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Abstract

Omnidirectional cameras are widely used in such areas
as robotics and virtual reality as they provide a wide field of
view. Their images are often processed with classical meth-
ods, which might unfortunately lead to non-optimal solu-
tions as these methods are designed for planar images that
have different geometrical properties than omnidirectional
ones. In this paper we study image classification task by
taking into account the specific geometry of omnidirectional
cameras with graph-based representations. In particular,
we extend deep learning architectures to data on graphs; we
propose a principled way of graph construction such that
convolutional filters respond similarly for the same pattern
on different positions of the image regardless of lens dis-
tortions. Our experiments show that the proposed method
outperforms current techniques for the omnidirectional im-
age classification problem.

1 Introduction

Omnidirectional cameras are very attractive for various ap-
plications in robotics [I, 2] and computer vision [3, 4]
thanks to their wide viewing angle. Despite this advantage,
working with the raw images, taken by such cameras is dif-
ficult because of severe distortion effects introduced by the
camera geometry or lens optics, which has a significant im-
pact on local image statistics. Therefore, all methods that
aim at solving different computer vision tasks (e.g. detec-
tion, points matching, classification) on the images from the
omnidirectional cameras need to find a way of compensat-
ing for this distortion. The natural way to do it is to apply
calibration techniques [5, 6, 7] to undistort images and then
use standard computer vision algorithms. However, undis-
torting the full omnidirectional images is a complex prob-
lems by itself, and distorting parts of the image requires a
priori information about the camera and the image model.
Further, undistorting real images may suffer from interpola-
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F(y1) ~ F(y2)

Figure 1. The proposed graph construction method makes re-
sponse of the filter similar regardless of different position of the
pattern on an image from an omnidirectional camera.

tion artifacts. A different, ‘naive’, approach is to apply stan-
dard techniques directly to raw (distorted) images. How-
ever, algorithms proposed for the planar images lead to non-
optimal solutions when applied to distorted images.

One example of such standard techniques are the Convo-
lutional Neural Networks (ConvNets) [8], which are primar-
ily designed for regular domains [9]. They have achieved
remarkable success in various areas of computer vision [ 10,

, 12]. The drawback of this solution is that ConvNets re-
quire a lot of training data for omnidirectional image classi-
fication task, as the same object will not have the same local
statistics, for different image locations, which results in dif-
ferent filter responses. Therefore, the dataset should include
images where same objects are seen in different parts of the
image in order to reach invariance to distortions.

In this work, we propose to design a solution for image
classification that inherently takes into account the camera
geometry. Developing such a technique based on the classic
ConvNets is, however, complicated due to the two main rea-
sons. First as we mentioned before the features, extracted
by the network, need to be invariant to positions of objects
in the scene and different orientations with respect to the
omnidirectional camera. Second, it is challenging to in-
corporate lens geometry knowledge in the structure of con-
volutional filters. Luckily graph-based deep learning tech-
niques have been recently introduced [ 13, 14, 15] that allow
applying deep learning techniques to irregularly structured
data. Our work is inspired by [|5] where the authors use
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graphs to create isometry invariant features of images in Eu-
clidean space. This tackles the first of the aforementioned
challenges, however, the same object seen at different po-
sitions of an omnidirectional image still remains different
from the network point of view. To mitigate this issue, we
propose to incorporate the knowledge about the geometry
of the omnidirectional camera lens into the signal represen-
tation, namely in the structure of the graph (see Fig. 1). In
summery we therefore propose the following contributions:

* aprincipled way of graph construction based on geom-
etry of omnidirectional images;

 graph-based deep learning architecture for the omnidi-
rectional image classification task.

The reminder of the paper is organized as follows. We
first discuss the related work in Section 2. Further, in Sec-
tion 3 we briefly introduce the TIGraNet architecture [15],
as it is tightly related to our approach, and then we describe
our graph construction method that can be efficiently used
by TIGraNet. Finally, we show the result of our experiments
in Section 5 and we conclude in Section 6.

2 Related work

To the best of our knowledge, image classification meth-
ods designed specifically for the omnidirectional camera do
not exist. Therefore, in this section we review methods de-
signed for wide-angle cameras for different computer vi-
sion applications. Then we discuss recent classification ap-
proaches based on graphs as we believe that graph signal
processing provides with powerful tools to deal with images
that have an irregular structure.

2.1 Wide-angle view cameras

A broad variety of computer vision tasks benefit from
having wide-angle cameras. For example, images from
fisheye [16], which can reach field of view (FOV) of
more than 180°, or omnidirectional cameras, that provide
360° FOV [17, 18] are widely used in virtual reality and
robotics [17, 19] applications. Despite practical their bene-
fits these images are challenging to process due to the fact
that most of the approaches are developed for planar images
and suffer from distortion effects when applied to images
from wide-angle view cameras [16].

There exist different ways of acquiring an omnidirec-
tional image. First such an image can be built based on a set
of multiple images, taken either by a camera that is rotated
around its center of projection, or by multiple calibrated
cameras. Rotating camera systems, however cannot be ap-
plied to dynamic scenes, while multi-camera systems suffer
from calibration difficulties. Alternatively, one can obtain

an omnidirectional image from dioptric or catadioptric cam-
eras [20]. Most of the existing catadioptric cameras have the
following mirror types: eliptic, parabolic and hyperbolic.
The authors in [21] show that such mirror types allow for
a bijective mapping of the lens surface to a sphere, which
simplifies processing of omnidirectional images. In our pa-
per we work with this spherical representation of catadiop-
tric omnidirectional cameras. The analysis of images from
wide-angle cameras remains however an open problem.

For example, the standard approaches for interest
point matching propose affine-invariant descriptors such as
SIFT [22], GIST [23]. However, designing descriptors that
preserve invariance to geometric distortions for wide-angle
camera’s images is challenging. One of the attempts to
achieve such invariance is proposed by [24], where the au-
thors extend the GIST descriptor to omnidirectional images
by exploiting their circular nature. Instead of using hand-
crafted descriptors, the authors in [25] suggest to learn them
from the data by creating a similarity preserving hashing
function. Further, inspired by the aforementioned method,
the work in [4] proposes to learn descriptors for images
from omnidirectional cameras using a siamese neural net-
work [26]. While this method is not using specific geom-
etry of the lens, it significantly outperforms state-of-the-art
as it encodes transformations that are present in the omni-
directional images. However, the method requires carefully
constructed training dataset to learn all possible variations
of the data.

Contrary to the previous approaches, the methods in [3,

, 28] design a scale invariant SIFT descriptor for the
wide-angle cameras based on the result of the work in [21]
that introduced a bijection mapping between omnidirec-
tional images and a spherical surface. In particular, the
method in [3] maps images to a unit sphere, and those
in [27] propose two SIFT-based algorithms, which work in
spherical coordinates. The first approach (local spherical)
matches points between two omnidirectional images, while
the second one (local planar) works between spherical and
planar images. Finally, the authors in [28] adapt a Harris in-
terest point detector [29] to spherical nature of images from
omnidirectional cameras. All the aforementioned works are
designed for interest point matching task. In our work we
use the similar idea of mapping omnidirectional images to
the spherical surface [21] for omnidirectional image classi-
fication problem.

Omnidirectional cameras have also been widely uses in
other computer vision and robotics tasks. For example, the
authors in [30] propose a segmentation method for cata-
dioptric cameras. They derive explicit expression for edge
detection and smoothing differential operators and design a
new energy functional to solve segmentation problem. The
work in [31] then develops a stereo-based depth estimation
approach from multiple cameras. Further, the authors in
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[20] extend previous geometry-based calibration approach
to compute depth and disparity maps from images captured
by a pair of omnidirectional cameras. They also suggest an
efficient way of sparse 3D scene representation. The works
in [17, 18] then use omnidirection cameras for robot self-
localisation and reliable estimation of the 3D map of the
environment (SLAM). The authors in [32] propose a mo-
tion estimation method for catadioptric omnidirectional im-
ages by the evaluation of the correlation between them from
arbitrary viewpoints. Finally, the work in [33] utilizes ge-
ometry of the omnidirectional camera to adapt the quanti-
zation tables of ordinary block-based transform codecs for
panoramic images computed by equirectangular projection.

In summary, processing images from omnidirectional
cameras becomes an important topic in the computer vision
community. However, most of the existing solutions rely on
methods developed for planar images. In this paper we are
particularly interested in image classification tasks and pro-
pose a solution based on a combination of powerful deep
learning architecture and camera lens geometry.

2.2 Deep learning on graphs

We briefly review here classification methods based on
deep learning algorithms (DLA) for graph data as DLA
has proven its efficiency in many computer vision tasks and
graphs allow extending these methods to irregularly struc-
tured data, such as omnidirectional images. A more com-
plete review can be found in [34].

First, the authors in [35, 36] propose a new deep learning
architecture that uses filters in spectral domain to work with
irregular data, where they add a smoothing constraint to
avoid overfitting. These methods have high computational
complexity as they require eigendecomposition as a prepro-
cessing step. To reduce this complexity, the authors in [14]
propose using Chebyshev polynomials, which can be effi-
ciently computed in an iterative manner and allow for fast
filter generation. The work in [37] uses similar polynomial
filters of degree 1, which allow training deeper and more
efficient models for semi-supervised learning tasks without
increasing the complexity.

Finally, the recent method in [!5] introduces graph-
based global isometry invariant features. Their approach
is developed for regular planar images. We, on the other
hand, propose to design a graph signal representation that
decreases feature sensitivity to different types of geometric
distortion introduced by omnidirectional cameras.

3 Graph convolutional network

In this paper we construct a system to classify images from
omnidirectional camera based on a deep learning architec-
ture. In particular, we extend the network from [15] to pro-

cess images with geometric distortion. In this section we
briefly review the main components of this approach. The
system in [15] takes as input images that are represented
as signals on a grid graph and gives classification labels as
output. Briefly this approach proposes a network of alterna-
tively stacked spectral convolutional and dynamic pooling
layers, which creates features that are equivariant to the iso-
metric transformation. Further, the output of the last layer
is processed by a statistical layer, which makes the equivari-
ant representation of data invariant to isometric transforma-
tions. Finally, the resulting feature vector is fed to a number
of fully-connected layers and a softmax layer, which out-
puts the probability distribution that the signal belongs to
each of the given classes.

We extend this transformation-invariant classification al-
gorithm to omnidirectional images by incorporating the
knowledge about the camera lens geometry in the graph
structure. We assume that the image projection model is
known and propose representing images as signals y on
the irregular grid graph G. More formally, the graph is a
set of nodes, edges and weights. Thus, each graph signal
y : {y(v;)} is defined on nodes v;, i € [1..N] of G. We de-
note by A an adjacency matrix of GG, which shows weighted
connection between vertices, and by D a diagonal degree
matrix with D;; = Zjvzl A;j. This allows us to define

Laplacian matrix' as follows:
L=D-A. (1)

The Laplacian matrix is an operator, that is widely used in
graph signal processing [38], because it allows to define a
graph Fourier transform to perform analysis of graph sig-
nals. The transformed signal reads:

y()‘l) = <y,lll>, 2

where ); is an eigenvalue of L and u; is the associated
eigenvector. It gives a spectral representation of the signal
y and A, € [0..N — 1] provide a similar notion of fre-
quencies as in classical Fourier analysis. Thus, the filtering
of a graph signal y can be defined on graphs in the spectral
domain:

N—

F(y(vi)) = Z FOOF )W (vy), 3)

=0

[

where F(y(v;)) is the filtered signal value on the node v;
and f (A1) is a graph filter. Graph filters can be constructed
as polynomial function, namely f(\;) = Z%:o am AT,
where M is the degree of the polynomial and «,, are the

'We use non-normalized version of Laplacian matrix which is different
from [15] to simplify the derivation. The same result can be obtained with
the normalized version of L.
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parameters. Such filters can advantageously be applied di-
rectly in vertex domain to avoid computationally expensive
eigendecomposition [38]:

T

M
Fly) = [Z amL™| 'y, )
m=0

where the filter has the form F = Z%:O a, L™ . The spec-
tral convolutional layer in the deep learning system of [15]
consists of J such filters 7, j € [1..J]. Each column ¢ of
F; represents localization of the filter on the node v;. These
nodes are chosen by preceding pooling layer, which selects
nodes with maximum response. Finally, a statistical layer
collects global multi-scale statistic of input feature maps,
which results in rotation and translation invariant features.
Please refer to [15] for more details about the TIGraNet ar-
chitecture.

In the next section, we show how this architecture can
be extended for omnidirectional images. In particular, we
discuss how to compute the weights A : {w;, } between the
nodes according to the lens geometry in order to build a
proper Laplacian matrix for spectral convolutional filters.

4 Graph-based representation

4.1 Image model

An omnidirectional image is typically represented as a
spherical one (see Fig. 2), where each point X from 3D
space is projected to the points X; on the spherical surface
S with radius 7, which we set to » = 1 without loss of gener-
ality. The point xy, is then uniquely defined by its longitude
0y € [—m, 7] and latitude ¢, € [~ 7, 5] and its coordinates
can be written as:

cos 0y, cos ¢y,
X : |sinfgcoséy |,k € [1..N]. 5)
sin ¢

We consider objects on a plane that is tangent to the sphere
S. We denote by X, ; a 3D space point on the plane T;
tangent to the sphere at (¢;, 0;). The point X}, ; is defined
by the coordinates (z;, yx,;) on the plane T;. We, further,
denote by Xj; : (¢, 0)) the points on the surface of the
sphere that are obtained by connecting its center and the
point X, ; on T;. We can find coordinates of each point X, ;
on T; by using the gnomonic projection, which generally
provides a good model for omnidirectional images [39]:

_ cos ¢y sin(0r—0;)
Thyi = cos ¢ =

(6)

__ cos ¢ sin ¢y —sin ¢; cos ¢y cos(0r —0:)
Yk,i = COS C )

Figure 2. Example of the gnomonic projection. An object from
tangent plane T; is projected to the sphere at tangency point X ;,
which is defined by spherical coordinates ¢;, 6;. The point Xy, ; is
defined by coordinates (x,;, yk,;) on the plane.

¢

—

T; 1

0

Figure 3. Example of the equirectangular representation of the im-
age. On the left, the figure depicts the original image on the tan-
gent plane T;, on the right, projected to the points of the sphere.
To build an equirectangular image the values points on the discrete
regular grid are often approximated from the values of projected
points by interpolation.

where cis the angular distance between the point (z;, Yx.;)
and the center of projection Xg ; and is defined as follows:

cos ¢ = sin ¢; sin ¢y, + cos ¢; cos ¢y, cos(0 — 6;),

c=tan"! (1/miz+yiz) . @

Fig. 2 illustrates an example of this gnomonic projection.
In order to easily process the signal defined on the spher-
ical surface, it is typically projected to an equirectangular
image (see Fig. 3). The latter represents the signal on the
regular grid with step sizes Af and A¢ for angles 6 and
¢ respectively. In this paper we work with these equirect-
angular images and assume that the object, which we are
classifying, is lying on a plane T; tangent to the sphere S at
the point (¢;,6;). Our work could however be adapted to
other projection models, such as [40]. Finally, each point
on the equirectangular image is considered as a vertex vy, in
our graph representation. The graph then connects nearest
neighbors of the equirectangular image y(v;) = y(¢;, 6;)

4.2 Weight design

Our goal is to develop a transformation invariant system,
which can recognize the same object on different planes T;
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Figure 4. a) We choose pattern po, .., p4 from an object on tangent
plane T, at equator (¢. = 0,0, = 0) (red points) and then, b)
move this object on the sphere by moving the tangent plane T;
to point (¢;,0;). ¢) Thus, the filter localized at tangency point
(¢i, 6;) uses values p; 1, p;,3 (blue points) which we can obtain
by interpolation.

that are tangent to S at different points (¢;, ;) without any
extra training. The challenge of building such a system is to
design a proper graph signal representation that allow com-
pensating for the distortion effects that appear on different
elevations of S. In order to properly define the structure,
namely to compute the weights that satisfy the above con-
dition we analyze, how a pattern projected a plane T. at
equator (¢, = 0,0, = 0) varies on S with respect to the
same pattern projected onto another plane T; tangent to the
sphere at (¢;, 0;). We use this result to minimize the differ-
ence between filter responses of two projected pattern ver-
sions. Generally, the weight choice depends on distances
d;; between neighboring nodes of graph w;; = g(d;;). In
this section we show that the function g(d;;) = 7 satisfies

ij
the above invariance condition.

Pattern choice. For simplicity we consider a 5-point pat-
tern {po, ..., ps} on a tangent plane, which is depicted by
the Fig. 4:

pj = Xj,e» VJ S [04], (8)

where X; . are the points on the plane T, tangent to an equa-
tor point ¢, = 0,0, = 0 and Xy . = Xo ¢ is the tangency
point. Further, pattern points {po, ..., ps4} are also chosen
in such a way that they are projected to the following loca-
tions on the sphere S:

Po = (050)
Pp2,ps (O + A¢a 0) . (9)
p1,p3 +— (0,0 A0)

These essentially correspond to the pixel locations of the
equirectangular representation of the spherical surface in-
troduced in Section 4.1. The chosen pattern has the follow-
ing coordinates on the tangent plane at equator T, :

XO,e = (O, 0)
X2,eu X4,e = (07 +tan A¢) : (10)
Xl,e7X37e = (i tan AQ,O)

Filter response. Our objective is to design a graph, which
can encode the geometry of an omnidirectional camera in
the final feature representation of an image. Ideally, the
same object at different positions on the sphere should have
the same feature response (see Fig. 1) or equivalently they
should generate the same response to given filters. There-
fore, we choose the graph construction, or equivalently the
weights of the graph in such a way that the difference be-
tween the responses of a filter applied to gnomonic projec-
tion of the same pattern on different tangent planes T; is
minimized. We consider a graph where each node is con-
nected with 4 of its nearest neighbours and take as an ex-
ample the polynomial spectral filter / = L of degree 1
(ag,; = 0,1; = 1), we can compute the filter response
according to the Eq. (1) and Eq. (4):

F(y(vi)) = Dizy(vi) — ZAin(Uj)7
JEE

Y

at the vertex pg, one can write in particular:
F(y(po)) = 2(wv +wn)y(po) — wv(y(p2) + y(ps))

—wr(¥(p1) +¥(p3)),

(12)
where wy, wy are the weight of the ‘vertical’ and ‘hori-
zontal’ edges of the graph. For the graph nodes represent-
ing points p; : (0;,¢;) and py, : (O, ¢m) We refer to
edges as ‘vertical’ or ‘horizontal’ if 6, = 0,,,¢; # ¢m
or 0; # O, ¢y = ¢, correspondingly.

We now calculate the filter response F(y(po)) for a
point py on the tangent plane T; and compare the result with
Eq. (12). For simplicity, we assume that we shift the posi-
tion of the tangent plane by an integer number of pixel po-
sitions on the spherical surface, namely ¢;, 6; corresponds
to a node of the graph given by the equirectangular image.

According to the gnomonic projection (Eq. (6)), the lo-
cations of py ;, k = [0, .., 4] defined on the surface of S as
(i, 0:), (s = A, 0;), (¢, 0; = AB) correspond to the fol-
lowing positions X, ; = (2.4, Yx,;) on the tangent plane T;:

Xo,i
X2, Xy

= (Ov 0)
= (0, £ tan Ag)
cos ¢; sin AQ sin ¢; cos ¢; (1—cos AB)

lei’ X?’vi = (:l: sin? ¢;+cos? ¢; cos AO’ sin? ¢;+cos? ¢; cos A
(13)
The tangent plane’s positions of points X ;, X2 ;, X4 ;
are independent of (¢;, 0;), therefore their values remain
the same as those of pg, p2 and p4 respectively. However,
the positions of points X ;, X3 ; depend on (¢;, 0;), so that
we need to interpolate the values of the pattern signal at the
vertices p; 1 and p; 3 (see Fig. 4).
We can approximate the values at p;; and p;3 us-
ing the bilinear interpolation method [41]. We denote by
A, B, C, D the distances between the corresponding points
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of the pattern T;, as shown in Fig. 4 (c). We can then ex-
press p;.1 and p; 3 as:

Y(pi1) = E~'(ADy(p1) + BDy(po) + CBy(p2)),
y(pi;3) = E~*(ADy(ps) + BDy(po) + CBy(p2)),

(14)
where, using Eq (13),
E = (C+D)A+B),
A+ B = tanA#, . (15)

C+D = tanA¢

Using Eq. (14) we can then write the expression for the filter
response F (¥(po.:)), as follows:

F(y(poi)) = 2(wi,v +wi m)y(po)
—w; v (¥(p2) +¥(pa)) (16)

—w; g (y(Pi) +¥(Pi3))s

where w; i and w; v are the weights of the ‘horizontal” and
‘vertical’ edges of the graph at points with the elevation ¢;.

Objective function. We now want the filter responses a
po and pg; in (Eq. (12) and Eq. (16)) to be close to each
other in order to build translation-invariant features. There-
fore, we need to find weights wg, wy, w; g and w; - such
that the following distance is minimized:

|F(y(Po,e)) — F(¥(po,i))l- (17)

Additionally, as we want to build a unique graph indepen-
dently of the tangency point of T; and S, we have additional
constraint of wy = w; . The latter is important, as from
Eq. (13) we can see that ‘vertical’ (or elevation) distances
are not affected by translation of the tangent plane.

We assume that the camera has a good resolution, which
leads to Af ~ (. Therefore, based on Eq. (17), we can
derive the following:

WH = (sin2 ;?ifésCzO;iAceos AO) Wi, H = Wi, H COS ¢i7
cos Af ~ 1.

(18)

Therefore, under our assumptions, we can conclude that

the difference between filter responses, defined by Eq. (17)
is minimized if the following condition is valid:

wi g = wy (cos ;) ", (19)

where wyy is the weight of the edge between points on the
equator of the sphere S.

Now, we can use this result to choose a proper function
g(d;;) to define the weights w; i based on the Euclidean
distances between two neighboring points (x;,X;) on the
sphere S. For the case when ¢; = ¢; = ¢.,0; # 0; the
Euclidean distance can be expressed as follows:

d?j =7%(1 — cos AG)(1 + cos 2¢,) = 1% cos® ¢.. (20)

For simplicity let us denote d;; = dg,, where ¢, is the
elevation of the points x;,x;. Using these notations, we
can compute the proportion between distances dg_ and dg, ,
which are the distances between neighboring points at equa-
tor ¢. = 0 and elevations ¢, respectively. It reads:

dg COS Py
* = . 21
dg, COS Qe @D

Given Eq. (19), we can rewrite Eq. (21) for elevation ¢, =

¢; as:

cos gy — T _ WH_ (22)
dg. Wi H

As we can see, the distance between neighboring points on
different elevation levels ¢;, is proportional to cos ¢;. Given
Eq. (17), we can see that making weights inversely propor-
tional to Euclidean distance allows to minimize difference
between filter responses. Therefore, we propose using w; g

as:
1

=i (23)

Wi, H
This formula can also be used to compute the weights for
vertical edges, as the distance d between any pair neighbor-
ing points (x;,X;), for which 6; = 6; and ¢; # ¢, is con-
stant. This nicely fits with our assumption that the weights
of ‘vertical’ edges should not depend on the tangency point
of plane T; and sphere S.
Thus, summing it up we choose the weights w;; of a
graph based on the Euclidean distance between pixels on
spherical surface d;; as follows:

1
= — 24
wy = - (24)
The graph representation finally forms the set of signals y
that are fed into the network architecture defined in Sec-
tion 3.

S Experiments

In this section we present our experiments. We first describe
the datasets that we use for evaluation of our algorithm. We
then compare our method to state-of-the-art algorithms.

We have used the following two datasets for the evalua-
tion of our approach.

MNIST-012 is based on a fraction of the popular MNIST
dataset [42] that consists of 1100 images of size 28 x 28,
subdivided in three different digit classes: ‘0’, ‘1’ and 2’.
We then randomly split these images into training, vali-
dation and test sets of 600, 200 and 300 images respec-
tively. In order to make this data suitable for our task we
project them to the sphere at a point (¢;, 8;), as depicted by
Fig. 2. To evaluate accuracy with the change of (¢;, 6;), for
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each image we randomly sample from 9 different positions:
¢; € {0,1/8,1/4},6; € {£1/8,0}. Finally we compute
equirectangular images (see Fig. 2) from these projections,
as defined in Section 4.1 and use the resulting images to
analyze the performance of our method.

ETH-80 is a modified version of the dataset introduced
in [43]. It comprises 3280 images of size 128 x 128 that
features 80 different objects from 8 classes, each seen from
41 different viewpoints. We further resize them to 50 x 50
and randomly split these images into 2300 and 650 training
and test images, respectively. We use the remaining 330
ones for validation. Finally, we follow the similar procedure
to project them onto the sphere and create equirectangular
images as we do for MNIST-012 dataset.

For our first set of experiments we train the network
in [15] with the following parameters. We use two spectral
convolutional layers with 10 and 20 filters correspondingly,
with global pooling which selects P; and P, nodes, where
the parameters P; = 2000 and P, = 200 for MNIST-012
dataset and P; = 2000, P, = 700 for ETH-80 dataset. We
then use a statistical layer with 12 x 2 statistics and three
fully-connected layers with ReLU and 500, 300, 100 neu-
rons correspondingly.

We have evaluated our approaches with respect to base-
line methods in terms of classification accuracy. The
MNIST-012 dataset is then primarily used for the analy-
sis of both the architecture and the graph construction ap-
proach. We then report the final comparisons to state-of-
the-art approaches on the ETH-80 dataset.

First of all, we visually show that feature maps on the last
convolutional layer of our network are similar for different
positions, namely for different tangent planes T; with the
same object. Fig. 5 and 6 depict some feature maps of
images from MNIST-012 and ETH-80 correspondingly.

The first column of each figure shows original equirect-
angular images of the same object projected to different el-
evations ¢; = [0,1/8,1/4] and the rest visualize feature
maps produced by two randomly selected filters. We can
see, that the feature maps stay similar independently of the
distortion of the corresponding input image. We believe that
this, further, leads to closer feature representations, which is
essential for good classification.

We recall that the goal of our new method is to construct
a graph to process images from omnidirectional camera and
use it to create similar feature vectors for the same object
for different positions (¢;, 8;) of the tangent plane. To jus-
tify the advantage of proposed approach we design the fol-
lowing experiment. First of all, we randomly select three
images of digits ‘2’, ‘1’ an ‘0’ from the test set of MNIST-
012. We then project each of these images to 9 positions
on the sphere ¢; € {0,1/8,1/4},6; € {£1/8,0}. We then
evaluate Euclidean distances between the features that are
given by the statistical layer of the network for all pairs of

Input Foly)  Fi(y)

ool
(\‘I
(\.I
o

=

Z Z ¢

Figure 5. Example of the feature maps of the last spectral con-
volutional layer extracted from equirectangular images. The first
column corresponds to the original images created for the same
object, which is projected from different tangent planes T;, with
¢: € {0, é, i}; the last two columns show the feature maps given
by two randomly selected filters.

Figure 6. Example of feature maps of equirectangular images from
ETH-80 datasets. Here, we randomly select an input image from
the test set and project it on three elevation ¢; € {0,1/8,1/4} and
two spectral filters, which are named F; and F». The figure illus-
trates resulting feature maps given by the selected filters (second
and third columns) and input images (first column).

these 27 images. Fig. 7 presents the resulting [27 x 27]
matrix of this experiment for a grid graph and for the pro-
posed graph representation, which captures the lens geom-
etry. Ideally we expect that images with the same digit give
the same feature vector regardless of different elevations ¢;
of the tangent plane. This essentially means that cells of the
distance matrix should have low value on the [9 x 9] diago-
nal sub-matrices, which correspond to the same object, and
high values on the rest of the matrix elements. Fig. 7 shows
that our method gives more similar features for the same ob-
ject compared to the approach based on a grid graph. This
suggests that building graph based on image geometry, as
described in Section 4.2, makes features less sensitive to
image distortions. This consequently simplifies the learn-
ing process of the algorithm.
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Figure 7. Illustration of the Euclidean distances between the fea-
tures given by the networks of a) [15] and b) our geometry-aware
graph. This figure depicts resulting matrix [27 x 27] for the im-
ages from 3 classes and 9 different positions, where axises cor-
respond to the image indexes. Each diagonal [9 x 9] sub-matrix
corresponds to the same object (digits “2”, “1”, “0”), the lowest
value (blue) corresponds to the most similar features and the high-
est value (red) to the least similar (best seen in color).

ETH-80
method graph type # Parameters Accuracy (%)
classic Deep Learning:

FC Nets - 1.4M 71.3

STN [44] - 1.IM 73.1

ConvNets [8] - 1.1IM 76.7
graph-based DLA:

ChebNet [14] grid 3.8M 72.9

TIGraNet [15] grid 0.4M 74.2

ChebNet [14] geometry 3.8M 78.6
Ours ‘ geometry 0.4M 80.7

Table 1. Comparison to the state-of-the-art methods on the ETH-
80 datasets. We select the architecture of different methods to
feature similar number of convolutional filters and neurons in the
fully-connected layers.

We further evaluated our approach with respect to the
state-of-the-art methods on ETH-80 dataset. The compet-
ing deep learning approaches can be divided in classical
and graph-based methods. Among the former ones we
use Fully-connected Networks (FCN), Convolutional Net-
work (ConvNets) [8] and Spatial Transformer Networks
(STN) [44]. STN has an additional to ConvNets layer which
is able to learn specific transformation of a given input im-
age. Among the graph-based methods, we choose Cheb-
Net [14] and TIGraNet [15] for our experiments. ChebNet
is a network designed based on Chebyshev polynomial fil-
ters. TIGraNet is a method invariant to isometric transfor-
mation of the input signal. The architectures are selected
such that the number of parameters in convolutional and
fully-connected layers roughly match each other across dif-
ferent techniques. More precisely, all networks have 2 con-
volutional layers with 10 and 20 filters, correspondingly,
and 3 fully-connected layers with 300,200 and 100 neu-
rons. Filter size of the convolutional layer in classical ar-

chitectures is 5 x 5. For ChebNet we try polynomials of
degree 5 and 10 and pick the latter one as it produces better
results. For TIGraNet we use polynomial filters of degree
5. The results of this experiment are presented in Table 1.

Table 1 further shows that ConvNet [8] outperforms
TIGraNet [15]. This likely happens as [15] gathers global
statistics and loses the information about the location of the
particular object. This information, however, is crucial for
the network to adapt to different distortions on omnidirec-
tional images. We can see that the introduced graph con-
struction method helps to create similar feature representa-
tions for the same object at different elevations, which re-
sults into different distortion effects but similar feature re-
sponse. Therefore, the object looks similar for the network
and global statistics become more meaningful compared to
a method based on the regular grid graph [15].

Further, we can see that the proposed graph construction
method allows to improve accuracy of both graph-based
algorithms: ChebNet-geometry outperforms ChebNet-grid,
and proposed algorithm based on TIGraNet outperforms the
same method on the grid-graph [15]. Finally, we also no-
tice that our geometry-based method performs better than
ChebNet-geometry on the ETH-80 task due to the isometric
transformation invariant features; these are an advantage for
the image classification problems, where images are cap-
tured from different viewpoints.

Thus, we can conclude that our algorithm produces sim-
ilar filter responses for the same object at different posi-
tions. This, in combination with global graph-based statis-
tics, leads to the better classification accuracy.

6 Conclusion

In this paper we propose a novel image classification
method based on deep neural network that is specifically
designed for omnidirectional cameras, which introduce se-
vere geometric distortion effects. Our graph construction
method allows learning filters that respond similarly to the
same object seen at different elevations on the equirectangu-
lar image. We evaluated our method on challenging datasets
and prove its effectiveness in comparison to state-of-the-art
approaches that are agnostic to the geometry of the images.

Our discussion in this paper was limited to specific type
of the mapping projection. However, the proposed solution
has a potential to be extend to more general geometries of
the camera lenses.
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