joint angles for limbs and infinity otherwise.

According to the pose-conditioned constraints in [1] a pose

has valid joint angles if the upper arms/legs’ joint angles

map to a 1 in the corresponding occupancy matrix (learned

from the ABCD dataset) and the lower arms/legs satisfy two

conditions that prevent these bones from bending beyond

feasible joint-angle limits (inequalities (4) and (5)). The

term Cl in equation (1) penalizes the difference between

the squares of the estimated ith bone length li and the nor-

malized mean bone length l̄i i.e., Cl =
∑N

i=1 |l
2
i − l̄2i | (nor-

malized mean bones calculated from the CMU dataset) with

weight β. Note that [1] does not introduce any generative

pose model.

As we mentioned earlier, 3D pose estimation from 2D

landmark points in monocular RGB images is inherently

an ill-posed problem because of losing the depth informa-

tion. There can be multiple valid 3D poses with similar

2D projection even if all of the 2D joints are observed (see

Figure 1). The uncertainty and number of possible valid

poses can further increase if some of the joints are miss-

ing. The missing joints scenario is more realistic because

it happens when either these joints exist in the image but

are not confidently detected, due to occlusion and clutter,

or do not exist within the borders of the image e.g. when

only the upper body is visible similar to images from the

FLIC dataset [27]. It is observed that thresholding the con-

fidence score obtained from some deep 2D joint detectors

(e.g. [19, 21, 14]) can be reasonably used as an indicator

for the confident detection of a joint. Figure 3 shows the

the output of “Stacked Hourglass” 2D joint detector [19]

in the absence and presence of a table occluder segmented

out from the Pascal VOC dataset [13] and pasted on the left

hand of the human subject. On the right-hand-side of each

image is shown the heatmap for each joint. It can be seen

that the level of the two heatmaps corresponding to the left

elbow and left wrist drop after placing the table occluder on

the left hand. Newell et al. [19] used the heatmap mean as

a confidence measure for detection and threshold it at 0.002

to determine visibility of a joint. Obviously, invisibility of

some joints in the image can result in multiple hallucina-

tions for the 2D/3D locations of the joints. Let So and Sm

denote the set of observed and missing joints, respectively.

We have So ∩ Sm = ∅ and So ∪ Sm = {1, 2, ..., P}, and let

α = {αi}i∈So
denote a set of normalized joint scores from

the 2D joint detectors such that 1
|So|

∑
i∈So

αi = 1. The

missing joints are detected by comparing the confidence

score of 2D joint detector with a threshold (0.002 in the

case of using Hourglass). For the case of missing joints, we

modify the fitness measure to:

Cr =
∑

i∈So

αi‖x̂i − sR1:2 X̂i + t‖22. (3)

The scores are normalized because they have to be in a com-

parable range with respect to the Cl term in equation (1)

otherwise either Cr is suppressed/ignored in the case of

very small confidence scores or the same happens to Cl

in the case of very large scores. For example, if the mean

of heatmaps from the Hourglass joint detector are directly

(without normalization) used as scores the Cr term will be

drastically suppressed since the heatmaps are full of close-

to-zero values. Note that the optimization problem in equa-

tion (1) with the updated Cr term according to equation (3)

still outputs a full 3D pose even under missing joints sce-

nario because the 3D pose is constructed by a linear com-

bination of full body basis. However, there is no reason

that the output 3D pose should have a close to correct 2D

projection due to the missing joint ambiguity added to the

depth ambiguity. Optimizing Cr is a non-convex optimiza-

tion problem over the 3D pose and projection matrix. To

obtain an estimate of the 3D torso and projection matrix,

we tried both iterating between optimizing over the projec-

tion matrix and 3D pose used in [1] as well as the convex

relaxation method in [42] as will be presented in the exper-

imental results section. Note that the torso pose variations

are much fewer than the full-body. The torso plane is usu-

ally vertical and not as flexible as the full body. Hence, it is
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much easier to robustly estimate its 3D pose and the corre-

sponding camera parameters.

To generate multiple diverse 3D pose hypotheses consis-

tent with the output of 2D joint detector, we cluster samples

from a conditional distribution given the collected 2D ev-

idence. For this purpose, we follow a rejection sampling

strategy. Before discussing conditional sampling in subsec-

tion 2.2 we describe unconditional sampling as follows.

2.1. Unconditional Sampling

Given the rigidity of human torso compared to the limbs

(hands/legs), the joints corresponding to the torso including

thorax, left/right hips, and left/right shoulders can be repre-

sented using a small size dictionary after an affine transfor-

mation/normalization. Given the torso, the upper arms/legs

and head are anatomically restricted to be within certain an-

gular limits. The plausible angular regions for the upper

arms/legs and head can be represented using an occupancy

matrix [1]. This occupancy matrix is a binary matrix that

assigns 1 to a discretized azimuthal θ and polar φ angle

if these angles are anatomically plausible and 0 otherwise.

These angular positions are calculated in the local Carte-

sian coordinate system whose two axis are the “backbone”

vector and either the “right shoulder → left shoulder” vec-

tor (for the upper arms and head) or the “right hip → left

hip” vector (for the upper hips). Hence, to generate samples

for the upper arms/legs and head we just need to take sam-

ples from the occupancy matrix at places where the value

is 1 and get the corresponding azimuthal and polar angles.

Given the azimuthal and polar angles of the head we just

need to travel in this direction for the length of the head;

we do the same for the length of upper arms and legs to

reach the elbows and knees, respectively. The normalized

length of the bones is sampled from a Beta distribution with

limited range under the constraint that similar bones have

similar length e.g. both upper arms have the same length.

According to [1], the lower arm/leg bone bp1→p2
=

Xp2
− Xp1

, where p2 and p1 respectively correspond to

either “wrist and elbow” or “ankle and knee” is at a plausi-

ble angle if it satisfies two constraints. The first constraint

is:
b
⊤
n+ d < 0, (4)

where n and d are functions of the azimuthal θ and polar φ
angles of their parent bone namely the upper arm or leg (re-

sulting in pose-dependent joint angle limits) learned from

the ABCD dataset. The above inequality defines a separat-

ing plane, with normal vector n and distance from origin d,

that attempts to prevent the wrist and ankle from bending in

a direction that is anatomically impossible. Obviously, for

a very negative offset vector d this constrain is always satis-

fied. Therefore, during learning of n and d the second norm

of d is minimized, namely minn,d ‖d‖2 s.t. B
⊤
n < −d1,

where B is a matrix built by column-wise concatenation of

all b instances in the ABCD dataset whose parents are at

the same θ and φ angular location. The second constraint to

satisfy is that the projection of normalized b (to unit length)

onto the separating plane using the orthonormal projection

matrix T = [T1;T2;T3], whose first row T1 is along n,

has to fall inside a bounding box with bounds [bnd1, bnd2]
and [bnd3, bnd4], namely:

bnd1 ≤ T2b/‖b‖2 ≤ bnd2,

bnd3 ≤ T3b/‖b‖2 ≤ bnd4, (5)

where, bounds bnd1, bnd2, bnd3, and bnd4 are also learned

from the ABCD dataset. To generate a sample b that sat-

isfies the above constraints, we first generate two random

values u2 ∈ [bnd1, bnd2] and u3 ∈ [bnd3, bnd4] and set

u1 = (max(1−u2
2−u2

3, 0))
1/2. We then generate two can-

didates u
± = (±u1, u2, u3)/‖(u1, u2, u3)‖2 from which

only one can be on the valid side of the separating plane

satisfying inequality (4). To check, we first undo the pro-

jection and normalization by b
± = lT−1

u
±, where l is

a sample from the bone length distribution on b. A sam-

ple “b” is accepted only if it satisfies inequality (4). Note

that similar bones have the same length therefore we sample

their length only once for each pose. The prior model can

be written as below according to a Bayesian graph on the

kinematic chain:

p(X) = p(Xi∈torso)p(Xhead|Xi∈torso)×

p(Xi∈ l/r elbow|Xi∈torso)p(Xi∈ l/r wrist|Xi∈ l/r elbow,Xi∈torso)×

p(Xi∈ l/r knee|Xi∈torso)p(Xi∈ l/r ankle|Xi∈ l/r knee,Xi∈torso),
(6)

where p(Xi∈torso) is the probability of selecting a torso from

the torso dictionary which we assumed is uniform. The

torso joints Xi∈torso are used to determine the local coor-

dinate system for the rest of the joints. We have removed

torso joints in the equations below for notational conve-

nience. We have:

p(Xi) =
1

l2bone| sin(φi)|
p(lbone)p(θi, φi), (7)

for (i, bone) being from (l/r knee, upper leg) , (head, neck

+ head bone), or (l/r elbow, upper arm). The multiplier

factor in (7), which is the inverse of Jacobian determinant

for a transformation from the Cartesian to spherical coor-

dinate system, is to ensure that the left side sums up to

one if
∫
l

∫
θ

∫
φ
p(l)p(θ, φ)dφdθ dl = 1, since dxdy dz =

l2| sin(φ)|dl dθ dφ. For lower limbs we have:

p(Xi|Xpa(i)) ∝ p(lbone)1valid(Xi,Xpa(i)) (8)

where (i, pa(i), bone) is from (l/r wrist, l/r elbow, forearm)

or (l/r ankle, l/r knee, lower leg), and 1valid(Xi,Xpa(i)) is

an indicator function that nulls the probability of configu-

rations whose angles does not satisfy the constraints in in-

equalities (4) and (5) for b = Xi − Xpa(i). Conditional
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sampling is carried out by rejection sampling discussed in

the next subsection.

2.2. Conditional Sampling

We run a 2D joint detector on the input image I and

get an estimate of the 2D joint locations x̂ with confidence

scores α. Then, to obtain a reasonable estimate of torso

X̂i∈torso and camera parameters namely (R̂, t̂, ŝ), we run a

2D-to-3D pose estimator capable of handling missing joints

(we modified [1] and [42] to handle missing joints; see

equation (3)). Note that we are not restricted to any par-

ticular 2D/3D pose estimator and any 2D joint detector that

estimates 2D joint locations x̂ and their confidence scores α
and any 2D-to-3D pose estimator can be used in the initial

stage. We then assume that the estimated camera param-

eters and X̂i∈torso are reasonably well estimated and keep

them fixed. Note that the human torso and its pose (usually

vertical) does not vary much compared to the whole body

pose. We do not include the estimated camera parameters

and 3D torso in our formulation below for notational con-

venience. From the Bayes rule we have:

p(X|x̂, α) ∝ p(X)p(x̂, α|X). (9)

We define:

p(x̂, α|X) ∝
∏

i∈ limb ∩So

1(‖x̂i − ŝ R̂1:2Xi + t̂‖2 < τi)

where 1(.) is the indicator function depending on the

2D distance between detected joints and the projected

3D pose under an acceptance threshold defined by τi =
0.25 ŝ l̄limb/αi, where l̄limb is the mean limb length, ŝ is the

estimated scaling factor, αi is the ith joint normalized con-

fidence score, and the factor 0.25 was chosen empirically.

The likelihood function defined above accepts prior (un-

conditional) samples X
(q) ∼ p(X) whose projected joints

to the image coordinate system are within a distance not

greater than thresholds τi from detected limb joints. The

inverse proportion of the threshold to the confidence αi al-

lows acceptance in a larger area if the confidence score is

smaller for the ith limb joint and therefore considering the

2D joint detection uncertainty. Note that there is no indica-

tor function in the likelihood function for the missing limb

joints which allows acceptance of all anatomically plausi-

ble samples for limb joints from Sm. Note that even though

torso pose estimation is a much easier problem compared to

the full body pose estimation, a poorly estimated torso, e.g.

due to occlusion, can adversely affect the quality of condi-

tional 3D pose samples.

2.3. Generating Diverse Hypotheses

The diversification is implemented in two stages: (I)

we sampled the occupancy matrix at 15 equidistant az-

imuth and 15 equidistant polar angles for the upper limbs

and accept the samples if the occupancy matrix had a 1

at these locations. For the lower limbs, we sampled 5

equidistant points along each u2 and u3 directions between

[bnd1, bnd2] and [bnd3, bnd4], respectively. (II) To gener-

ate fewer number of pose hypothesis, we use the kmeans++

algorithm [3] to cluster the posterior samples into a desired

number of diverse clusters and take the nearest neighbor 3D

pose sample to each centroid as one hypothesis. Kmeans++

operates the same as Kmeans clustering except that it uses

a diverse initialization method to help with diversification

of final clusters. Note that we cannot take the centroids as

hypotheses since there is no guarantee that the mean of 3D

poses is still a valid 3D pose. Figure 4 shows five hypothe-

ses given the output of Hourglass 2D joint detector for the

top-left image and detections shown by yellow points. In

Figure 4, the 2D detection of joints are shown by the black

skeleton and the diversified hypotheses that are consistent

with the 2D detections are shown by the blue skeletons. It

can be seen that even though the 2D projection of these pose

hypotheses are very similar, they are quite different in 3D.

To generate the pose hypotheses in Figure 4, we estimated

the 3D torso and projection matrix using [1]. s

3. Experimental Results

We empirically evaluated the proposed “multi-pose hy-

potheses” approach on the recently published Human3.6M

dataset [15]. For evaluation, we used images from all 4

cameras and all 15 actions associated with 7 subjects for

whom ground-truth 3D poses were provided namely sub-

jects S1, S5, S6, S7, S8, S9, and S11. The original videos

(50 fps) were downsampled (in order to reduce the corre-

lation of consecutive frames) to built a dataset of 26385

images. For further evaluation, we also built two rotation

datasets by rotating H36M images by 30 and 60 degrees.

We evaluated the performance by the mean per joint error

(millimeter) in 3D by comparing the reconstructed pose hy-

potheses against the ground truth. The error was calculated

up to a similarity transformation obtained by Procrustes

alignment. The results are summarized in Table 1 for vari-

ous methods and actions. For a fair comparison, the limb

length of the reconstructed poses from all methods were

scaled to match the limb length of the ground-truth pose.

The bone length matching obviously lowers the mean joint

errors but makes no difference in our comparisons. One

can see that the best (lowest Euclidean distance from the

ground-truth pose) out of only 5 generated hypotheses by

using [1] as baseline for 3D torso and projection matrix

estimation is considerably better than the single 3D pose

output by [1] for all actions. We also used the 2D-to-3D

pose estimator by Zhou et al. [42] with convex-relaxation

as baseline and observed considerable improvement com-

pared to [1] in both 3D pose and projection matrix estima-

tion. Using [42] as baseline to estimate the 3D torso and
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Figure 4. (a): The input image and the corresponding 3D pose. (b): Generation of five diverse 3D pose hypotheses consistent with the 2D joint detections.

Method Directions Discussion Eating Greeting Phoning Posing Purchases Sitting SitDown

Ours (No KM++/[42]) 63.12 55.91 58.11 64.48 68.69 61.27 55.57 86.06 117.57

Ours (k=20/[42]) 77.08 71.15 75.39 79.01 84.68 74.90 72.37 102.17 131.46

Ours (k=5/[42]) 82.86 77.52 81.60 85.20 90.93 80.46 78.75 109.27 138.71

Zhou et al. [42] 80.51 74.56 73.95 85.43 88.96 82.02 76.21 107.43 146.47

Ours (k=5/[1]) 105.14 100.28 107.75 106.88 111.44 105.74 101.18 124.87 147.48

Akhter&Black [1] 133.80 128.03 124.47 133.47 133.93 136.63 128.30 133.61 162.01

Chen et al. [8] 145.37 139.11 140.24 149.13 149.61 154.30 147.04 161.49 200.06

Smoking TakingPhoto Waiting Walking WalkingDog WalkTogether Average

Ours (No KM++/[42]) 71.02 71.21 66.29 57.07 62.50 61.02 67.99

Ours (k=20/[42]) 85.90 84.49 80.41 71.57 78.41 74.92 82.93

Ours (k=5/[42]) 91.79 90.06 86.43 77.93 85.45 81.49 89.23

Zhou et al. [42] 90.61 93.43 85.71 80.03 90.89 85.73 89.46

Ours (k=5/[1]) 113.61 105.58 105.80 100.28 106.25 104.63 109.79

Akhter&Black [1] 135.75 132.92 133.93 133.84 131.77 134.80 134.48

Chen et al. [8] 152.37 159.18 152.67 148.20 156.10 147.71 153.51

Table 1. Quantitative comparison on the Human3.6M dataset evaluated in 3D by mean per joint error (mm) for all actions and subjects whose ground-truth

3D poses were provided.

projection matrix we generated multiple 3D pose hypothe-

ses. Since the accuracy of [42] is already high, the best out

of 5 pose hypotheses cannot significantly lower the average

joint distance from the single 3D pose output by [42]. How-

ever, by increasing the number of hypotheses we started to

observe improvement. Table 1 also includes the best hy-

pothesis out of conditional samples from only the first di-

versification stage i.e., by diversifying conditional samples

and using no kmeans++ clustering (shown by No KM++),

using [42] as base. This achieves the lowest joint error in

comparison to other baselines. The pose hypotheses can be

generated very quickly (< 2 seconds) in Matlab on an Intel

i7-4790K processor.

We also used Deep3D of Chen et al. [8] as another base-

line. The Deep3D [8] is a 3D pose estimator that directly

regresses to the 3D joint locations directly from a monocu-

lar RGB input image. Deep3D had the highest mean joint

errors as shown in Table 1. We also observed that the pre-

trained Deep3D is very sensitive to image rotation and usu-

ally outputs an anatomically implausible 3D pose if the in-

put image is rotated. But other 2D-to-3D pose estimation

baselines which decouple the projection matrix and the 3D

pose are quite robust to rotation of the input image. Figure 5

shows the Percentage of Correct Keypoints (PCK) versus

an acceptance distance threshold in millimeter for various

baselines and H36M dataset variations namely the original

H36M and 30/60 degree rotations. One can see that the

PCK of Deep3D drops drastically by rotating the input im-

age. This is partly due to insufficient number of tilted sam-

ples in the training set (H36M plus synthetic images). One

of the main problems of purely discriminative approaches

such as [8] is their extreme sensitivity to data manipulation.

On the other hand, humans can learn from a few examples

and still not suppress the rarely seen cases compared to the

frequently seen ones.

In a realistic scenario with occlusion, the location of
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Figure 5. PCK curves for the H36M dataset (original), H36M rotated by 30 and 60 degrees respectively from left to right. The y-axis is the percentage of

correctly detected joints in 3D for a given distance threshold in millimeter (x-axis).

Method Directions Discussion Eating Greeting Phoning Posing Purchases Sitting SitDown

Ours (k=5/[1]) 98.44 93.70 102.62 97.50 96.29 98.90 93.32 105.51 110.07

Akhter&Black [1] 118.02 112.55 111.27 117.46 111.77 122.27 112.23 107.27 126.95

Ours (k=5/[1]) 108.60 105.85 105.63 109.01 105.47 109.93 102.01 111.25 119.57

Akhter&Black [1] 153.80 149.14 135.44 155.06 139.62 156.46 149.05 126.33 141.89

Ours (k=5/[1]) 125.03 121.77 115.13 124.11 116.92 123.75 116.42 119.63 130.81

Akhter&Black [1] 185.57 180.43 158.55 185.65 162.39 185.78 178.81 145.15 155.29

Smoking TakingPhoto Waiting Walking WalkingDog WalkTogether Average Average Diff.

Ours (k=5/[1]) 97.53 97.63 99.43 90.23 97.27 95.21 98.24

Akhter&Black [1] 113.22 120.61 119.97 115.81 116.60 115.62 116.11 17.87

Ours (k=5/[1]) 107.76 107.05 111.34 108.38 106.96 110.28 108.61

Akhter&Black [1] 142.98 152.65 155.27 155.18 151.88 155.00 147.98 39.37

Ours (k=5/[1]) 120.60 118.38 127.13 125.89 121.61 127.62 122.32

Akhter&Black [1] 165.47 177.44 186.20 189.66 183.01 186.25 175.04 52.72

Table 2. Quantitative comparison on the Human3.6M dataset when 0 (top pair), 1 (middle pair), and 2 (bottom pair) limb joints are missing.

some 2D joints cannot be accurately detected. The added

uncertainty caused by occlusion makes one expect a larger

average estimation error for the estimated 3D pose from a

single-output pose estimator compared to the best 3D pose

hypothesis. To test this, we ran experiments with differ-

ent number of missing joints (0, 1 and 2) selected ran-

domly from the limb joints including l/r elbow, l/r wrist,

l/r knee, and l/r ankle. Table 2 shows the mean per joint

errors for the 3D pose estimated by the modified version

of Akhter&Black [1] that can handle missing joints com-

pared to the best out of five hypotheses generated by our

method when 0, 1, and 2 limb joints are missing. In this

test, we used the ground-truth 2D location of the joints and

randomly selected the missing joints. One can see that by

increasing the number of missing joints the performance

gap between the estimated 3D pose and the best 3D pose

hypothesis increases. This underscores the importance of

having multiple hypothesis for more realistic scenarios.

4. Conclusion

There usually exist multiple 3D poses consistent with

the 2D location of joints because of losing the depth infor-

mation in monocular images. The uncertainty in 3D pose

estimation increases in the presence of occlusion and im-

perfect 2D detection of joints. In this paper, we proposed

a way to generate multiple valid and diverse 3D pose hy-

potheses consistent with the 2D joint detections. These pose

hypotheses can be ranked later by more detailed investiga-

tion of the image beyond the 2D joint locations or based on

some contextual information. To generate these pose hy-

potheses we used a novel unbiased generative model that

only enforces pose-conditioned anatomical constraints on

the joint-angle limits and limb length ratios. This was mo-

tivated by the pose-conditioned joint limits from [1] after

identifying bias in typical MoCap datasets. Our composi-

tional generative model uniformly spans the full variabil-

ity of human 3D pose which helps in generating more di-

verse hypotheses. We performed empirical evaluation on

the H36M dataset and achieved lower mean joint errors for

the best pose hypothesis compared to the estimated pose by

other recent baselines. The 3D pose output by the baseline

methods could also be included as one hypothesis but to in-

vestigate our hypothesis generation approach we did not do

so in the experimental results. Our experiments show the

importance of having multiple 3D pose hypotheses given

only the 2D location of joints especially when some of the

joints are missing. We hope our idea of generating multi-

ple pose hypotheses inspire a new line of future work in 3D

pose estimation considering various ambiguity sources.
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