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Abstract

One of the long-standing tasks in computer vision is to

use a single 2-D view of an object in order to produce its

3-D shape. Recovering the lost dimension in this process

has been the goal of classic shape-from-X methods, but of-

ten the assumptions made in those works are quite limit-

ing to be useful for general 3-D objects. This problem has

been recently addressed with deep learning methods con-

taining a 2-D (convolution) encoder followed by a 3-D (de-

convolution) decoder. These methods have been reasonably

successful, but memory and run time constraints impose a

strong limitation in terms of the resolution of the recon-

structed 3-D shapes. In particular, state-of-the-art methods

are able to reconstruct 3-D shapes represented by volumes

of at most 323 voxels using state-of-the-art desktop comput-

ers. In this work, we present a scalable 2-D single view to

3-D volume reconstruction deep learning method, where the

3-D (deconvolution) decoder is replaced by a simple inverse

discrete cosine transform (IDCT) decoder. Our simpler ar-

chitecture has an order of magnitude faster inference when

reconstructing 3-D volumes compared to the convolution-

deconvolutional model, an exponentially smaller memory

complexity while training and testing, and a sub-linear run-

time training complexity with respect to the output volume

size. We show on benchmark datasets that our method can

produce high-resolution reconstructions with state of the art

accuracy.

1. Introduction

Volumetric reconstruction of objects from images has

been one of the most studied problems in computer vi-

sion [12]. Multi-view reconstruction approaches based

on shape by space carving [17] and level-set reconstruc-

tion [37] have led to reasonable quality 3-D reconstructions.

Figure 1. We propose a new convolution-deconvolution deep

learning model, where the traditional 3-D deconvolutional decoder

(bottom) is replaced by an efficient IDCT decoder (top) for high

resolution volumetric reconstructions.

Systems like KinectFusion [25] and DynamicFusion [24]

have opened the possibilities for various applications in the

field of augmented and virtual reality by providing high

quality reconstruction with the help of cheap sensors like

Kinect. These multi-view and Kinect based systems work

in constrained environments and disregard scene semantics.

It has been long believed that a successful estimation of the

semantic class, 3-D structure and pose of the objects in the

scene can be immensely helpful for holistic visual under-

standing of images [22]. In fact, this estimation would allow

intelligent systems to be more effective at interacting with

the scene, but one important requirement, particularly re-

garding the 3-D structure of objects, is to obtain the highest

possible 3-D representation resolution at the smallest com-

putational cost – this is precisely the aim of this paper.

Recent success of convolutional neural networks

(CNNs) [16, 19] has led to many approaches tackling the

challenging problem of volumetric reconstruction from a

single image to move towards full 3-D scene understand-

ing [3, 31, 38, 39, 40, 42] However, most of these meth-

ods reconstructs object at very low resolution ranging from

203 to 323 voxels – thereby limiting the practical applica-
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Figure 2. Comparison of low frequency 3-D DCT compression

accuracy to simple interpolation at various compression rates on

a subset of ShapeNet volumes [2]. 1283 volumes are compressed

using (i) nearest neighbour interpolation (blue curve) or (ii) by

truncating the high frequency of DCT basis (red curve) and up-

scaled with respective inverse operations to compute mean IOU.

bility. Almost all these deep networks, designed for sin-

gle view volumetric reconstructions, rely on a convolution-

deconvolution architecture, as shown in Fig. 1. In this setup,

a traditional 2-D convolution network (often used in classi-

fiers) encodes a large patch of the image into an abstract

feature (i.e., an embedded low-dimensional representation),

which is then converted into a volume by successive de-

convolution operations. These convolution-deconvolution

architectures are based on the success of deconvolution net-

works for semantic segmentation [21, 26] that shows that

the loss of resolution due to strided convolutions/pooling

operations can be recovered by learning deconvolution fil-

ters. These convolution - deconvolution architectures give

reasonably accurate reconstructions at low resolution (typ-

ically 323 voxels or less) from a single image, but do not

scale well to high resolution volumetric reconstructions.

The main reason behind this issue lies in the successive

deconvolution to upscale a coarse reconstruction, which re-

quires intermediate volumetric representations to be learned

in succession in a coarse to fine manner, where each decon-

volution layer upscales the predictions by a factor of two.

Although deconvolution layers have very few parameters,

the memory and the time required to process volumes (both

for training and inference) in this coarse-to-fine fashion via

deconvolution grows rapidly and is intractable. Table 1 (see

baseline-32 and baseline-128 results) reports how the 3-D

resolution affects traditional convolution-deconvolution ar-

chitectures in terms of memory required for training as well

as training and inference running time.

In this work, we explore a simple option in the design

of a novel deep learning model that can reconstruct high-

resolution 3-D volumes from a single 2-D single view. In

particular, our main goal is to have a model that scales

well with an increase in resolution of the 3-D volume re-

construction with respect to memory, training time and in-

ference time. One straightforward approach is to learn a

linear model (e.g., principal component analysis [13]) or

a non-linear model (e.g., Gaussian Process latent variable

model [18]) to represent the shapes of the objects and use

it in place of the deconvolution network. However, this

will make (i) the reconstruction methods sensitive to the

3-D volumetric data used for training, which is not avail-

able in abundance and (ii) would not be easily adaptable to

semi-supervised methods [27], which does not require 2-D

image-volumetric model pairs for training. An alternative

solution is the use of the low frequency coefficients com-

puted from the discrete cosine transform (DCT) or Fourier

basis, which are in general good linear bases to represent

smooth signals. In fact, the DCT basis has already been

shown to be a robust volume representation [28], as evi-

denced in Fig. 2, which shows that for a representative set

of volumetric object shapes taken from ShapeNet [2], the

low-frequency DCT basis is much more information pre-

serving then that of the commonly used local interpolation

methods in CNNs for up-sampling low resolution predic-

tions. It is important to note that while being generic, the

DCT basis is almost as information preserving as a linear

PCA basis when the variability in the dataset increases.

Therefore, we propose a model that extends the

convolution-deconvolution network by replacing the com-

putationally expensive deconvolution network by a simple

inverse DCT (IDCT) linear transform, as shown in Fig. 1,

where this IDCT transform reconstructs the low-frequency

signal at the desired resolution. Our proposed extension

has profound impact in terms of the computational cost in-

volved in training and inference. In particular, we show

through extensive experiments on benchmark datasets that

our proposed framework:

• presents an inference time that is one order of magni-

tude faster than equivalent convolution-deconvolution

networks,

• shows a slightly more accurate 3-D object shape pre-

diction than equivalent convolution-deconvolution net-

works;

• scales gracefully with increase in resolution of the out-

put 3-D volume in terms of training memory require-

ments, training time, and inference time,

• allows a 3-D volume recovery at a much larger reso-

lution compared to previously proposed approaches in

the field.
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Figure 3. Network Architectures: Top: Baseline Network mimicking 3-D R2N2[3] without RNN/3-D GRU. Bottom: Our Network utilizing

the IDCT Layer.

2. Related Work

The problem of reconstructing the 3-D shape of an object

from a single image has recently received renewed attention

from the field with the use of traditional computer vision

methods [35] (e.g., structure-from-motion, optimisation of

the visual hull representation, etc.). However, with the ad-

vent of deep learning techniques [16] and new datasets con-

taining 3-D model annotations of images containing partic-

ular visual objects, the field has moved towards the appli-

cation of these deep learning models to the task of 3-D re-

construction from images [2, 40]. In particular, the seminal

paper by Wu et al. [40] is the first to propose a deep learn-

ing methodology that reconstructs 3-D volumes from depth

maps, which has led to several extensions [3, 23].

The more recently proposed methods replaced depth

maps by the RGB image, with the same goal of recovering

the 3-D shape of the object from a single or multiple views

of it. For instance, Girdhar et al. [8] used a 3-stage training

process to perform 3-D reconstruction from single images:

1) train a 2-D classifier with mixed synthetic and real im-

ages; 2) train a 3-D auto-encoder for learning a representa-

tion of their 3-D volumes; and 3) merge the two by minimiz-

ing the Euclidean distance between the 2-D and 3-D codes.

In parallel, Choy et al. [3] developed a recurrent neural net-

work model which aims to use multiple views of a single

object to perform 2-D to 3-D reconstruction (the reasoning

behind the use of multiple views was to enable the encoding

of more information about the object). The use of a projec-

tive transformer network that can align the visual object and

its projected image allows the unsupervised modelling of 3-

D shape reconstruction approaches from single images, as

shown by Yan et al. [42]. Adversarial training methods for

deep learning models [9] have also influenced the develop-

ment of 3-D shape reconstruction approaches from single

images. Wu et al. [39] applied a variational encoder and an

adversarial decoder for the task of 3-D shape reconstruction

from single images. Rezende et al. [31] introduced an un-

supervised learning framework for recovering 3-D shapes

from 2-D projections, with results on the the recovery of

only simple 3-D primitives using reinforcement learning.

These methods above are based on a relatively similar un-

derlying convolution-deconvolution network, so they have

the same limitations discussed in Sec. 1.

State-of-the-art deep learning semantic segmenta-

tion models are also based on a similar convolution-

deconvolution architectures [7, 21, 26], so it is useful to

understand the functionality of such approaches and as-

sess their applicability for the problem of recovering the

3-D shape of the object from a single view. In particu-

lar, these approaches show that fully trainable convolution-

deconvolution architectures [26], the exploration of a Lapla-

cian reconstruction pyramid to merge predictions from mul-

tiple scales [7], and the use of skip connections [21] can pro-

duce state-of-the-art semantic segmentation results. How-

ever, it is unclear how to extend these ideas in a computa-

tionally efficient manner for the the case of volumetric pre-

dictions from images, given the explosion of the number

of parameters required to generate volumes at high resolu-

tions.

The high memory, training and inference complexities

in processing volumes by an encoder (i.e., the convolu-

tional part of the architecture) has also been addressed in

the field [20, 32]. Li et al. [20] proposed to replace con-

volutional layers by field probing layers, which is a type of

filter that can efficiently extract features from 3-D volumes.

However, this method is focused on discriminative features

and is not invertible, so it would not be suitable for 3-D

reconstruction. Similarly, a memory and run-time efficient

processing of 3-D input data has been proposed by Riegler

et al. [32] with a method focused on the classification and

segmentation of volumes and point clouds. That work relies

on the use of specialized convolution, pooling and unpool-

ing layers based on the Octree data structure, and shows
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excellent results on scaling up 3-D classification and point

cloud segmentation. Nevertheless, in order to be applica-

ble for the problem of 3-D reconstruction from 2-D views,

this approach would need to be extended to be able to re-

ceive 2-D data as input (instead of 3-D) and output a 3-D

representation.

There have been many examples of methods that explore

3-D shape representations, consisting of a relatively small

set of principal component analysis (PCA) [1] or DCT [4]

components that can be further reduced with Gaussian Pro-

cess Latent Variable Models (GPLVM) [18]. These meth-

ods are successful at several tasks, ranging from object

shape reconstruction [1, 4], image segmentation and track-

ing [29], etc. Finally, Zheng et al. [43] show that the use of

such low-dimensional pre-learned representations are use-

ful for the task of object detection from a single depth im-

age.

3. Network Architecture

Our main contribution is in exchanging the decoder with

a simple IDCT layer which is compatible with any 2-D en-

coder architecture. To show the impact of the proposed

frequency based representation, we extensively analyze the

performance of our IDCT decoder against a deconvolution

baseline. We adapt the state-of-the-art convolutional - de-

convolution network for volumetric reconstruction called

3-D-R2N2, proposed by Choy et al. [3]. The 3-D-R2N2

model [3] iteratively refines reconstructed volumes by us-

ing a recurrent module to fuse the 2-D information coming

from multiple views, which is then passed to the deconvo-

lution decoder to generate volumetric reconstructions. To

restrict the experiments for single-view training and testing,

we remove the recurrent module from 3-D-R2N2 and re-

place it with a single fully connected layer. The result is

a simpler convolutional-deconvolutional baseline network,

shown in Figure 3, as a direct replacement of 3-D-R2N2,

for single view reconstruction. In the encoder, we use stan-

dard max pooling layers for down sampling, while leaky

rectified units are used for the activations with residual con-

nections [11].

Our proposed IDCT decoder uses the same baseline en-

coder defined above to predict the low frequency DCT coef-

ficients, which our decoder converts to solid volumes. The

DCT/IDCT function can be efficiently implemented by uti-

lizing the symmetry and separability properties of the nD-

DCT function[30]. That is to say that we can pre-compute

the 1D-DCT matrix and apply it independently across each

axis of the volume. The Discrete Cosine Function has sev-

eral variants (e.g DCT-I through DCT-VIII)[30]. In this

work we will refer to DCT-II as the DCT function and DCT-

III as the IDCT function. The DCT-III function is the in-

verse of the DCT-II function, furthermore, when the DCT

matrix is orthogonal the DCT-III/IDCT is the transpose of

the DCT-II matrix[30]. The orthogonal 1D DCT-II is given

by:

Xk =

(

2

N

)
1

2
N−1
∑

i=0

Λ(i)cos

[

π

N

(

n+
1

2

)]

xi (1)

where xi is the input signal at a given index i, Xk is the

output coefficient at index k and Λ is the scaling constant

applied to x0 used to make the transform orthogonal, as de-

fined by

Λ(i)

{ 1
√

2
if i = 0

1 otherwise
. (2)

In this work, we use the transpose of the DCT-II matrix

as our IDCT matrix, however it could also be implemented

directly using the DCT-III equation [30].

As our baseline is modeled after 3-D-R2N2, we keep

the same loss function defined by the sum of voxel Cross-

Entropy[3]:

L =
∑

i,j,k

{y(i,j,k) log(p(i,j,k))+(1−y(i,j,k) log(1−p(i,j,k))}

(3)

where p(i,j,k) represents the predicted object occupancy

probabilities, y(i,j,k) ∈ {0, 1} denotes the given label for

voxel (i, j, k)
We use the voxel intersection over union metric [3] to

evaluate the quality of our 3-D reconstructions, defined by:

IoU =

∑

i,j,k[I(p(i,j,k) > t)I(y(i,j,k))]
∑

i,j,k[I(p(i,j,k) > t) + I(y(i,j,k))]
, (4)

where t is the voxelization threshold and I(.) is the indicator

function.

4. Experiments

To clearly demonstrate the usefulness of our IDCT de-

coder based volumetric reconstruction method, in this sec-

tion we first compare the runtime and memory requirement

of both deconvolutional and IDCT architectures at two dif-

ferent resolutions of 323 and 1283. To estimate 1283 vol-

umetric reconstructions with deconvolutional network we

simply add two extra deconvolution blocks to the deconvo-

lution baseline of Fig. 3. An appropriate IDCT basis func-

tion is replaced to generate 1283 volumes from 203 coeffi-

cients for the proposed method. Table 1 shows the training

time1, inference time and the peak GPU memory required

to train the baseline and the proposed IDCT based network

to reconstruct volumes at both resolutions from 127 × 127
images2.

1Both training and test times are estimated after the data is loaded to

the GPUs
2Nvidia Titan X (Maxwell), with Intel i7 4970k was used for these

experiments.
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Method Resolution Batch Size Forward Time (Hz) Train time (Hz) Memory (GB)

DCT-32 - 203 coeff 323 24 294(4x) 80.75(6.3x) 1.7

Baseline-32 323 24 66.83(1x) 12.63(1x) 4.5

DCT-128 - 203 coeff 1283 24 30.48(0.45x) 22.99 (1.8x) 2.2

Baseline-128 1283 2 2.82 (0.04x) 0.19 (0.015x) 10.4
Table 1. Performance indicators using deconvolution and IDCT networks at different resolutions.

Due to the large reduction in the depth of the our IDCT

decoder, our proposed network is approximately four times

faster for inference and over six times faster during training,

when compared with our baseline model at a smaller reso-

lution of 323 with batch size of 24. Furthermore the mem-

ory requirements during training are drastically reduced as

the intermediate coarser volumes are not predicted by our

decoder. When the resolution is increased by a factor of

four (in each of the three dimensions), to be 1283, it be-

comes evident that the traditional 3-D deconvolution net-

works become intractable. Already approximately seven

times slower and three times more memory hungry decon-

volution networks now can only be trained with a batch size

of 2 on a 12 GB GPU card. Per-image training goes up

by a factor of over 50 compared to 323 resolution decon-

volution baseline and the test time performance degrades

equally drastically making this baseline unusable. Con-

versely, a single layer IDCT decoder is only three times

slower to train when the resolution is increased by a fac-

tor of four (in each of the three dimensions) – however it

still remains faster to train when compared to the deconvo-

lutional network reconstructing volumes at 323 resolution.

The memory required for training this IDCT decoder only

grows by the size needed to store the high resolution pre-

dictions. Training the network for high resolution volumes

becomes feasible with a much higher batch size while the

number of parameters required remains constant.

To validate the 3-D reconstruction accuracy with the

proposed IDCT decoder, we compare the single view

reconstruction accuracies on both synthetic (ShapeNet[2])

and real (PascalVOC 3-D+[41]) datasets. We show that

using our single IDCT layer as decoder does not degrade

the quality of low-resolution predictions but enables

substantially faster training and gives better high resolution

reconstructions.

4.1. Experiments on Synthetic Dataset

Following Choy et. al.[3], we use synthetically rendered

images of resolution 127×127 provided by the authors con-

taining a 13 class subset of the original ShapeNet [2]. This

subset (ShapeNet13) consists of approximately 50,000 2-D-

3-D pairs, with a split of 4/5 for training and 1/5 for testing,

exactly as defined in [3]. For all experiments on ShapeNet

dataset, we use Theano [33] and Lasagne [6] libraries for

our implementations. In addition, the training procedure

uses mini-batches of size 24 and learning rate of 10−5 with

Adam [14] optimizer.

We compare the mean IoU error (Table 2) of the base-

line deconvolution architecture against the proposed IDCT

decoder architecture in Table 2. As our baseline can be seen

as a simpler version of [3] with one view training, for com-

pleteness, we report results for the entire test-set for our

baseline deconvolutional network alongside that of [3]. As

expected, our baseline using only single-view to predict vol-

umes against five views used in [3] gives marginally lower

reconstruction accuracies than that of [3]. However it is

important to note that our IDCT decoder could also be inte-

grated with the RNN as proposed in [3]. For simplicity, we

limit our experiments to the one-view training and testing

paradigm.

When compared at 323 resolution, our approach with

IDCT decoder gives marginally better volumetric recon-

structions (with 203 DCT coefficients) compared to the

baseline. However, it is trained in a day and half whereas

the baseline takes more than a week to train. A significant

boost in accuracy can be seen at 1283 reconstructions when

we fine-tune our network with high resolution ground truth.

As shown in Figure 4, the reconstructions produced by the

baseline approach after upscaling with linear interpolation

overestimates the foreground objects, leading to less accu-

rate and blocky reconstructions. On the other hand, our

proposed method is able to preserve a significant amount

of shape details.

Method Resolution Mean IoU

R2N2 (5V train, 5V test) [3] 323 0.634

R2N2 (5V train, 1V test) [3] 323 0.6096

Baseline (1V train, 1V test) 323 0.5701

DCT - 203 coeff 323 0.5791

Baseline Upscaled 1283 0.3988

DCT - 203 coeff 1283 0.4174
Table 2. Volumetric shape prediction IoU errors on ShapeNet 3-D.

4.2. Experiment with Real Images

Most of the CNNs based volumetric reconstruction ap-

proach [3, 8, 39] use an intermediate step of training the net-

work with a semi-synthetic dataset by augmenting the syn-
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Figure 4. Examples of 3-D reconstructions from single view images using the Synthetic ShapeNet13 dataset [3, 2]. First Row: Input Image,

Second Row: Ground truth shape, Third Row:323 Volumetric prediction using deconvolutional decoder upscaled to 128
3, Bottom Row:

Volumetric predictions at 1283 using the proposed IDCT decoder.

Resolution aero bike boat bus car chair mbike sofa train tv mean

DCT - 203 Coeff 323 0.5552 0.4893 0.5231 0.7756 0.6221 0.2497 0.6561 0.4624 0.5739 0.5492 0.5474

Deconvolution Baseline 323 0.5492 0.4516 0.5011 0.7593 0.6345 0.244 0.6437 0.546 0.5675 0.5161 0.5419

DCT - 203 Coeff 1283 0.4502 0.2606 0.4067 0.6942 0.561 0.1836 0.5509 0.4311 0.4273 0.5105 0.4496

Baseline upscaled 1283 0.2824 0.1263 0.336 0.6167 0.5126 0.181 0.4377 0.4654 0.3287 0.4095 0.3671

Table 3. Per category and mean volumetric shape prediction IoU errors on PASCAL VOC 3-D+ at 323 and 128
3 resolutions.

thetically rendered object instances with real backgrounds.

We choose to directly fine-tune both the deconvolutional

and IDCT decoder based networks on real images from

PASCAL VOC 3-D+ dataset (specifically we use v1.1 with

ImageNet[5] augmentation) [41]. We prune the object in-

stances that are classified as either difficult or truncated,

leaving approximately 11400 image instances, which we

will use as our training samples. The same pruning strategy

is applied to the testing set. Object instances were cropped

from the real images to the regions corresponding to 20%
dilated bounding boxes for training. Padding with white

background was used along the shortest image axis to main-

tain the aspect ratio when resizing the cropped objects to the

input resolution for our network (127x127). Only horizon-

tal flips of images were used for data augmentation while

fine tuning.

Our setup of directly fine-tuning the synthetic shapenet

model onto PASCAL VOC 3-D+ can be considered to be

more challenging compared to other methods due to lack

of training data and amount of background clutter and oc-

clusion. These issues make the training more difficult. Fol-

lowing [21], the pre-trained models evaluated in Section 4.1

were fine-tuned with a batch size of 1, using stochastic gra-

dient descent (SGD) with higher Nesterov momentum of

0.99 and learning rate of 10−5. Furthermore, in order to

reduce over-fitting, we also added dropout to all models as

well as weight decay of 10−4.

The IoU errors are compared in Table 3 at both 323 and

1283 resolutions. As observed in the synthetic dataset, re-

sults for 323 resolution with both deconvolution and IDCT

decoder methods are similar. Despite the truncation of pre-

dictions to 203 coefficients, we observe that with the ex-

ception of car and sofa, IDCT decoder based reconstruction

outperforms the deconvolutional network by narrow mar-

gin. More drastic performance gains are observed when

high resolution volumes are used for training our IDCT de-

coder with mean IoU increasing by ∼ 22%.

Figure 5 shows the visual comparison of the results for

our proposed IDCT decoder based network and the decon-

volution baseline. We observe that due to the challenging

background clutter, occlusion and significant truncation of

the training and test instances, both the IDCT and decon-

volutional decoder networks are thrown off (see Figure 6

for failures). However, for most of the successful recon-

struction scenarios, the IDCT decoder based reconstruction

were more accurate while preserving details in the object

structures evident from images. For example, 3D deconvo-

lutional reconstruction fails to pick up the back of the car

and depth of the computer monitor evident in the image to

reconstruct the pick-up car or flat-screen whereas proposed
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Figure 5. Examples of volumetric reconstructions on instances of PASCAL VOC 3-D+ dataset. From left to right: Input image, ground truth

volume at 323, ground truth volume at 1283 resolutions, IDCT decoder based reconstruction at 323, IDCT decoder based reconstruction at

128
3 and the baseline 32

3 reconstruction with deconvolutional decoder upscaled to 128
3 respectively.
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Figure 6. Failure Cases: Truncated and cluttered background throwing off the volumetric reconstructions. From left to right: Input image,

ground truth volume at 323, ground truth volume at 1283 resolutions, IDCT decoder based reconstruction at 323, IDCT decoder based

reconstruction at 1283 and the baseline 32
3 reconstruction with deconvolutional decoder upscaled to 128

3 respectively.

method correctly reconstruct the objects. Also note in Fig-

ure 5 that the 1283-voxel reconstructions from real images

with IDCT often contains much richer details, even though

our network was still restricted to estimate 203 low fre-

quency DCT coefficients like reconstruction of aeroplane,

train, motorbike.

As discussed in Tulsiani et al. [34], it is important to note

that the PASCAL VOC 3D+ dataset was not originally in-

tended for the purposed of evaluating supervised volumet-

ric reconstruction. The dataset contains a limited number

of ground truth CAD models/volumes that are shared in

both the training and the test sets. This means that instead

of learning to interpolate in the manifold of possible 3D

shapes from ShapeNet, neural network with reconstruction

loss might over-fit to retrieve the nearest volumetric shape

in the training set for every image. An evidence of this can

be seen in 1283 reconstruction of the chair in Figure 5 where

the style of chair-back is hallucinated or in the reconstruc-

tion of sofa which is reconstructed to be a two-seater with-

out evidence in the image. However, in the absence of a

better alternative to test on real data and for fair comparison

with existing volumetric reconstruction methods, we still

use PASCAL VOC 3D+ dataset for evaluation. The afore-

mentioned over-fitting problem can be avoided to some ex-

tent by fine tuning on real data in a weakly supervised man-

ner instead of using direct volume supervision with limited

CAD models. A perspective projection layer with segmen-

tation loss of projected volumes is used for this purpose in

[42, 10, 44, 34]. These weakly supervised modules can be

easily deployed with our IDCT decoder to facilitate faster

training for high resolution volumetric reconstructions.

Finally, thin structures like bike wheels, chair legs are

found missing at times in our 1283-voxel reconstructions,

which potentially can be recovered using fully connected

CRFs [15] or object connectivity priors [36].

5. Conclusion

In this paper we have presented a method for reconstruct-

ing high resolution 3-D volumes from single view 2-D im-

ages, using a decoder based on the inverse Discrete Cosine

Transform. Our proposed method is shown to be an order of

magnitude faster and require less memory than standard de-

convolutional decoders and to be scalable in terms of mem-

ory and runtime complexities as a function of the output vol-

ume resolution. We also show that it is possible to compress

the dimensionality of the prediction with generic DCT basis

without losing important details. We observe that a simple

dimensionality reduction with a generic basis not only al-

lows for faster inference, but it makes training more stable.

For future work, we will study the feasibility of processing

both the input images and output volumes in the frequency

domain. As most of the training and inference times as well

as the memory required for high resolution reconstruction

contributes to our loss layer, it will be fruitful to explore ro-

bust reconstruction loss in the frequency domain for further

speedup.
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