
3D Morphable Models as Spatial Transformer Networks

Anil Bas*, Patrik Huber†, William A. P. Smith*, Muhammad Awais†, Josef Kittler†

*Department of Computer Science, University of York, UK
†Centre for Vision, Speech and Signal Processing, University of Surrey, UK

{ab1792,william.smith}@york.ac.uk, {p.huber,m.a.rana,j.kittler}@surrey.ac.uk

Abstract

In this paper, we show how a 3D Morphable Model

(i.e. a statistical model of the 3D shape of a class of ob-

jects such as faces) can be used to spatially transform input

data as a module (a 3DMM-STN) within a convolutional

neural network. This is an extension of the original spa-

tial transformer network in that we are able to interpret

and normalise 3D pose changes and self-occlusions. The

trained localisation part of the network is independently

useful since it learns to fit a 3D morphable model to a single

image. We show that the localiser can be trained using only

simple geometric loss functions on a relatively small dataset

yet is able to perform robust normalisation on highly uncon-

trolled images including occlusion, self-occlusion and large

pose changes.

1. Introduction

Convolutional neural networks (CNNs) are usually

trained with such large amounts of data that they can learn

invariance to scale, translation, in-plane rotation and, to a

certain degree, out-of-plane rotations, without using any

explicit geometric transformation model. However, most

networks do require a rough bounding box estimate as in-

put and don’t work for larger variations. Recently, Jader-

berg et al. [14] proposed the Spatial Transformer Network

(STN) - a module that can be incorporated into a neural net-

work architecture, giving the network the ability to explic-

itly account for the effects of pose and nonrigid deforma-

tions (which we refer to simply as “pose”). An STN explic-

itly estimates pose and then resamples a specific part of the

input image to a fixed-size output image. It is thus able to

work on inputs with larger translation and pose variation in

general, since it can explicitly compensate for it, and feed a

transformed region of interest to the subsequent neural net-

work layers. By exploiting and “hard-coding” knowledge

of geometric transformation, the amount of training data

and the required complexity of the network can be vastly

reduced.

In this paper, we show how to use a 3D morphable

model as a spatial transformer network (we refer to this as

a 3DMM-STN). In this setting, the locations in the input

image that are resampled are determined by the 2D projec-

tion of a 3D deformable mesh. Hence, our 3DMM-STN

estimates both 3D shape and pose. This allows us to ex-

plicitly estimate and account for 3D rotations as well as self

occlusions. The output of our 3DMM-STN is a resampled

image in a flattened 2D texture space in which the images

are in dense, pixel-wise correspondence. Hence, this output

can be fed to subsequent CNN layers for further process-

ing. We focus on face images and use a 3D morphable face

model [4, 19], though our idea is general and could be ap-

plied to any object for which a statistical 3D shape model

is available (though note that the loss functions proposed in

Sections 3.1 and 3.2 do assume that the object is bilaterally

symmetric). We release source code for our 3DMM-STN in

the form of new layers for the MatConvNet toolbox [30]1.

1.1. Related work

In a lot of applications, the process of pose normalisa-

tion and object recognition are disjoint. For example, in the

breakthrough deep learning face recognition paper Deep-

Face, Taigman et al. [27] use a 3D mean face as preprocess-

ing, before feeding the pose-normalised image to a CNN.

Spatial transformers The original STN [14] aimed to

combine these two processes into a single network that is

trainable end to end. The localiser network estimated a 2D

affine transformation that was applied to the regular output

grid meaning the network could only learn a fairly restricted

space of transformations. Jaderberg et al. [14] also proposed

the concept of a 3D transformer, which takes 3D voxel data

as input, applies 3D rotation and translation, and outputs a

2D projection of the transformed data. Working with 3D

(volumetric data) removes the need to model occlusion or

camera projection parameters. In contrast, we work with

1The source code is available at https://github.com/

anilbas/3DMMasSTN.

904

https://github.com/anilbas/3DMMasSTN
https://github.com/anilbas/3DMMasSTN

regular 2D input and output images but transform them via

a 3D model.

A number of subsequent works were inspired by the

original STN. Yan et al. [31] use an encoder-decoder ar-

chitecture in which the encoder estimates a 3D volumetric

shape from an image and is trained by combining with a de-

coder which uses a perspective transformer network to com-

pute a 2D silhouette loss. Handa et al. [11] present the gvnn

(Geometric Vision with Neural Networks) toolbox that, like

in this paper, has layers that explicitly implement 3D geo-

metric transformations. However, their goal is very differ-

ent to ours. Rather than learning to fit a statistical shape

model, they seek to use 3D transformations in low level vi-

sion tasks such as relative pose estimation. Chen et al. [6]

use a spatial transformer that applies a 2D similarity trans-

form as part of an end to end network for face detection.

Henriques and Vedaldi [12] apply a spatial warp prior to

convolutions such that the convolution result is invariant to

a class of two-parameter spatial transformations. Like us,

Yu et al. [32] incorporate a parametric shape model, though

their basis is 2D (and trainable), models only sparse shape

and combines pose and shape into a single basis. They use a

second network to locally refine position estimates and train

end to end to perform landmark localisation. Bhagavatula

et al. [3] fit a generic 3D face model and estimate face land-

marks, before warping the projected face model to better fit

the landmarks. They estimate 2D landmarks in a 3D-aware

fashion, though they require known landmarks for training.

Analysis-by-synthesis Our localiser learns to fit a 3DMM

to a single image. This task has traditionally been posed

as a problem of analysis-by-synthesis and solved by opti-

misation. The original method [4] used stochastic gradi-

ent descent to minimise an appearance error, regularised by

statistical priors. Subsequent work used a more complex

feature-based objective function [23] and the state-of-the-

art method uses Markov Chain Monte Carlo for probabilis-

tic image interpretation [24].

Supervised CNN regression Analysis-by-synthesis ap-

proaches are computationally expensive, prone to conver-

gence on local minima and fragile when applied to in-the-

wild images. For this reason, there has been considerable

recent interest in using CNNs to directly regress 3DMM pa-

rameters from images. The majority of such work is based

on supervised learning. Jourabloo and Liu [15] fit a 3DMM

to detected landmarks and then train a CNN to directly

regress the fitted pose and shape parameters. Trãn et al. [29]

use a recent multi-image 3DMM fitting algorithm [20] to

obtain pooled 3DMM shape and texture parameters (i.e. the

same parameters for all images of the same subject). They

then train a CNN to directly regress these parameters from

a single image. They do not estimate pose and hence do

not compute an explicit correspondence between the model

and image. Kim et al. [16] go further by also regressing illu-

mination parameters (effectively performing inverse render-

ing) though they train on synthetic, rendered images (using

a breeding process to increase diversity). They estimate a

3D rotation but rely on precisely cropped input images such

that scale and translation is implicit. Richardson et al. [21]

also train on synthetic data though they use an iteratively

applied network architecture and a shape-from-shading re-

finement step to improve the geometry. Jackson et al. [13]

regress shape directly using a volumetric representation.

The DenseReg [10] approach uses fully convolutional

networks to directly compute dense correspondence be-

tween a 3D model and a 2D image. The network does not

explicitly estimate or model 3D pose or shape (though these

are implied by the correspondence) and is trained by using

manually annotated 2D landmarks to warp a 3D template

onto the training images (providing the supervision). Sela

et al. [25] also use a fully convolutional network to pre-

dict correspondence and also depth. They then merge the

model-based and data-driven geometries for improved qual-

ity.

The weakness of all of these supervised approaches is

that they require labelled training data (i.e. images with fit-

ted morphable model parameters). If the images are real

world images then the parameters must come from an ex-

isting fitting algorithm in which case the best the CNN can

do is learn to replicate the performance of an existing algo-

rithm. If the images are synthetic with known ground truth

parameters then the performance of the CNN on real world

input is limited by the realism and variability present in the

synthetic images. Alternatively, we must rely on 3D super-

vision provided by multiview or RGBD images, in which

case the available training data is vastly reduced.

Unsupervised CNN regression Richardson et al. [22]

take a step towards removing the need for labels by pre-

senting a semi-supervised approach. They still rely on su-

pervised training for learning 3DMM parameter regression

but then refine the coarse 3DMM geometry using a second

network that is trained in an unsupervised manner. Very re-

cently, Tewari et al. [28] presented MoFA, a completely un-

supervised approach for training a CNN to regress 3DMM

parameters, pose and illumination using an autoencoder ar-

chitecture. The regression is done by the encoder CNN. The

decoder then uses a hand-crafted differentiable renderer to

synthesise an image. The unsupervised loss is the error be-

tween the rendered image and the input, with convergence

aided by losses for priors and landmarks. Note that the de-

coder is exactly equivalent to the differentiable cost function

used in classical analysis-by-synthesis approaches. Presum-

ably, the issues caused by the non-convexity of this cost

function are reduced in a CNN setting since the gradient

905

Localiser
(VGG)

θ

⊙
Grid

Generator

Bilinear
Sampler

Visibility
Mask

I
W

M

Y''

V

X'

Figure 1. Overview of the 3DMM-STN. The localiser predicts

3DMM shape parameters and pose. The grid generator projects

the 3D geometry to 2D. The bilinear sampler resamples the input

image to a regular output grid which is then masked by an occlu-

sion mask computed from the estimated 3D geometry.

is averaged over many images.

While the ability of [28] to learn from unlabelled data is

impressive, there are a number of limitations. The complex-

ity required to enable the hand-crafted decoder to produce

photorealistic images of any face under arbitrary real world

illumination, captured by a camera with arbitrary geomet-

ric and photometric properties, is huge. Arguably, this has

not yet been achieved in computer graphics. Moreover, the

3DMM texture should only capture intrinsic appearance pa-

rameters such as diffuse and specular albedo (or even spec-

tral quantities to ensure independence from the camera and

lighting). Such a model is not currently available.

1.2. Contributions

In this paper we propose a purely geometric approach in

which only the shape component of a 3DMM is used to geo-

metrically normalise an image. Unlike [10,13,15,16,21,25,

29], our method can be trained in an unsupervised fashion,

and thus does not depend on synthetic training data or the

fitting results of an existing algorithm. In contrast to [28],

we avoid the complexity and potential fragility of having

to model illumination and reflectance parameters. More-

over, our 3DMM-STN can form part of a larger network

that performs a face processing task and is trained end to

end. Finally, in contrast to all previous 3DMM fitting net-

works, the output of our 3DMM-STN is a 2D resampling of

the original image which contains all of the high frequency,

discriminating detail in a face rather than a model-based re-

construction which only captures the gross, low frequency

aspects of appearance that can be explained by a 3DMM.

2. 3DMM-STN

Our proposed 3DMM-STN has the same components

as a conventional STN, however each component must be

modified to incorporate the statistical shape model, 3D

transformations and projection and self-occlusion. In this

section we describe each component of a 3DMM-STN and

the layers that are required to construct it. We show an

overview of our architecture in Figure 1.

2.1. Localiser network

The localiser network is a CNN that takes an image as

input and regresses the pose and shape parameters, θ, of the

face in the image. Specifically, we predict the following

vector of parameters:

θ = (r, t, logs
︸ ︷︷ ︸

pose

, α
︸︷︷︸

shape

). (1)

Here, t ∈ R
2 is a 2D translation, r ∈ R

3 is an axis-angle

representation of a 3D rotation with rotation angle ‖r‖ and

axis r/‖r‖. Since scale must be positive, we estimate log

scale and later pass this through an exponentiation layer,

ensuring that the estimated scale is positive. The shape pa-

rameters α ∈ R
D are the principal component weights used

to reconstruct the shape.

For our localiser network, we use the pretrained VGG-

Faces [18] architecture, delete the classification layer and

add a new fully connected layer with 6 + D outputs. The

weights for the new layer are randomly initialised but scaled

so that the elements of the axis-angle vector are in the range

[−π, π] for typical inputs. The whole localiser is then fine-

tuned as part of the subsequent training.

2.2. Grid generator network

In contrast to a conventional STN, the warped sampling

grid is not obtained by applying a global transformation to

the regular output grid. Instead, we apply a 3D transfor-

mation and projection to a 3D mesh that comes from the

morphable model. The intensities sampled from the source

image are then assigned to the corresponding points in a

flattened 2D grid.

For this reason, the grid generator network in a 3DMM-

STN is more complex than in a conventional STN, although

we emphasise that it remains differentiable and hence suit-

able for use in end to end training. The sample points in our

grid generator are determined by the transformation param-

eters θ estimated by the localiser network. Our grid gen-

erator combines a linear statistical model with a scaled or-

thographic projection as shown in Figure 2. Note that we

could alternatively use a perspective projection (modifying

the localiser to predict a 3D translation as well as camera

parameters such as focal length). However, recent results

show that interpreting face shape under perspective is am-

biguous [2, 26] and so we use the more restrictive ortho-

graphic model here.

We now describe the transformation applied by each

layer in the grid generator and provide derivatives.

906

Input: θ = (r, t, logs,α)

expr to R

Rotate3DMM Project Scale Translate

r logs

α

R s

X X
′

Y Y
′

Y
′′

Figure 2. The grid generator network within a 3DMM-STN.

3D morphable model layer The 3D morphable model

layer generates a shape X ∈ R
3×N comprising N 3D ver-

tices by taking a linear combination of D basis shapes (prin-

cipal components) stored in the matrix P ∈ R
3N×D and

the mean shape µ ∈ R
3N according to shape parameters

α ∈ R
D:

X(α)i,j = x(α)3(j−1)+i, i ∈ [1, 3], j ∈ [1, N],

where

x(α) = Pα+ µ

and the derivatives are given by:

∂x

∂α
= P,

∂Xi,j

∂αk

= P3(j−1)+i,k.

Note that such a linear model is exactly equivalent to a fully

connected layer (and hence a special case of a convolutional

layer) with fixed weights and biases. This is not at all sur-

prising since a linear model is exactly what is implemented

by a single layer linear decoder. In this interpretation, the

shape parameters play the role of the input map, the prin-

cipal components the role of weights and the mean shape

the role of biases. This means that this layer can be im-

plemented using an existing implementation of a convolu-

tion layer and also, following our later suggestion for future

work, that the model could itself be made trainable simply

by having non-zero learning rate for the convolution layer.

In our network, we use some of the principal compo-

nents to represent shape variation due to identity and the

remainder to represent deformation due to expression. We

assume that expressions are additive and we can thus com-

bine the two into a single linear model. Note that the shape

parameters relating to identity may contain information that

is useful for recognition, so these could be incorporated into

a descriptor in a recognition network after the STN.

Axis-angle to rotation matrix layer This layer converts

an axis-angle representation of a rotation, r ∈ R
3, into a

rotation matrix:

R(r) = cos θI+ sin θ
[
r̄
]

×
+ (1− cos θ)r̄r̄T ,

where θ = ‖r‖ and r̄ = r/‖r‖ and

[
a
]

×
=





0 −a3 a2
a3 0 −a1
−a2 a1 0





is the cross product matrix. The derivatives are given by [8]:

∂R

∂ri
=

{

[ei]× if r = 0

ri[r]×+[r×(I−R(r))ei]×
‖r‖2 R otherwise

where ei is the ith vector of the standard basis in R
3.

3D rotation layer The rotation layer takes as input a ro-

tation matrix R and N 3D points X ∈ R
3×N and applies

the rotation:

X
′(R,X) = RX

∂X ′
i,j

∂Ri,k

= Xk,j ,
∂X ′

i,j

∂Xk,j

= Ri,k, i, k ∈ [1, 3], j ∈ [1, N].

Orthographic projection layer The orthographic projec-

tion layer takes as input a set of N 3D points X′ ∈ R
3×N

and outputs N 2D points Y ∈ R
2×N by applying an ortho-

graphic projection along the z axis:

Y(X′) = PX
′, P =

[
1 0 0
0 1 0

]

,

∂Yi,j

∂X ′
i,j

= 1, i ∈ [1, 2], j ∈ [1, N].

Scaling The log scale estimated by the localiser is first

transformed to scale by an exponentiation layer:

s(logs) = exp(logs),
∂s

∂logs
= exp(logs).

Then, the 2D points Y ∈ R
2×N are scaled:

Y
′(s,Y) = sY,

∂Y ′
i,j

∂s
= Yi,j ,

∂Y ′
i,j

∂Yi,j

= s

Translation Finally, the 2D sample points are generated

by adding a 2D translation t ∈ R
2 to each of the scaled

points:

Y
′′(t,Y′) = Y

′ + 1N ⊗ t,
∂Y ′′

i,j

∂ti
= 1,

∂Y ′′
i,j

∂Y ′
i,j

= 1,

where 1N is the row vector of length N containing ones and

⊗ is the Kronecker product.

907

Figure 3. The output grid of our 3DMM-STN: a Tutte embedding

of the mean shape of the Basel Face Model. On the left we show a

visualisation using the mean texture (though note that our 3DMM-

STN does not use a texture model). On the right we show the mean

shape as a geometry image [9].

2.3. Sampling

In the original STN, the sampler component used bilin-

ear sampling to sample values from the input image and

transform them to an output grid. We make a number of

modifications. First, the output grid is a texture space flat-

tening of the 3DMM mesh. Second, the bilinear sampler

layer will incorrectly sample parts of the face onto vertices

that are self-occluded so we introduce additional layers that

calculate which vertices are occluded and mask the sampled

image appropriately.

Output grid The purpose of an STN is to transform an

input image into a canonical, pose-normalised view. In the

context of a 3D model, one could imagine a number of anal-

ogous ways that an input image could be normalised. For

example, the output of the STN could be a rendering of the

mean face shape in a frontal pose with the sampled texture

on the mesh. Instead, we choose to output sampled textures

in a 2D embedding obtained by flattening the mean shape of

the 3DMM. This ensures that the output image is approxi-

mately area uniform with respect to the mean shape and also

that the whole output image contains face information.

Specifically, we compute a Tutte embedding [7] using

conformal Laplacian weights and with the mesh boundary

mapped to a square. To ensure a symmetric embedding we

map the symmetry line to the symmetry line of the square,

flatten only one side of the mesh and obtain the flatten-

ing of the other half by reflection. We show a visualisa-

tion of our embedding using the mean texture in Figure

3. In order that the output warped image produces a regu-

larly sampled image, we regularly re-sample (i.e. re-mesh)

the 3DMM (mean and principal components) over a uni-

form grid of size H ′ × W ′ in this flattened space. This

effectively makes our 3DMM a deformable geometry im-

age [9]. The re-sampled 3DMM that we use in our STN

therefore has N = H ′W ′ vertices and each vertex i has an

associated UV coordinate (xt
i, y

t
i). The corresponding sam-

ple coordinate produced by the grid generator is given by

(xs
i , y

s
i) = (Y ′′

1,i, Y
′′
2,i).

Bilinear sampling We use bilinear sampling, exactly as

in the original STN such that the re-sampled image V c
i at

location (xt
i, y

t
i) in colour channel c is given by:

V c
i =

H∑

j=1

W∑

k=1

Icjk max(0, 1−|xs
i −k|)max(0, 1−|ysi −j|)

where Icjk is the value in the input image at pixel (j, k) in

colour channel c. I has height H and width W . This bilin-

ear sampling is differentiable (see [14] for derivatives) and

so the loss can be backpropagated through the sampler and

back into the grid generator.

Self-occlusions Since the 3DMM produces a 3D mesh,

parts of the mesh may be self-occluded. The occluded

vertices can be computed exactly using ray-tracing or z-

buffering or they can be precomputed and stored in a lookup

table. For efficiency, we approximate occlusion by only

computing which vertices have backward facing normals.

This approximation would be exact for any object that is

globally convex. For objects with concavities, the ap-

proximation will underestimate the set of occluded ver-

tices. Faces are typically concave around the eyes, the nose

boundary and the mouth interior but we find that typically

only around 5% of vertices are mislabelled and the accuracy

is sufficient for our purposes.

This layer takes as input the rotation matrix R and the

shape parameters α and outputs a binary occlusion mask

M ∈ {0, 1}H
′×W ′

. The occlusion function is binary and

hence not differentiable at points where the visibility of a

vertex changes, everywhere else the gradient is zero. Hence,

we simply pass back zero gradients:

∂M

∂α
= 0,

∂M

∂R
= 0.

Note that this means that the network is not able to learn

how changes in occlusion help to reduce the loss. Occlu-

sions are applied in a forward pass but changes in occlusion

do not backpropagate.

Masking layer The final layer in the sampler combines

the sampled image and the visibility map via pixel-wise

products:

W c
i = V c

i Mxt

i
,yt

i

,
∂W c

i

∂V c
i

= Mxt

i
,yt

i

,
∂W c

i

∂Mxt

i
,yt

i

= V c
i .

3. Geometric losses for localiser training

An STN is usually inserted into a network as a prepro-

cessor of input images and its output is then passed to a

classification or regression CNN. Hence, the pose normali-

sation that is learnt by the STN is the one that produces op-

timal performance on the subsequent task. In the context of

908

Figure 4. Siamese multiview loss. An image and its horizontal

reflection yield two sampled images. We penalise differences in

these two images.

a 3D morphable face model, an obvious task would be face

recognition. While this is certainly worth pursuing, we have

observed that the optimal normalisation for recognition may

not correspond to the correct model-image correspondence

one would expect. For example, if context provided by hair

and clothing helps with recognition, then the 3DMM-STN

may learn to sample this.

Instead, we show that it is possible to train an STN to

perform accurate localisation using only some simple geo-

metric priors without even requiring identity labels for the

images. We describe these geometric loss functions in the

following sections.

3.1. Bilateral symmetry loss

Faces are approximately bilaterally symmetric. Ignor-

ing the effects of illumination, this means that we expect

sampled face textures to be approximately bilaterally sym-

metric. We can define a loss that measures asymmetry of

the sampled texture over visible pixels:

ℓsym =

N∑

i=1

3∑

c=1

Mxt

i
,yt

i

Mxt

sym(i)
,yt

sym(i)
(V c

i − V c
sym(i))

2, (2)

where V c
sym(i) is the value in the resampled image at location

(W ′ + 1− xs
i , y

s
i).

Selection
Euclidean

Loss

Landmarks

Y''

Figure 5. Landmark loss. Left: The diagram shows the implemen-

tation of the regression layer that computes the Euclidean distance

between selected 2D points and ground truth positions. Right: Pre-

dicted positions are in red and landmark positions are in green.

Figure 6. Overview of the 3DMM-STN. From left to right: input

image; rendering of estimated shape in estimated pose; sampled

image; occlusion mask; final output of 3DMM-STN.

3.2. Siamese multi­view fitting loss

If we have multiple images of the same face in different

poses (or equivalently from different viewpoints), then we

expect that the sampled textures will be equal (again, ne-

glecting the effects of illumination). If we had such multi-

view images, this would allow us to perform Siamese train-

ing where a pair of images in different poses were sampled

into images V c
i and W c

i with visibility masks M and N

giving a loss:

ℓmultiview =
N∑

i=1

3∑

c=1

Mxt

i
,yt

i

Nxt

i
,yt

i

(V c
i −W c

i)
2. (3)

Ideally, this loss would be used with a multiview face

database or even a face recognition database where images

of the same person in different in-the-wild conditions are

present. We use an even simpler variant which does not

require multiview images; again based on the bilateral sym-

metry assumption. A horizontal reflection of a face image

approximates what that face would look like in a reflected

pose. Hence, we perform Siamese training on an input im-

age and its horizontal reflection. This is different to the

bilateral symmetry loss and is effectively encouraging the

localiser to behave symmetrically.

3.3. Landmark loss

As has been observed elsewhere [28], convergence of the

training can be speeded up by introducing surrogate loss

functions that provide supervision in the form of landmark

locations. It is straightforward to add a landmark loss to

our network. First, we define a selection layer that selects

L < N landmarks from the N 2D points outputted by the

grid generator:

L = Y
′′
S (4)

where S ∈ {0, 1}N×L is a selection matrix with S
T
S = IL.

Given L landmark locations l1, . . . , lL and associated detec-

tion confidence values c1, . . . , cL, we computed a weighted

Euclidean loss:

ℓlandmark =
L∑

i=1

ci‖Li − li‖
2. (5)

Landmarks that are not visible (i.e. were not hand-labelled

or detected) are simply assigned zero confidence.

909

Figure 7. 3DMM-STN output for multiple images of the same per-

son in different poses.

3.4. Statistical prior loss

The statistical shape model provides a prior. We scale the

shape basis vectors such that the shape parameters follow a

standard multivariate normal distribution: α ∼ N (0, ID).
Hence, the statistical prior can be encoded by the following

loss function:

ℓprior = ‖α‖2. (6)

4. Experiments

For our statistical shape model, we use D = 10 dimen-

sions of which five are the first five (identity) principal com-

ponents from the Basel Face Model [19]. The other five

are expression components which come from FaceWare-

house [5] using the correspondence to the Basel Model pro-

vided by [33]. We re-mesh the Basel Model over a uniform

grid of size 224×224. We trained our 3DMM-STN with the

four loss functions described in Section 3 using the AFLW

database [17]. This provides up to 21 landmarks per sub-

ject for over 25k in-the-wild images. This is a relatively

small dataset for training a deep network so we perform

‘fine-tuning’ by setting the learning rate on the last layer

of the localiser to four times that of the rest of the network.

Figure 6 shows the pipeline of an image passing through a

3DMM-STN. A by-product of the trained 3DMM-STN is

that it can also act as a 2D landmark localiser. After train-

ing, the localiser achieves an average landmarking error of

2.35 pixels on the part of AFLW used as validation set, over

the 21 landmarks, showing that overall, the training con-

verges well.

We begin by demonstrating that our 3DMM-STN learns

to predict consistent correspondence between model and

image. In Figure 7 we show 3DMM-STN output for mul-

tiple images of the same person. Note that the features are

consistently mapped to the same location in the transformed

output. In Figure 8 we go further by applying the 3DMM-

STN to multiple images of the same person and then aver-

age the resulting transformed images. We show results for

10 subjects from the UMDFaces [1] dataset. The number

of images for each subject is shown in parentheses. The av-

erages have well-defined features despite being computed

from images with large pose variation.

Elon Musk (34) Christian Bale (51) Elisha Cuthbert (53) Clint Eastwood (62) Emma Watson (73)

Chuck Palahniuk (48) Nelson Mandela (52) Kim Jong-un (60) Ben Affleck (66) Courteney Cox (127)

Figure 8. A set of mean flattened images per subject. Real images

are obtained from UMDFaces dataset. The number of images that

are used for averaging is stated next to subject’s name.

In Figure 9 we provide a qualitative comparison to [29].

This is the only previous work on 3DMM fitting using a

CNN for which the trained network is made publicly avail-

able. In columns one and five, we show input images from

UMDFaces [1]. In columns two and six, we show the recon-

struction provided by [29]. While the reconstruction cap-

tures the rough appearance of the input face, it lacks the

discriminating detail of the original image. This method re-

gresses shape and texture directly but not illumination or

pose. Hence, we cannot directly compare the model-image

correspondence provided by this method. To overcome this,

we use the landmark detector used by [29] during training

and compute the optimal pose to align their reconstruction

to these landmarks. We replace their cropped model by the

original BFM shape model and sample the image. This al-

lows us to create the flattened images in columns three and

seven. The output of our proposed 3DMM-STN is shown

in columns four and eight. We note that our approach less

frequently samples background and yields a more consis-

tent correspondence of the resampled faces. In the bottom

row of the figure we show challenging examples where [29]

did not produce any output because the landmark detector

failed. Despite occlusions and large out of plane rotations,

the 3DMM-STN still does a good job of producing a nor-

malised output image.

5. Conclusions

In this paper we have shown how to use a 3D mor-

phable model as a spatial transformer within a CNN. Our

proposed architecture has a number of interesting proper-

ties. First, the network (specifically, the localiser part of

the network) learns to fit a 3D morphable model to a sin-

gle 2D image without needing labelled examples of fitted

models. Since the problem of fitting a morphable model to

an image is an unsolved problem (and therefore no exist-

ing algorithm could be assumed to provide reliable ground

truth fits), this kind of unsupervised learning is desirable.

Second, the morphable model itself is fixed in our current

architecture. However, there is no reason that this could not

910

Input [29] [29] Flatten 3DMM-STN Input [29] [29] Flatten 3DMM-STN

Input 3DMM-STN Input 3DMM-STN Input 3DMM-STN Input 3DMM-STN

Figure 9. Qualitative comparison to [29]. The bottom row shows examples for which [29] failed to fit due to failure of the landmark

detector.

also be learnt. In this way, it may be possible to learn a 3D

deformable model for an object class simply from a collec-

tion of images that are labelled appropriately for the chosen

proxy task.

There are many ways that this work can be extended.

First, we would like to investigate training our 3DMM-STN

in an end to end recognition network. We would hope that

the normalisation means that a recognition network could

be trained on less data and with less complexity than ex-

isting networks that must learn pose invariance implicitly.

Second, the shape parameters estimated by the localiser

may contain discriminative information and so these could

be combined into subsequent descriptors for recognition.

Third, we would like to further explore the multiview fitting

loss. Using a multiview face database or video would pro-

vide a rich source of data for learning accurate localisation.

Finally, the possibility of learning the shape model during

training is exciting and we would like to explore other ob-

jects classes besides faces for which 3DMMs do not cur-

rently exist.

Acknowledgements

We gratefully acknowledge the support of NVIDIA Cor-

poration with the donation of the Titan X Pascal GPU used

for this research.

References

[1] A. Bansal, A. Nanduri, C. D. Castillo, R. Ranjan, and

R. Chellappa. UMDFaces: An annotated face dataset for

training deep networks. arXiv preprint arXiv:1611.01484v2,

2016. 7

[2] A. Bas and W. A. P. Smith. What does 2D geometric infor-

mation really tell us about 3D face shape? arXiv preprint

arXiv:1708.06703, 2017. 3

[3] C. Bhagavatula, C. Zhu, K. Luu, and M. Savvides. Faster

than real-time facial alignment: A 3d spatial transformer net-

work approach in unconstrained poses. In Proc. ICCV, page

to appear, 2017. 2

[4] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3D faces. In Proc. SIGGRAPH, pages 187–194, 1999. 1,

2

[5] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Face-

warehouse: A 3D facial expression database for visual com-

911

