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Abstract

With the increasing amount of videos recorded using 2D

mobile cameras, the technique for recovering the 3D dy-

namic facial models from these monocular videos has be-

come a necessity for many image and video editing ap-

plications. While methods based parametric 3D facial

models can reconstruct the 3D shape in dynamic environ-

ment, large structural changes are ignored. Structure-from-

motion methods can reconstruct these changes but assume

the object to be static. To address this problem we present a

novel method for realtime dynamic 3D facial tracking and

reconstruction from videos captured in uncontrolled envi-

ronments. Our method can track the deforming facial ge-

ometry and reconstruct external objects that protrude from

the face such as glasses and hair. It also allows users to

move around, perform facial expressions freely without de-

grading the reconstruction quality.

1. Introduction

3D facial modeling is an essential technique for anima-

tion production in featured films and video games. Ded-

icated hardware such as depth sensors, laser scanners and

camera arrays have been developed to acquire depth infor-

mation for 3D model creation. However these can only

be operated by trained professionals. In recent years, the

wide spread availability of 2D RGB mobile cameras has

sparked interest in 3D facial reconstruction from 2D input.

Due to the increased interest of casual untrained users in

applications such as image, video editing [34, 10], virtual

makeup[29] and facial model creation [6].

Existing works based on parametric 3D facial model and

shape-from-shading [32, 3, 14] are able to reconstruct mi-

nuscule detail while allowing the user to move around freely

in the monocular setting. However, these methods cannot

deal with structures such as hair and glasses (Fig. 2b). SFM

methods [18, 11, 20], which estimate 3D structures from

2D images with different viewing angles, are able to han-

dle these large variations. Nevertheless, the user is required

to remain still while images from different angles are being

taken. It involves separate capture and off-line processing

phases, which is suboptimal and tedious because they re-

quire careful planning and possibly numerous trials. More-

over, feature point detection and matching on facial areas

such as the cheek and forehead are more likely to fail due to

the lack of highly distinctive texture pattern. Furthermore,

without constraints such as controllable lighting, camera fo-

cus and limited motion, extra post-processing effort, like

manual landmark adjustment, user specific model crafting

and texture creation are inevitable even for state-of-the-art

techniques [14, 15, 34]. Recently a method was proposed

in [7], which is able to reconstruct hair but requires user in-

put and interaction to specify 2D hair boundaries of images

taken from different angles.

To address this challenge, we propose a novel real-

time method that aims at automatically tracking the 3D fa-

cial performance and reconstructing the 3D geometry from

monocular videos in uncontrolled environment. In order

to reconstruct a dynamically deforming object, it is essen-

tial to define a rigid reference for the object. Although

defining a canonical rigid reference for general object is

not straightforward, facial deformation can be represented

as facial expression variation. Therefore, we reconstruct

the dynamic facial geometry by undoing the deformation

caused by different expressions, which is made possible by

a robust 3D facial tracking method. The flowchart of the

proposed method is illustrated in Fig. 1.

2. Related Works

Existing 3D facial tracking and reconstruction works

could be categorized as depth based and 2D image based.

Although depth based methods are inherently less likely to

suffer from depth ambiguity, they require special depth sen-

sors, and therefore cannot process the vast majority of 2D

recordings. Moreover, consumer grade depth sensors often

fail to capture high frequency shape detail. Binocular and

stereo vision systems are able to overcome the resolution
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Figure 1: Given a video, a parametric 3D model [6] was fitted to noisy 2D landmarks produced from the off-the-shelf 2D

landmark detector[21]. The fitted 3D model is used to refine the 3D position computed from the 2D landmarks via robust

photometric tracking. The tracked 3D mesh are superimposed on the image. After clustering, video frames of similar facial

expressions as seen at different viewing angles are used to compute a complete and smooth dense depth map. The glasses

and hair are well reconstructed.

(a) (b) (c) (d)

Figure 2: Shape from shading methods [32, 1] can recover

minuscule details such as wrinkles, shown in 2a and 2b,

however they cannot reconstruct larger geometry variation

such as hair and glasses, which SFM methods [11, 12]

can handle but fail to produce complete or smooth surface

shown in 2c and 2d.

limits but require careful synchronization.

Ever since the release of consumer grade device such as

Kinect, various methods that operate on noisy depth input

have been proposed. A depth based method was introduced,

which uses a parametric 3D facial model to robustly deal

with the noisy depth input in [37]. Recently a state-of-the-

art depth based tracking method with parametric 3D facial

geometry and lighting model has been proposed for real-

time facial expression transfer and reenactment in [33]. Due

to the limited depth sensor resolution, RGB color input is

used to supplement extra information to refine the tracking.

An adaptive scheme was proposed to capture more detail

with point-to-point deformation on top of blendshapes in

[22]. To explicitly deal with outliers caused by occlusions, a

method was proposed to segment the face and complete the

occluded parts based on the blendshape in [19], which was

later extended to RGB input in [28]. Binocular stereo sys-

tem, on the other hand, can provide higher resolution and

work in outdoor environments directly under sunlight, but

are more prone to suffer from lighting variation. A robust

method was introduced for a lightweight binocular system

under uncontrolled lighting in [35]. Generally, for most of

these state-of-the-art methods, a parametric 3D facial model

is first fitted for the tracking target, which is later used for

3D tracking. These methods are quite stable as the combi-

nation of depth information the 3D facial model can effec-

tively eliminate outliers and uncertainty.

2D image based methods are capable of processing ex-

isting footage without depth information, and are also more

flexible in terms of hardware setup requirement. However,

due to the lack of depth they are more likely to suffer from

depth ambiguity and lighting variation. In Cao et al and

Garido et al [14, 5] works personalized 3D facial models

are first crafted for the tracking target semi-manually, which

is later used to track the performance. Later a dynamic

method was proposed to automatically track and generate

personalized facial blendshape in realtime in [4]. Built on

top of the robust tracking, more details were added to the

person specific blendshape based on image input and user

interaction in [3, 7]. The creation of photo-realistic person

specific facial model can be useful for many application as

seen in [34, 23], where the tracked facial performance was

used to transfer the expression of source actor to the tar-

get. In order to create person specific model from a monoc-

ular rig, a method was proposed in [20], which produces

facial mesh via multi-view stereo vision pipeline. To al-

low the geometry deformation and variations go beyond the

blendshape and minuscule details, a method was proposed

in [38], which physically models the anatomical structure

of the face and deform the person specific model to match

the monocular video input.

In summary, to the best of our knowledge, none of the re-
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viewed works directly address the challenge of delivering a

mobile-user-friendly tool that is capable of dynamically re-

constructing full-scale 3D facial geometry in uncontrolled

environments. To satisfy this need, we firstly propose a ro-

bust realtime 3D facial tracking method in Section 3, which

obtains blendshape coefficient that is used to categorize fa-

cial deformation. After that, a novel depth reconstruction

method is introduced in Section 4, where depth map is esti-

mated for each individual expression. The performance of

our method is examined in Section 5. We evaluate the qual-

ity of 3D tracking and depth reconstruction by comparing

our method against popular methods [21, 4, 11, 12].

3. Robust Tracking

3.1. Parametric Model Fitting

To initialize, we first apply an off-the-shelf face detec-

tor [36] to obtain the bounding boxes. A 2D facial land-

mark detector [21] is trained on the dataset in [4], which

has 73 landmarks that include essential facial features on

the eyebrows, nose, mouth and the face contours, which are

necessary in determining the neutral face shape and expres-

sion variation. In our experiments the landmark detector

in [21] achieved the best trade-off between efficiency and

accuracy, but for applications where real-time is not a prior-

ity the landmark detector could be swapped by more robust

ones such as in [40, 41]. To reduce redundancy only repre-

sentative landmarks are chosen as described in [24] as well.

The landmarks in frame i is denoted as Si, and the 3D para-

metric model from [6] is represented as:

T ×2 U
T
id ×3 U

T
exp = C, (1)

where T is the data tensor and C is the core tensor.

Uid and Uexp are orthonormal transform matrices, which

contain the left singular vectors of the 2nd mode (identity)

space and 3rd mode (expression) space respectively. In our

setup we found that choosing 50 knobs for identity and 25

knobs for expression provides satisfactory approximation

results.

The perspective projection operator is denoted as Π and

the camera matrix is expressed as: A =





fx 0 cx
0 fy cy
0 0 1



 .

The intrinsic camera parameters are solved via the coor-

dinate descent approach by iteratively fixing either the in-

trinsic camera parameters or the remaining parameters and

solve for the others. The indices of inner facial landmarks

such as nose, eyes, eyebrows and mouth are fixed, and the

indices of face contours are updated in each iteration. The

face contours are computed by uniformly sampling from the

convex hull of projected facial contour vertices. The 3D to

2D alignment problem is solved by minimizing

min
I,Ei,Ri,ti

∑

i

‖ΠA(I, Ei, Ri, ti)− Si‖ǫ, (2)

where I , Ei, Ri and ti denotes the identity coefficient for

all frames, expression coefficients and the 3D rodrigues ro-

tation and translation vector for frame i respectively. To

minimize the effect of outliers in landmark detection, the

robust Huber loss is applied, where ǫ controls the tolerance

for outliers.

‖δ‖ǫ =

{

1
2δ

2 for|δ| ≤ ǫ,

ǫ |δ| − 1
2ǫ

2 otherwise.
(3)

The projection function is nonlinear but differentiable.

Firstly the rotation and translation are solved via direct lin-

ear transform. Then all parameters are solved jointly via

the Levenberg Marquardt algorithm [25]. Empirical ex-

periments show that trust region optimization method con-

verges to more natural expression, identity coefficient and

smaller error, than line search and coordinate descent meth-

ods. Since the identity coefficient is the only parameter that

affects all frames, the zero pattern in the normal equations is

exploited to reduce the computational cost [9]. To keep the

blendshape within valid range a box constraint is simulated

which clamps the expression and identity coefficient param-

eter within the column-wise minimum l and maximum u of

UT
id and UT

exp. The box constraint is achieved by variable

transformation as:

f(x) =
u+ l

2
+

u− l

2
· tanh((x−

u+ l

2
)/

u− l

2
), (4)

and the corresponding transformed partial derivative is

f ′(x) = ∂x− ∂x · tanh((x−
u+ l

2
)/

u− l

2
)2). (5)

3.2. Photometric Tracking

To robustly track the object in new incoming frames, the

photometric difference between the rendering and image is

minimized, which greatly benefits the tracking quality be-

cause of automatic occlusion handling back faces culling.

Given the parametric model computed from a few land-

marks and images, realistic rendering is synthesized for pre-

viously unseen angles.

Due to the noisy environment and complex lighting in

real world situations, we propose to simply use the me-

dian of extracted surface maps as a robust approximation

of the face texture, which is updated during tracking. Em-

pirically the experimental results show that such a low cost

and straightforward approximation achieves similar perfor-

mance to existing works that explicitly estimate the illumi-

nation and albedo of the face. The smoothness term is ap-

plied on a small window of 10 frames because longer se-

quences might not necessarily improve the accuracy, and
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slow down the computation. As a result, instant feedback

of tracked 3D performance is provided since it is not essen-

tial for the 3D reconstruction.

Given the ith frame, the rendering function is defined as

Φ and the target energy as:

min
P

∑

i

‖Φ(ΠA(Pi))− Fi‖ǫ + β ·Θ(P), (6)

where P denotes the set of parameters E, R and t that are

used to synthesize a virtual view given the texture map. A

L2 smoothness term Θ(X) controlled by β is used on the

expression and pose parameters is to exploit the temporal

coherence, which is defined as

Θ(X) = ‖XO‖, (7)

where O ∈ R
n×n is a symmetrical matrix defined by

O =















−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1















. (8)

The eigen-decomposition of β · Θ(P) is actually the n-by-

n type-2 discrete cosine transform (DCT) and inverse DCT

(IDCT) matrices and can be directly solved [13].

Both the rendering and photometric evaluation function

carry high computational cost. The search radius of E,

R and t can be clamped to reduce the computational cost,

which is calculated with respect to β as in Equation. (4, 5).

To make intensity difference term ρ = ‖Φ(ΠA(P))− Fi‖ǫ
differentiable, it is linearised via Taylor expansions approx-

imation yielding the following equation:

ρ = Φ(ΠA(P))−∇F (x+ u) · (p− u)− F (x+ p), (9)

where u is image coordinate difference in F and p is the

projected coordinate, ∇F is computed from 3 × 3 Sobel

kernel convolution. The computational cost of evaluating

the simulated Hessian matrix in trust-region methods at per-

pixel level becomes a bottle neck. Hence we switch to line

search method [2] with simulated Hessian matrix computed

from previous gradient directions.

Even with reduced search radius, evaluating per-pixel is

expensive when the input resolution is high. We take ad-

vantage of the high parallel capacity of GPU to achieve

lower latency. The face reconstructed from the core C
only contains points on the mesh, hence we render per-

vertex smoothed coordinates and colour of the mesh with

as a texture, then use CUDA/OpenGL interoperability to di-

rectly read from GPU memory and evaluate the cost func-

tion and derivative on GPU. It is only necessary to update

the rendering in outer iteration to keep the line search sta-

ble and reduce data transfer. The native support of texture

on GPU also allows fast sub-pixel interpolation, which pro-

vides higher accuracy.

The whole procedure of photometric tracking is summa-

rized in Algorithm. 1. The error term is the accumulative

photometric and smoothness penalty error. The smoothness

penalty is shrunk by a factor between [0, 1]. We find that 3

iteration and a shrunk factor of 0.9 lead satisfactory results

for most scenarios.

Algorithm 1 Photometric tracking

1: I, E,R, t← landmarks fitting

2: while error delta > threshold do

3: Texture← I, E,R, t
4: Smooth(E,R, t)
5: Track(E,R, t)
6: Shrink smoothness penalty

7: iteration← iteration + 1
8: if iteration > max iteration then break

4. Depth Estimation

Considering facial deformation can be semantically rep-

resented by facial expression variation, we reduce the dy-

namic depth reconstruction problem to a series of static ones

for each individual expression. Since facial deformation is

expressed with blendshapes, the canonical rigid reference

for each expression is established via clustering the blend-

shape coefficients. For each cluster we select a source frame

with most visible facial area, and the incoming frames are

assigned with their corresponding clusters and used as pho-

tometric measurement target frame. The number of clusters

is updated during tracking to reflect the fact that more ex-

pressions have been observed, which is performed by en-

suring the standard deviation of a cluster is lower than a

threshold. The choice of this threshold would influence the

number of views required for each expression and the re-

construction quality, where we found that for the 25 dimen-

sion expression coefficient a standard deviation of 0.1 is a

good compromise.

We denote the inverse of rotation R−1 and translation

t−1 from source Rs and Ts to target image Rt and tt as

R−1 = RT
t × Rs and t−1 = tt − RT

t × ts. The average

photometric error C(u, d) of pixel u in reference image Fr

and target image Ft with the inverse depth d is defined as

Cr(u, d) =
∑

|Fr(u)−Ft(ΠA(A
−1× [u, d], R−1, t−1))|.

(10)

Since the relative movement of face to the camera is

small, the minimum average sum of the photometric error

should correspond to the correct depth under the intensity
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Figure 3: Take the blue and red points on the reference image 3a for example, the red point on smooth varying face surface has

multiple local cost volume minimums while the blue point on the glasses that protrude from the face has one clear minimum

close to the true value as seen in 3b. The low quality of pixel intensity as the matching feature leads to ambiguous noisy local

minimums in 3c. Moreover, as observed in the plot, a large range of depth values are not useful and therefore should not be

searched during iteration. Evidently, if a general scheme is used such as the one in [26], the reconstructed depth in 3d can

only resemble the essences of true object, whereas the depth in 3e reconstructed by the proposed scheme is more accurate.

consistent assumption. However, the per-pixel minimum

might not necessarily be accurate or lead to smooth surface

due to factors such as specular reflection, self occlusion and

intensity ambiguity in texture-less areas.

In order to solve this, previous methods [26, 17, 16] have

employed a total variational minimization to remove noise.

The goal is to minimize the gradient of depth map D to

produce smooth surface and preserve depth discontinuity

around edges, which is achieved via minimizing

min
D

∫

Ω

|∇D(u)|+ λC(u, d), (11)

where ∇ is the distributional derivative and Ω is the image

domain. The variational term |∇D| is convex whereas the

data fidelity term λ|C(u, d)| is non-convex. A convex ap-

proximation of the data fidelity term controlled by λ can

be obtained by linearizing the cost volume and solving the

resulting approximation iteratively within a coarse-to-fine

warping scheme. This would require keeping all the images

thus significantly increasing the computational cost. Since

the aim is to process long video sequences that contain as

much expression and poses as possible, we follow the ap-

proach in [26], in which the energy functional is approxi-

mated by coupling the data and regularization terms through

an auxiliary variable α.

min
D,α

∫

Ω

G|∇D(u)|ǫ + λC(u, α(u)) +
1

2θ
‖D(u)− α(u)‖,

(12)

Although L1 total variation is robust to outliers, it suffers

from the stair-case effect. One could alleviate this effect

by applying Huber norm on the weighted variational term

as G|∇D|ǫ, where G = e−∇F is the image gradient of

the reference image computed from Equation 17, which is

optionally normalized and scaled to reflect the smoothness

regularization strength on edge boundaries. For continuous

surface the Gaussian noise smaller than ǫ is smoothed by

L2 norm while larger depth discontinuity are filtered by L1

norm.

Although the cost-volume is discrete, sub-sample refine-

ment could be computed from performing a single Newton

step using numerical differentiation of the coupling term

E(u, d, α) = λC(u, α) + 1
2θ‖D − α‖.

ᾱ = α−
∇E(u, d, α)

∇2E(u, d, α)
(13)

To produce a smooth surface, one limitation of such ap-

proximation is that the cost volume needs to be sampled

at a very high rate with every possible depth. Note that a

rough model of the face is readily available from the para-

metric model, it is used as a prior to accelerate the iteration

and generate more accurate results. Based on this, several

modifications are introduced to the original update scheme,

which significantly speeds up the optimization. The effec-

tiveness of our proposed scheme is shown in Fig. 3.

1. The search radius is set according to the photometric

tracking error. Because detail not included in the para-

metric model is less likely to be correctly captured in

the median texture, a larger search radius is used for

pixels with bigger error. The search radius s is set to

be positive correlated to sum of intensity difference be-

tween the synthesized rendering and the real images,

and the search range is centered around the depth of

face model r,

α ∈ [r − s, r + s]. (14)

2. When solving the auxiliary variable α in each iteration,

if the absolute difference |C(u, α)− C(u, r)| < ǫ, the

auxiliary variable α is set to r instead of performing

the single Newton step refinement.

3. Assuming there is no major facial modification, the

search radius is limited to the visible range d < r,
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where r is the depth value on the face model. For pix-

els not on the face model the search radius is set to the

distance between the lowest and highest depth value of

the face model.

As the coupling energy term θ becomes larger, the fea-

sible search range of auxiliary variable is shrunk as

well. Given the cost volume minimum and maximum

of a pixel in current range, the coupling energy dictates

that the solution should lie in the following bound,

Cmin
u +

1

2θ
‖D − α‖ ≤ min(Cmax

u , C(u, r)), (15)

and the updated search radius is

s = 2θ · λ(min(Cmax
u , C(u, r))− Cmin

u ) (16)

Following [31], the duality principles leads us to the

primal-dual form of Equation 12, where the primal variable

is α and denote the dual variable is denoted as q. It is essen-

tial for the gradient operation ∇ that operates on the dual

variable q to be different from the one that operates on im-

age in Equation 9, in order for the Stokes theorem to hold

exactly. The gradient of depth map D is computed with for-

ward differences with Neumann boundary condition. The

divergence of the dual variable q, which is the adjoint of the

gradient of D, is computed with backward differences. For

image of size (W,H), the numerical scheme is detailed as

follows:

∂D(i, j)

∂x
=

{

D(i+ 1, y)−D(i, j) if1 ≤ i ≤W,

0 otherwise.

∂D(i, j)

∂y
=

{

D(i, j + 1)−D(i, j) if1 ≤ j ≤ H,

0 otherwise.

(17)

div(p) =











qx(i, j)− qx(i− 1, j) if1 ≤ i ≤W,

qx(i, j) ifi = 1,

−qx(i− 1, j) otherwise.

+











qy(i, j)− qy(i, j − 1) if1 ≤ j ≤ H,

qy(i, j) ifj = 1,

−qy(i, j − 1) otherwise.

(18)

Following the duality-based algorithm in [8], σ is se-

lected as σ = τ 1
L2 , L = 8, θ = 1 and τ = 0.01. The Huber

norm control variable ǫ is set based on the search grid of

the cost volume. The dual and primal variable is minimized

in an alternating manner by fixing one while solving for the

other:

1. Fixed α, solve

min
D

∫

Ω

|∇D|ǫ +
1

2θ
‖D − α‖. (19)

The gradient ascent is performed on ∂D = 0, yielding

qn+1 = Ψ(
q + σG∇D

1 + σǫ
),

Dn+1 =
Dn + τ(G · div(qn+1) + α

θ
)

1 + σǫ
.

(20)

where Ψ(x) = x
max(1,‖x‖) is the resolvent operator

that projects the gradient ascent step back onto the unit

ball.

2. Fixed D, solve

min
α

∫

Ω

1

2θ
‖D − α‖+ λC(u, α), (21)

which is achieved via point-wise exhaustive search

with the aforementioned scheme.

The point-wise search is independent of its neighbors and

trivially parallelizable on modern GPU. The update for q
and D on the other hand depends on its neighbors. Thus we

use CUDA warp shuffles, which enable different process-

ing units in the same wrap to share value through register

and avoid reading/writing from global memory to reduce

the overhead of syncing.

5. Experiments

In this section we detail the performance and implemen-

tation of our method. All of the experiments were done on

a desktop PC with Intel Xeon (3.5 GHz), 32 GB RAM and

GTX 980 graphics card. We designed two separate set of

experiments to verify the effectiveness of our method. First

we compare the facial performance tracking quality of our

method to that of existing facial landmark tracking methods

in uncontrolled setting. Next we compare the depth estima-

tion accuracy to structure from motion methods where the

person remain still and the camera position changes.

The 2D landmark detection takes one millisecond to

compute as suggested by the title in [21]. The surface

parametrization is only performed once when the paramet-

ric model was initially being fitted to the 2D landmarks,

which takes 100ms. For 1080p videos, OpenGL rendering

takes 5ms, error evaluation and derivative computation tak-

ing 2ms and the smoothing operation takes less than 1ms.

For depth map with a size of 600 × 800 pixels, the cost

volume aggregation takes 5ms to execute with a search grid

resolution of 64 levels. The tracking and photometric error

computation runs on average around 35 fps. The denoising
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Figure 4: Our method is able to provide accurate 3D tracking which is crucial for successful depth estimation. Tracked 3D

mesh is superimposed and the noisy 2D landmarks for initialization are shown in blue points.

takes 100 iterations that finish within 110ms, and as a re-

sult the denoised depth map is generated per user request

instantly.

5.1. Robust Tracking

To evaluate the tracking performance, we compare our

method with existing facial landmark detection methods on

the video dataset in [30], as well as with our own record-

ings in tough situations, which are either downloaded from

Youtube or recorded with a Samsung Galaxy S6 smart

phone. Qualitative results are shown in Fig. 4, more of

which can be found in the supplementary material.

The benchmark dataset (300 V-W) [30] consists of

videos recorded in uncontrolled environment with manually

labeled landmark ground truth. We redefine indices of the

3D parametric model the landmarks according to the proto-

col in [30]. Comparative results with existing methods are

illustrated in Table 1. Although our landmark detector is

based on [21], which did not achieve the best result, build-

ing on top of its output our method achieved the best result

on the challenging subset and fullset.

5.2. Depth Estimation

To evaluate the proposed depth estimation method we

compared the reconstructed depth map of the same record-

ing to that of [26], which took a similar approach for real-

time general object reconstruction. The quantitative result is

Method Common

Subset

Challenging

Subset

Fullset

ERT [21] 6.11 14.7 6.40

SDM [39] 6.12 14.1 6.14

LBP [27] 6.03 13.9 6.11

DDE [4] 5.45 11.9 6.32

Ours 4.97 6.98 5.11

Table 1: The qualitative comparison with existing methods

measured in averaged errors on the 300 V-W [30], results

taken from existing executable and literature. Note that both

our method and [4] needs a few frames to start up, we ex-

cluded the results of first 3 seconds in each video.

Method Average

Error

Pose (s) Depth (s)

PMVS [11] 1.4 25 283.4

GIPUMA [12] 1.1 25 95.9

Ours 0.4 2.12 1.62

Table 2: The average error is computed from the squared

error of the facial area to the Kinect Fusion scan. Results

of PMVS [11] and GIPUMA [12] are computed from 35

images, which are selected manually to cover most of the

facial area and contain the least amount of motion blur. Re-

sults of our method are computed from 10s 30FPS short

clips of the person. Example fused depth map of [11, 12]

are shown in Fig. 2

.

shown in Fig. 3d and 3e. At first glance, the depth map pro-

duced by [26] roughly captured essences of the face. How-

ever, closer inspection revealed that it failed to produce an

equally accurate representation as the proposed method.

For qualitative comparison between our method and

SFM methods [11, 12], we measure the average compu-

tation time and the RMSE (cm) error of the reconstructed

depth map compared to the real physical face. It is shown

in Table 2 that our method achieved the lowest error and

need the least amount of time. We showcase novel views

generated from the depth map reconstructed by our method

as well as the perspective-aware portrait photos manipula-

tion results in Fig. 5, which is inspired by [10]. Today

most photos are taken using mobile devices with fixed focal

length. With the high quality depth map, images captured

by fixed focal length camera can be modified to simulate

results captured with different focal length. More compre-

hensive results and dynamic examples can be found in the

supplementary material.

6. Conclusion

We have proposed a novel method for dynamic 3D fa-

cial reconstruction from monocular videos in uncontrolled

environments. The key contribution is that we propose to

reconstruct the depth of the face by undoing facial deforma-
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Figure 5: From top to bottom: reference view, novel unseen views and perspective-aware portrait photos manipulation based

on the depth map obtained from our method.

tion, which is achieved by 3D facial performance tracking

and expression coefficient clustering. Our method can be

adapted to many applications that require 3D information

of the face.

Experimental results show that our method is able to per-

form robust 3D facial tracking even from noisy output pro-

duced by the 2D landmark detector. Moreover, our method

is able to produce realistic facial surface while preserving

large facial geometry variation. Although our method only

generates depth maps at the moment, we will investigate

creating morphable 3D volumetric models for dynamic fa-

cial expression transfer and video retargeting in the future.
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