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Abstract

We propose a new deep learning based approach for

camera relocalization. Our approach localizes a given

query image by using a convolutional neural network

(CNN) for first retrieving similar database images and then

predicting the relative pose between the query and the

database images, whose poses are known. The camera lo-

cation for the query image is obtained via triangulation

from two relative translation estimates using a RANSAC

based approach. Each relative pose estimate provides a hy-

pothesis for the camera orientation and they are fused in

a second RANSAC scheme. The neural network is trained

for relative pose estimation in an end-to-end manner using

training image pairs. In contrast to previous work, our ap-

proach does not require scene-specific training of the net-

work, which improves scalability, and it can also be ap-

plied to scenes which are not available during the training

of the network. As another main contribution, we release

a challenging indoor localisation dataset covering 5 differ-

ent scenes registered to a common coordinate frame. We

evaluate our approach using both our own dataset and the

standard 7 Scenes benchmark. The results show that the

proposed approach generalizes well to previously unseen

scenes and compares favourably to other recent CNN-based

methods†.

1. Introduction

Camera relocalization, or image-based localization is a

fundamental problem in robotics and computer vision. It

refers to the process of determining camera pose from the

visual scene representation and it is essential for many ap-

plications such as navigation of autonomous vehicles, struc-

ture from motion (SfM), augmented reality (AR) and simul-

taneous localization and mapping (SLAM). Due to impor-

tance of these problems various relocalization approaches

∗Equal contribution: firstname.lastname@aalto.fi

have been proposed. Point-based localization approaches

find correspondences between local features extracted from

an image by applying image descriptors (SIFT, ORB, etc

[2, 20, 27]) and 3D point clouds of the scene obtained

from SfM. In turn, such set of 2D-3D matches allows to re-

cover the full 6-DoF (location and orientation) camera pose.

However, this low-level process of finding matches does not

work robustly and accurately in all scenarios, such as tex-

tureless scenes, large changes in illumination, occlusions

and repetitive structures.

Recently, various machine learning methods [3, 32, 36],

such as scene coordinate regression forest (SCoRF) [32,

36], have been successfully applied to camera localization

problem. SCoRF utilize predicted 3D location of four pixels

of an input image to generate an initial set of camera pose

hypotheses which are subsequently refined by a RANSAC

loop. However, all these methods require depth maps asso-

ciated with input images at training time, thus the applica-

bility of such approaches is restricted.

Inspired by the success in image classification [13, 17],

semantic segmentation [14, 23] and image retrieval [1, 10],

convolutional neural networks (CNNs) have also been used

to predict camera pose from visual data [15, 16]. They

cast camera relocalization as a regression problem, where

camera location is directly estimated by CNN pre-trained

on image classification data [8]. Although learning-based

approaches overcome many disadvantages of point-based

methods, they still have certain limitations. Directly re-

gressing the absolute camera pose constrains the current

machine learning models to be trained and evaluated scene-

wise when the scenes are registered to different coordinate

frames. The reason for this is that the trained model learns a

mapping from image (pixels) to pose which is dependent on

the coordinate frame of the training data belonging to a par-

ticular scene. This causes complications, especially if one

is interested in localization across several scenes simulta-

neously, and also prevents transferring learnt knowledge of

geometric relations between scenes. The second problem is

the obviously limited scalability to large environments since
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a finite neural network has an upper bound on the physical

area that it can learn, as pointed out by [16].

In this paper, we propose to decouple the learning pro-

cess from the coordinate frame of the scene. That is, in-

stead of directly regressing absolute pose like [15, 16, 21],

we train a Siamese CNN architecture to regress the relative

pose between a pair of input images and propose a pipeline

for computing the absolute pose from several relative pose

estimates between the query image and database images.

This approach is flexible and has several benefits: (a) our

CNN can learn from image pairs of any scene thereby be-

ing able to improve towards generic relative pose estimator;

(b) a single network can be trained and used for localization

in several disjoint scenes simultaneously, even in scenes

whose training images are scarce or not available during the

training time of the network; and (c) the approach is scal-

able because a single CNN can be used for various scenes

and the full scene-specific database (i.e. training) images are

not needed in memory at test time either as compact feature

descriptors and fast large-scale image retrieval techniques

can be utilized instead.

To summarize, we make the following contributions:

• We propose a new deep learning based approach for

camera relocalization. Our approach is general and

scalable alternative to previous models and compares

favourably to other CNN-based methods.

• We show through extensive evaluation the generaliza-

tion capability of the approach to localize cameras in

scenes unseen during training of the CNN.

• We introduce a new challenging indoor dataset with

accurate ground truth pose information and evaluate

the proposed method also on this data.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work in image-based localization.

Section 3 describes the network structure and the whole

pipeline of our approach. The details of a new large indoor

dataset and evaluation results of our method are provided in

Section 4 and Section 5 accordingly. Conclusion and some

suggestions for future work are given in Section 6.

We will make the source code and the dataset publicly

available upon publication of the paper.

2. Related work

Camera relocalization approaches largely belong to two

classes: visual place recognition methods and 3D model-

based localization algorithms. Visual place recognition

methods cast image-based localization problem as an im-

age retrieval task and apply standard techniques such as im-

age descriptors (SIFT, ORB, SURF [2, 20, 27]), fast spatial

matching [25], bag of visual words [7, 37] to find a repre-

sentation of an unknown scene (a query image) in a database

of geo-tagged images. Then, the geo-tag of the most rele-

vant retrieved database image is considered as an approxi-

mation of a query location. The major limitation of visual

recognition methods is that the images in database are of-

ten sparse, so that in situations where the query is far from

database images the estimate would be inaccurate [36].

Structure-based localization methods utilize a 3D scene

representation obtained from SfM and find correspondences

between 3D points and local features extracted from a query

image establishing a set of 2D-3D matches. Finally, the

camera pose is established by applying RANSAC loop

in combination with a Perspective-n-Point algorithm [4].

However, descriptor matching is expensive and time-

consuming procedure making camera relocalization com-

plicated problem for large scale scenes such as urban en-

vironment. In order to accelerate this stage, [19, 29] elimi-

nate correspondence search as soon as enough matches have

been found, and [28, 31] propose to perform matching with

the 3D points of top-retrieved database images.

Sattler et al. [30] demonstrate that combining visual

place recognition approaches with local SfM leads to better

localization performance compared with 3D-based meth-

ods. However, the localization process itself is still very

time-consuming.

It has also been shown that machine learning methods

have potential for providing efficient solutions to the pose

estimation problem. Similar to structure-based localiza-

tion approaches, Shotton et al. [32] utilize a regression for-

est to predict a 3D point location for each pixel of an in-

put RGB-D image. Thus, the method establishes 2D-3D

matches which are then used to recover 6-DoF camera pose

by applying RANSAC. Rather then finding point correspon-

dences, Valentin et al. [36] propose to exploit the uncer-

tainty of the predicted 3D point locations during pose es-

timation. Brachmann et al. [3] propose a differentiable

RANSAC method for camera localisation from an RGB im-

age. However, it still requires dense depth maps in the train-

ing stage.

Recently proposed CNNs-based approaches have shown

great success in image-based localization. Originally, uti-

lizing CNNs to directly regress camera relocalization was

proposed by Kendall et al. [16]. Their method, named

PoseNet, adapts GoogLeNet [34] architecture pre-trained

on large-scale image classification data to reconstruct 6-

DoF camera pose from an RGB image. In the recent

paper [15], Kendall et al. propose a novel loss function

based on scene reprojection error and show its efficiency

in appearance-based localization. Contrary to [15, 16],

HourglassPose [21] utilizes a symmetric encoder-decoder

network structure with skip connections which leads to

improvement in the localization accuracy outperforming

PoseNet. Partly motivated by advances of Recurrent Neu-

ral Networks (RNN) in text classification, Clark et al. and
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Walch et al. apply LSTM networks to determine the loca-

tion from which a photo was taken [5, 38]. Following [16],

both of these methods, called VidLoc [5] and LSTMPose

[38], utilize GoogLeNet to extract features from input im-

ages to be localized, then feeding these features to a block

of LSTM units. The regression part consisting of fully-

connected layers utilizes output of LSTM units to predict

camera pose. The major drawback of VidLoc is that it re-

quires a sequence of adjacent image frames as input and is

able to estimate camera translation only.

The proposed approach is related to all previously dis-

cussed CNN-based methods, but it is the first one solv-

ing image-based localization problem via relative camera

pose. Inspired by [22, 24, 35], we apply Siamese neural

network to predict relative orientation and relative trans-

lation between two views. These relative translation esti-

mates are then triangulated to recover the absolute camera

location. Compared with [5, 15, 16, 21, 38], our study pro-

vides more general and scalable solution to image-based lo-

calization task. That is, the proposed approach is able to

estimate 6-DoF camera pose for scenes registered to differ-

ent coordinates frames, unlike existing CNN-based meth-

ods. Finally, compared with traditional machine learning

approaches, our method does not require depth maps for

training, thus it is applicable for outdoor scenes as well.

Further details of our approach will be given in the follow-

ing sections.

3. Proposed approach

This section introduces the proposed localization ap-

proach for predicting camera pose. The method consists

of two modules: a Siamese CNN network for relative pose

computation and the localization pipeline. The input to

the system is an RGB query image to be localized, and a

database of images with their respective poses. At the first

stage, we construct a set of training image pairs and use it

to train a Siamese CNN to predict relative camera pose of

each pair (Section 3.1). It should be noted that the training

image pairs can be independent of the scenes present in the

localization database.Then, each trained branch of the net-

work is considered a feature extractor and the extracted fea-

ture vectors can be utilized to identify the database images

that are nearest neighbours (NN) to the query image in the

feature space. Finally, relative pose estimates between the

query and its neighbours are computed and then coalesced

with ground truth absolute location of the corresponding

database images in a novel fusion algorithm (Section 3.2)

producing the full 6-DoF camera pose.

3.1. Pairwise Pose Estimation

The first part of the proposed approach aims to directly

estimate relative camera pose from an RGB image pair.

The problem of regressing rigid body transformation be-

tween a pair of images has been well studied in recent

years [9, 22, 35]. Following [22], we construct a Siamese

neural network with two representation branches connected

to a common regression part as shown in Fig. 1. The

branches share the same set of weights and have ResNet34

architecture [13] truncated at the last average pooling layer.

The weights are initialised from a network pre-trained for

large-scale image classification task [8], and later fine-tuned

for the relative pose estimation task as described below. The

outputs of the representation branches are concatenated and

passed through the regressor which consists of three fully-

connected layers (FC), namely FCi, FCr and FCt, where

the latter two predict relative orientation and translation, re-

spectively. Fig. 1 shows a detailed description. The fully-

connected layers are initialized randomly.

The output of the regression part is parameterized as 4-

dimensional quaternion for relative orientation ∆r and 3-

dimensional ∆t for relative translation [22, 24]. As the

quaternions lie on a unit sphere, enforcing unit norm con-

straint on any 4-D vector outputs a valid rotation. Also

the distance between two quaternions s(ri, rk) can be mea-

sured by the Euclidean l2 norm ||ri − rk||2, unlike other

rotation parameterizations such as rotation matrices that lie

on a manifold and distance computation requires finding an

Euclidean embedding. For a more elaborate discussion we

guide the reader to [12, 15]. To regress relative camera pose,

we train our CNN with the following objective criterion:

L = ‖∆tgt −∆t‖
2
+ β ‖∆rgt −∆r‖

2
(1)

where ∆rgt and ∆tgt are the ground-truth relative orienta-

tion and translation respectively. To balance the loss for

orientation and translation we use the parameter β > 0
[22, 24]. The details of the training are described in Sec-

tion 5.

At test time, a pair of images is fed to the regression

neural network, consisting of two branches, which directly

estimates the real-valued parameters of the relative camera

pose vector. Finally, the estimated quaternion and transla-

tion vectors are normalized to unit length. The normalized

translation vector gives the translation direction from the

database image to the query camera location. Although the

translation vector predicted by our network contains scale

information, we found that in practice recovering the scale

using the approach discussed in Section 3.2 is more accu-

rate and reliable.

3.2. Localization Pipeline

Retrieving the nearest neighbours In order to find the

nearest database images to the query, it is important to ob-

tain a suitable representation for both the query q and the

database images D. Considering recent advances of CNN-

based approaches in the field of image retrieval [10, 26], we
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Figure 1: Pipeline of the proposed system. A Siamese based CNN network consisting of two branches pre-trained on

ImageNet [8] is trained to directly regress relative pose between a pair of cameras (top). Once the training process is finished,

we employ the branch as a descriptor to compute feature representations of database and query images. Then, the dot product

is applied to these representations as a part of retrieval system and database descriptors are ranked according to higher

similarity score. Consequently, query descriptor and its top N ranked database representations are concatenated and fed to

the regression part of the network to predict pairwise relative pose. Finally, the proposed fusion algorithm naturally coalesces

relative pose estimates and ground truth absolute poses to produce the full 6-DoF query location.

use the fine-tuned network (one branch of the model archi-

tecture) from the first stage (Section 3.1) as a feature extrac-

tor to encode the query and database images to fixed global

representations (i.e. 512 dimensional feature vectors, see

Fig. 1). In turn, the dot product of the query and database

feature vectors is computed to obtain image similarity. Con-

sequently, the database images are ranked according to sim-

ilarity scores. Finally, the top N ranked database images,

d = {dj |dj ∈ D, j = 1...N} are selected as the nearest

neighbours to the query image, q.

Although the retrieval stage is an important component

in our pipeline, we adopted the simple approach above in

this work and postpone deeper discussion and analysis to

future work. The primary focus of our paper is not image re-

trieval, but camera localization. However, in Section 5, be-

sides evaluating the performance of the complete pipeline,

we also experimentally study how the system would per-

form with perfectly accurate retrieval stage.

Θ1

Θ2

ΘN

ts

d1

d2
dk

dm

dN

...

......

Figure 2: Estimation of query camera translation.

Compute Relative Pose In the next stage of the pipeline the

Siamese CNN is used to regress relative camera pose for the

image pairs Q = q × d, ∆R = {∆R1,∆R2...∆RN} and

∆t̂ = {∆t̂1,∆t̂2, ...∆t̂N}. Here, ∆Rj represents the rela-

tive orientation between the jth NN database image, dj ∈ d

and the query q. Similarly, ∆t̂j is the relative translation
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direction.

Pose hypotheses filtering The final part of the localization

system is a novel fusion algorithm recovering the absolute

query camera pose from these N relative pose estimations.

This process is illustrated schematically in Fig. 2.

From the shortlisted top ranked database images d, select

a pair ps = {dk, dm}, where ps ⊂ d and s = 1, 2, . . . ,
(

N

2

)

.

Now, the translation direction predictions to the query q

from the images ps are triangulated to obtain the loca-

tion/translation parameter of query camera, ts. This gives

us
(

N

2

)

hypotheses for the query translation, t̃q = {ts|s =

1, 2, . . . ,
(

N

2

)

}. Now, for each ts ∈ t̃q the direction rays

from the camera centers of the remaining images in d,

pr = d \ps to this triangulated camera location ts is ob-

tained. If the direction ray associated with an image in pr is

within a pre-defined angular distance to the direction vector

predicted by our network, then it is considered an inlier (d2
and dN in Fig. 2) to the estimate ts. The translation estimate

ts ∈ t̃q , s = 1, 2, . . . ,
(

N

2

)

with the highest inlier count is

assigned to the query camera. If two or more translation es-

timates have the same inlier count, then they are averaged

to obtain the final query translation estimate.

Estimating rotation for the query camera is much simpler

as the following equation can be used to obtain a hypothesis:

∆Rj = RT
j R

j
q (2)

where Rj is the orientation of the jth camera in d, dj ∈ d

available as input to our system, and Rj
q is the jth hypoth-

esis of the query camera orientation. These results in N

hypotheses for query orientation, R̃q = {R1

q ...R
N
q }. In-

stead of naively averaging the estimations, we apply a con-

sensus based filtering similar to the process of estimating

query translation. For each hypothesis, Rj
q ∈ R̃q a consen-

sus set is formed from the remaining hypotheses in R̃q that

lie within a pre-defined angular distance to Rj
q . The num-

ber of elements in the consensus set is defined as the inlier

count for Rj
q . The hypothesis with the highest inlier count

is assigned as the orientation estimate for the query camera.

When two or more hypotheses share the same inlier count, a

robust rotation averaging algorithm [11] is applied to obtain

the final query camera rotation.

4. Datasets

We evaluate the proposed approach on two different

dataset for indoor localization.

7Scenes Microsoft 7-Scenes dataset contains RGB-D im-

ages covering 7 different indoor locations [33]. The dataset

has been widely used for image-based localization [5, 15,

16, 21] exhibiting significant variation in camera pose, mo-

tion blur and perceptual aliasing. In our experiments we

utilize the same train and test datasets for each scene as pro-

vided in the original paper.

University The scenes in 7Scenes dataset have their own

coordinate system without being linked to each other in a

global coordinate system. Therefore, all existing machine

learning models are trained and evaluated scene-wise. This

fundamental limitation restricts to widely apply these ap-

proaches to real life scenarios where a large-scale environ-

ment consists of multiple sub-scenes.

We release a challenging indoor localization dataset,

University, with different locations that are all registered to

a common global coordinate frame. For this paper, we con-

sider a segment of the whole dataset, consisting of image

sequences of 5 scenes, Office, Meeting, Kitchen, Confer-

ence, and Coffee Room. The scenes are structured in a sim-

ilar way to 7Scenes, with multiple traversals through each

of the scenes. The training and test split of the sequences

are provided. Overall, the proposed dataset contains 9694

training and 5068 test images respectively. Some challeng-

ing test cases of University dataset are presented in Figure

1 of the Supplementary material.

Ground-truth localization data of the dataset was gen-

erated using Google Project Tango’s tablet and high-

resolution image sequences were collected by iPhone 6S

mounted on top of the tablet. The device outputs two types

of odometry estimations: Start of Service (SOS), which

is the raw odometry and thus suffers from drift, and Area

Learning (AL), which uses device’s drift correction engine.

As the AL engine fails sometimes [18], we use the odom-

etry estimates from SOS and manually generated location

constraints in a pose-graph optimization framework to gen-

erate a globally consistent map.

5. Experiments

In this section we quantitatively demonstrate the effec-

tiveness of the proposed system on 7Scenes and Univer-

sity datasets. We compare our approach with the current

state-of-the-art CNN-based methods, such as PoseNet [16],

HourglassPose [21], LSTMPose [38], VidLoc [5], and

PoseNet with reprojection loss [15], dubbed PoseNet2.

According to Fig.1, representation part of the proposed

system is based on a Siamese architecture. In this work, we

initialize our model using original ResNet34 model trun-

cated at the last average pooling layer and pre-trained on

ImageNet [8] as a structure of each branch.

Training data We start experiments by evaluating the sys-

tem on 7Scenes dataset. As it is mentioned in Section 4,

the dataset consists of different indoor scenes and each of

them provides training and testing image sequences. Since

the system requires an image pair to learn relative pose, the

following strategy is applied to obtain training dataset. For

every image in the training set of each scene, we find a cor-

responding image from the same set so that they have suffi-

ciently overlapping field of view. Total number of training

pairs of a scene is equal to the number of images in the
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Figure 3: The University dataset. The proposed large-scale indoor localization dataset consists of 5 different scenes (seg-

ments) registered to a common global co-ordinate system.

Scene
Spatial PoseNet LSTM-Pose VidLoc Hourglass-Pose PoseNet2 ResNet34-Pose Ours

Extent [16] [38] [5] [21] [15] (baseline)

Chess 3× 2× 1m 0.32m, 8.12◦ 0.24m, 5.77◦ 0.18m, N/A 0.15m, 6.53◦ 0.13m, 4.48◦ 0.12m, 6.69◦ 0.13m, 6.46◦

Fire 2.5× 1× 1m 0.47m, 14.4◦ 0.34m, 11.9◦ 0.26m, N/A 0.27m, 10.84◦ 0.27m, 11.3◦ 0.31m, 13.36◦ 0.26m, 12.72◦

Heads 2× 0.5× 1m 0.29m, 12.0◦ 0.21m, 13.7◦ 0.14m, N/A 0.19m, 11.63◦ 0.17m, 13.0◦ 0.16m, 13.78◦ 0.14m, 12.34◦

Office 2.5× 2× 1.5m 0.48m, 7.68◦ 0.30m, 8.08◦ 0.26m, N/A 0.21m, 8.48◦ 0.19m, 5.55◦ 0.21m, 8.78◦ 0.21m, 7.35◦

Pumpkin 2.5× 2× 1m 0.47m, 8.42◦ 0.33m, 7.00◦ 0.36m, N/A 0.25m, 7.01◦ 0.26m, 4.75◦ 0.25m, 7.89◦ 0.24m, 6.35◦

Red Kitchen 4× 3× 1.5m 0.59m, 8.64◦ 0.37m, 8.83◦ 0.31m, N/A 0.27m, 10.15◦ 0.23m, 5.35◦ 0.22m, 9.35◦ 0.24m, 8.03◦

Stairs 2.5× 2× 1.5m 0.47m, 13.8◦ 0.40m, 13.7◦ 0.26m, N/A 0.29m, 12.46◦ 0.35m, 12.4◦ 0.37m, 14.45◦ 0.27m, 11.82◦

Average 0.44m, 10.4◦ 0.31m, 9.85◦ 0.25m, N/A 0.23m, 9.53◦ 0.23m, 8.12◦ 0.23m, 10.61◦ 0.21m, 9.30◦

Table 1: Camera localization performance of the proposed method and existing RGB-only CNN-based approaches for

7Scenes datasets. We follow original notation presented in [16] and provide median translation and orientation errors.

In terms of localization error, our approach is superior to other methods utilizing similar loss (1) such as PoseNet [16],

LSTM-Pose [38], VidLoc [5] and Hourglass-Pose [21] for the all scenes. Furthermore, the proposed method outperforms

PoseNet2 [15] in 4 scenes and achieves better localization accuracy in general. However, it is important to note that both

methods are not directly comparable, due to more advanced loss function optimized in [15].

training sequence of this scene in the original dataset. Fi-

nally, the training pairs from all the scenes are merged into

a single training set for training the CNN in our approach.

Training details As a preprocessing step, the training im-

ages are resized to 256 pixels on the smaller side while

maintaining the aspect ratio of the resized image. The train-

ing images are further mean-centered and normalized using

standard deviation computed over the whole training set.

To ensure fixed sized input to our network, we use random

crops (224 × 224) during training and perform the evalua-

tion using central crops at test time. The network is trained

for 200 epochs with an initial learning rate of 0.1 which is

gradually decreased by 10 times after every 50 epochs. The

loss (1) is minimized using stochastic gradient descent with

a batch size of 64 training samples. The scale factor β is

set to 1 after empirical evaluation for all our experiments.
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Scene Baseline Proposed

Office 2.76m, 17.08◦ 0.57m, 17.09◦

Meeting 2.13m, 14.13◦ 2.30m, 12.27◦

Kitchen 1.65m, 12.92◦ 0.70m, 11.72◦

Conference 4.97 m, 17.18◦ 2.74m, 15.00◦

Average 2.88 m, 15.33◦ 1.58 m, 14.02◦

Table 2: Camera relocalization performance of the pro-

posed approach and the baseline on University dataset pre-

sented as median orientation and translation errors. Train-

ing is done using the training images of all scenes for both

approaches. Evaluation is performed scene-wise.

Removed Median error

scene position [m] orientation [deg]

Chess 0.27 13.05

Heads 0.23 15.03

Red Kitchen 0.36 12.60

Table 3: Generalization performance of the proposed ap-

proach. Localization accuracy of the proposed method on

unseen scenes of 7Scenes dataset.

Scene
Median error

position [m] orientation [deg]

Chess 0.31 15.05

Fire 0.40 19.00

Heads 0.24 22.15

Office 0.38 14.14

Pumpkin 0.44 18.24

Red Kitchen 0.41 16.51

Stairs 0.35 23.55

Average 0.36 18.38

Table 4: Generalization performance of the proposed ap-

proach. The network is trained on only University and eval-

uated on 7Scenes dataset.

The weight decay is set to 10−5 and no dropout was used

in our experiments. All experiments were evaluated on two

NVIDIA Titan X GPUs using Torch7 [6] machine learning

framework.

Evaluation stage The input to the system is a database con-

taining the list of images from the training set of all scenes

(for a given dataset) and their respective camera poses. The

combined list of test images from all scenes constitute the

query set. For each query, we retrieve its top 5 NN (N = 5)

from the database images using neural representations from

our trained representation branch.

The query and its NN are then fed sequentially to our

Siamese model to obtain the relative camera pose estimates.

From a practical standpoint it is not necessary to feed the

query and its NN images through the full network model.

The only component of our network that requires pairwise

input is the regression part, which takes in input from the

representation part of each branch of the Siamese model.

Also, both the representation branches share the same pa-

rameters and the output of the representation part is already

used in the first stage of our pipeline to compute image sim-

ilarity. Thereby, to compute relative pose, we simply feed

the representations of the query and its NN in a pairwise

manner to the regression component.

The relative pose estimations are then robustly fused to

obtain the query camera pose. The angular distance thresh-

old of inliers for both translation and rotation is 20 degrees.

5.1. Quantitative Results

We compare our proposed system with the existing CNN

based localization methods on 7Scenes, while for University

dataset we provide an evaluation of our proposed system

and a baseline method. The results are shown in Table 1

and Table 2. For both datasets, the localization performance

is measured as the median orientation and translation error

over each scene.

For several scenes in the 7Scenes dataset we outper-

form other CNN-based methods in camera relocalization.

In particular, we perform favourably to the current best per-

forming method, PoseNet2 on several scenes. However,

PoseNet2 is not directly comparable to our work as it uses

a more sophisticated loss function during training and a dif-

ferent CNN architecture.

For a fairer evaluation we compare our system with a

baseline model consisting of pre-trained convolutional lay-

ers of ResNet34 architecture and a regression part replicat-

ing the one utilized in the proposed approach (but without

the Siamese architecture). We entitle this model ResNet34-

Pose. Following [15, 21], the baseline is trained and eval-

uated scene-wise. Table 1 shows that our proposed system

has a consistent improvement over the baseline for both ro-

tation and translation across all the scenes. Although the

margin of improvement is not large, it is to be noted that all

the existing methods (including the baseline) are trained in

a scene-specific manner whereas our system was designed

to inherently overcome this fundamental limitation and al-

lows us to train and test our model jointly on all the scenes.

That is, our approach uses the same network for all 7 scenes

whereas other approaches of Table 1 have one network per

scene (e.g. in total ResNet34-Pose has thus 7 times more

parameters that are learnt).

The performance increase of our system compared to the

baseline can be attributed to a number of factors: i) repre-

sentation sharing across scenes during training, ii) generat-

ing multiple hypothesis for query camera pose followed by

robust pose filtering, iii) larger training set. These factors,
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although plausible have not been experimentally validated

in this paper and we leave it for future work.

For the University dataset, our system and the baseline

are trained jointly on the scenes: Office, Meeting, Kitchen

and Conference. The scene Coffee Room is a recent addi-

tion to the database, and due to time constraints we could

not train and evaluate our proposed system and ResNet34-

Pose on this scene. However, we use it to evaluate our

trained model in Section 5.2. The performance evaluation

is presented in Table 2. The results show that the margin

of translational error between the baseline and our system

has increased significantly. In particular, it has increased

from 2cm in 7 Scenes (all scenes combined) to 130cm in

University. Although it does demonstrate that the proposed

system performs better even under similar training setup, it

also provides additional insight on the scalability of our sys-

tem. As mentioned in Section 4, the University dataset con-

sists of several scenes spread over an area of 2500 m2. Ab-

solute pose prediction models like the baseline model need

to maintain a track of the spread or scale of the map, while

models like our system are not much affected by scale. Our

system essentially removes the influence of scale by finding

the NN and solving the relative pose problem which does

not depend on the scale of the map/dataset.

5.2. Generalization Performance

Current machine learning models for camera localization

are not only restricted to scene-wise training and evaluation,

but also limited in their applicability to previously unseen

scenes. In this section we experimentally demonstrate the

generalization capability of our pipeline to data previously

unseen during training.

We hold out one of the scenes in 7Scenes dataset for eval-

uation and train our model on the remaining 6 scenes. In

particular, we held out Chess, Heads, and RedKitchen sep-

arately as evaluation sets. Table 3 shows a graceful drop in

performance on the held out test scene compared to the case

where our model was trained on all the 7 scenes (Table 1).

In University dataset, we evaluate on Coffee Room using the

model trained on the remaining 4 scenes. The median posi-

tion and orientation error were 1.44 m and 19.22 degrees.

We further evaluate the performance on the 7Scenes

dataset using our model trained on the University dataset

(excluding Coffee Room). According to Table 4, the perfor-

mance drop is not drastic, with the mean of the median error

over all the scenes drop by 9 degrees and 15 cm for rotation

and translation respectively.

5.3. Ideal Retrieval Results

We now evaluate the scenario when the retrieval stage

of our pipeline returns only the true nearest neighbours to

the query. We further evaluate the effect of image spacing

between the query and the retrieved NN. These experiments

are evaluated on 7Scenes dataset.

Scene Viewpoint 0 Viewpoint 3 Viewpoint 7

Chess 0.19m, 7.48◦ 0.16m, 7.26◦ 0.16m, 7.61◦

Fire 0.13m, 6.61◦ 0.10m, 6.45◦ 0.11m, 6.32◦

Heads 0.25m, 8.74◦ 0.25m, 8.54◦ 0.25m, 8.71◦

Office 0.21m, 11.13◦ 0.19m, 11.14◦ 0.19m, 11.95◦

Pumpkin 0.24m, 9.39◦ 0.26m, 9.50◦ 0.25m, 9.35◦

Red Kitchen 0.21m, 7.59◦ 0.19m, 7.41◦ 0.19m, 7.45◦

Stairs 0.23m, 7.92◦ 0.23m, 8.26◦ 0.23m, 8.56◦

Average 0.21m, 8.41◦ 0.20m, 8.37◦ 0.20m, 8.44◦

Table 5: Camera relocalization accuracy of the proposed

system for different viewpoint changes between the query

and the database image.

Due to low image spacing between training images

across all the scenes in 7Scenes, a query often has more than

300 true NN. Now, for a given query we use ground truth

to sort all the training images from the corresponding scene

using a metric similar to (1). We then create a sublist con-

sisting of the top 355 images from this sorted list. From this

sublist, we further select 8 sets of 5 images each at an inter-

val of 50 ranks. That is, the first set (Viewpoint 0 in Table

5) contains images ranked 1-5, the next set (Viewpoint 1 in

Supplementary) consisting of images ranked 51-55 and so

on. We then evaluate our proposed system using these sets

of true NN instead of the one obtained using neural repre-

sentations. Table 5 (and Table in Supplementary) shows that

the proposed system has a consistent performance across

wide viewpoint variation in the true NN. This is an indica-

tion that the pipeline is robust to the quality of the nearest

neighbours. They do not necessarily need to be the database

images that have most overlap with the query. On the other

hand, the result also shows that with 7Scenes our choice of

N = 5 might not be the optimal choice. Increasing N will

increase the chances of retrieving the true NN, and the con-

sistent performance across all scenes and viewpoint changes

suggests that the true NN have a higher likelihood of form-

ing a consensus set (c.f . Section 3.2).

6. Conclusion

We addressed some of the challenges and limitations of

the current setup in which machine learning models are

trained and evaluated for camera localization. By leverag-

ing the training images both at training and test time, we

are able to mitigate these limitations and achieve compet-

itive results on challenging datasets. Results demonstrate

that the scope of the proposed system is easily extendable

to scenes without prior training.

As future work, possible directions include training the

network simultaneously with both relative pose and image

similarity objectives [39]. Also, learning a better generic

relative camera pose estimator [35] can improve the gener-

alization performance of the proposed system.
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[26] F. Radenović, G. Tolias, and O. Chum. CNN image retrieval

learns from BoW: Unsupervised fine-tuning with hard exam-

ples. In Proc. ECCV, 2016. 3

[27] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An

efficient alternative to sift or surf. In Proc. ICCV, 2011. 1, 2

[28] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and

M. Pollefeys. Hyperpoints and fine vocabularies for large-

scale location recognition. In Proc. ICCV, 2015. 2

[29] T. Sattler, B. Leibe, and L. Kobbelt. Efficient effective pri-

oritized matching for large-scale image-based localization.

IEEE TPAMI, 2016. 2

[30] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Oku-

tomi, and T. Pajdla. Are Large-Scale 3D Models Really Nec-

essary for Accurate Visual Localization? In Proc. CVPR,

2017. 2

[31] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image

retrieval for image-based localization revisited. In Proc.

BMVC, 2012. 2

[32] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and

A. Fitzgibbon. Scene coordinate regression forests for cam-

era relocalization in RGB-D images. In Proc. CVPR, 2013.

1, 2

[33] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and

A. Fitzgibbon. Scene coordinate regression forests for cam-

era relocalization in RGB-D images. In Proc. CVPR, 2013.

5

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proc. CVPR, 2015. 2

[35] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,

A. Dosovitskiy, and T. Brox. DeMoN: Depth and motion net-

work for learning monocular stereo. In Proc. CVPR, 2017.

3, 8

[36] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi,

and P. H. S. Torr. Exploiting uncertainty in regression forests

for accurate camera relocalization. In Proc. CVPR, 2015. 1,

2

[37] M. Varma and A. Zisserman. Classifying images of materi-

als: Achieving viewpoint and illumination independence. In

Proc. ECCV, 2002. 2

937



[38] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsen-
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