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Abstract

Leveraging on the recent developments in convolutional

neural networks (CNNs), matching dense correspondence

from a stereo pair has been cast as a learning problem, with

performance exceeding traditional approaches. However, it

remains challenging to generate high-quality disparities for

the inherently ill-posed regions. To tackle this problem, we

propose a novel cascade CNN architecture composing of

two stages. The first stage advances the recently proposed

DispNet by equipping it with extra up-convolution modules,

leading to disparity images with more details. The second

stage explicitly rectifies the disparity initialized by the first

stage; it couples with the first-stage and generates resid-

ual signals across multiple scales. The summation of the

outputs from the two stages gives the final disparity. As op-

posed to directly learning the disparity at the second stage,

we show that residual learning provides more effective re-

finement. Moreover, it also benefits the training of the over-

all cascade network. Experimentation shows that our cas-

cade residual learning scheme provides state-of-the-art per-

formance for matching stereo correspondence. By the time

of the submission of this paper, our method ranks first in the

KITTI 2015 stereo benchmark, surpassing the prior works

by a noteworthy margin.

1. Introduction

Dense depth data is indispensable for reconstructing or

understanding a 3D scene. Although active 3D sensors such

as Lidar, ToF, or structured light can be employed, sensing

depth from stereo cameras is typically a more cost-effective

approach. Given a rectified stereo pair, depth can be esti-

mated by matching corresponding pixels on the two images

along the same scan-line. Particularly, for an arbitrary pixel

(x, y) in left image, suppose its correspondence is found at

location (x + d, y) in the right image, we can compute its

depth by f · l/d, where f is the focal length, l is the baseline
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distance, and d is often referred to as disparity. As depth is

inversely proportional to disparity, a stereo matching system

is targeted to produce an accurate dense disparity instead.

Stereo matching is traditionally formulated as a problem

with several stages of optimization. Until recent years with

the developments in convolutional neural networks (CNNs)

[18], it is cast as a learning task. Taking advantages

of the vast available data, correspondence matching with

CNNs achieves considerable gain compared to traditional

approaches in terms of both accuracy and speed. Never-

theless, it is still difficult to find the correct correspondence

at inherently ill-posed regions, such as object occlusions,

repeated patterns, or textureless regions. For a pixel appear-

ing in one image yet occluded in the other, its correspon-

dence cannot be identified; while for repeated patterns and

textureless regions, many potential correspondences exists.

All these issues lead to erroneous disparity estimations.

To alleviate the aforementioned problems, we propose a

cascade residual learning (CRL) framework, composing of

two stages of convolutional neural networks with hour-glass

structure [5, 12]. At the first-stage network, an simple-yet-

nontrivial up-convolution module is introduced to produce

fine-grained disparities, setting up a good starting point for

the residual learning at the second stage. At the second

stage, the disparity is explicitly rectified with the residual

signals produced at multiple scales. It is easier to learn the

residual than to learn the disparity directly, similar to the

mechanism of ResNet [10]. To the extreme where the initial

disparity is already optimal, the second-stage network can

simply generate zero residual to keep the optimality. How-

ever, the building blocks of [10]—residual blocks—are cas-

caded one-by-one, in which the residuals cannot be directly

supervised. Different from [10] and other works along its

line (e.g., [4]), we embed the residual learning mechanism

across multiple scales, where the residuals are explicitly su-

pervised by the difference between the ground-truth dispar-

ity and the initial disparity, leading to superior disparity re-

finement.

The proposed CRL scheme is trained end-to-end, in-

tegrating the traditional pipeline [24] from matching cost
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computation, cost aggregation, disparity optimization, to

disparity refinement by a stack of non-linear layers. The two

stages of CRL boost the performance together and achieve

state-of-the-art stereo matching results. It ranks first in the

KITTI 2015 stereo benchmark [21].

Our paper is structured as follows. We review related

works in Section 2. Then we elaborate our CRL framework

and discuss our network architecture in Section 3. In Sec-

tion 4 and Section 5, experimentation and conclusions are

presented respectively.

2. Related Works

There exist a large body of literature on stereo matching.

We hereby review a few of them, with emphasis placed on

those recent methods employing convolutional neural net-

works (CNNs).

A typical stereo matching algorithm, e.g., [11, 26], con-

sists of four steps [24]: 1) matching cost computation;

2) cost aggregation; 3) disparity optimization (derive the

disparity from the cost volume); and 4) disparity refine-

ment (post-process the disparity). In contrast, CNN-based

approaches estimate disparities reflecting part or all of

the aforementioned four steps. These approaches can be

roughly divided into the three categories.

Matching cost learning: In contrast to hand-crafted

matching cost metrics, such as sum of absolute difference

(SAD), normalized cross correlation (NCC) and Birchfield-

Tomasi cost [1], CNNs are utilized to measure the simi-

larity between image patches. Han et al. [9] presented a

Siamese network called MatchNet, which extracts features

from a pair of patches followed by a decision module for

measuring similarity. Concurrently, Zagoruyko et al. [28]

and Zbontar et al. [29] investigated a series of CNN archi-

tectures for binary classification of pairwise matching and

applied in disparity estimation. In contrast to an indepen-

dent binary classification scheme between image patches,

Luo et al. [19] proposed to learn a probability distribution

over all disparity values. This strategy employs a diverse

set of training samples without concerning about the un-

balanced training samples. Though the data-driven similar-

ity measurements out-perform the traditional hand-crafted

ones, a number of post-processing steps (e.g., steps 2) to 4)

in the traditional stereo matching pipeline) are still neces-

sary for producing compelling results.

Regularity learning: Based on the observation that dis-

parity images are generally piecewise smooth, some exist-

ing works imposes smoothness constraints in the learning

process. Menze et al. [21] applied adaptive smoothness

constraints using texture and edge information for a dense

stereo estimation. By discovering locally inconsistent la-

beled pixels, Gidaris et al. [6] propose the detect, replace,

refine framework. However, discarding unreliable dispari-

ties with new ones results in a wasted computation. Dis-

parity can also be regularized by incorporating with mid-

or high-level vision tasks. For instance, disparity was esti-

mated concurrently by solving the problem of semantic seg-

mentation, e.g., [2, 17, 27]. Guney and Geiger raised Dis-

plets in [8], which utilizes object recognition and semantic

segmentation for finding stereo correspondence.

End-to-end disparity learning: By carefully designing

and supervising the network, a fine disparity is able to be

end-to-end learned with stereo inputs. Mayer et al. [20]

presented a novel approach called DispNet, where an end-

to-end CNN is trained using synthetic stereo pairs. In par-

allel with the proposal of DispNet, similar CNN architec-

tures are also applied to optical flow estimation, leading

to FlowNet [5] and its successor, FlowNet 2.0 [12]. A

very recent method, GC-NET [15], manages to employ con-

textual information with 3D convolutions for learning dis-

parity. For monocular depth estimation, end-to-end semi-

supervised [16] and unsupervised [7] approaches were also

proposed, which connect stereo images with the estimated

disparity and require a very limited amount of training data

that has ground-truth disparity.

Our work belongs to the third category. In spite of the

superior performance of the CNN-based approaches, it re-

mains very challenging to produce accurate disparities at

ill-posed regions. Unlike existing works, we present a cas-

cade residual learning scheme to tackle the aforementioned

problem. Particularly, we adopt a two-stage CNN, in which

the first stage delivers a high-quality initialized disparity

map. After that, the second stage performs further refine-

ment/rectification by producing residual signals across mul-

tiple scales. Our experimentation shows that, the proposed

cascade residual learning scheme provides state-of-the-art

disparity estimates with an acceptable runtime.

3. Cascade Residual Learning

This section illustrates our cascade residual learning

(CRL) scheme in detail.

3.1. Two­stage Disparity Computation

In general, low-level vision tasks, e.g., denoising and de-

blurring, can be improved with post-facto iterative refine-

ment [22], and disparity/flow estimation is no exception [3].

Recently, Ilg et al. [12] introduced FlowNet 2.0, which uses

stacking CNNs for optical flow refinement and achieves rea-

sonable gain. The lessons of the previous works inspire us

to employ a two-stage CNN for disparity estimation.

Akin to the proposal of DispNetC (“C” indicates the net-

work has a correlation layer) [20], the first stage of our CNN

has an hour-glass structure with skip connections. However,

DispNetC outputs disparity image at half the resolution of

the input stereo pair. Differently, our network includes extra

deconvolution modules to magnify the disparity, leading to

disparity estimates at the same size of the input images. We
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Figure 1. Network architecture of our cascade residual learning (CRL) scheme. The first stage is DispFulNet and the second stage is

DispResNet with multiscale residual learning. The module “ 2s ↓” is the downsampling layer to shrink d1 for 2s times, while “Warp”

denotes the warping layer.

call our first stage network DispFulNet (“Ful” means full-

resolution). As shown later in Section 4, our DispFulNet

provides extra details and sharp transitions at object bound-

aries, serving as an ideal starting point for the second-stage

refinement.

Note that in our network, the two stages are cascaded in

a way recommended by [12]. Specifically, the first network

takes as input the stereo pair IL and IR and produces the ini-

tial disparity d1 (of the left image). We then warp the right

image IR according to disparity d1 and obtain a synthesized

left image, i.e.,

ĨL(x, y) = IR(x+ d1(x, y), y). (1)

Then the input to the second network is the concatenation of

IL, IR, d1, ĨL(x, y) and the error eL = |IL− ĨL(x, y)|. The

warping operation is differentiable for bilinear interpolation

[12, 13], hence our network can be trained end-to-end.

3.2. Mutiscale Residual Learning

For the second-stage refinement/rectification, we pro-

pose to adopt the residual learning scheme of He et al. [10].

Particularly, given the initial disparity d1 obtained with the

first stage, the second network outputs the corresponding

residual signal r2, then the new disparity d2 is given by

d1 + r2. In this way, we relieve the “burden” of the second-

stage network, letting it only focus on learning the highly

nonlinear residual. On par with the spirit in [10], in the

extreme case when the first stage already produces the op-

timal disparity, the second-stage network only needs to out-

put zero residual to retain the optimality.

The second-stage of our architecture also takes an hour-

glass structure, producing residual signals across multi-

ple scales. We call our second-stage network DispResNet

(“Res” means residual). In the expanding part of DispRes-

Net, the residuals are produced across several scales. They

are denoted as {r
(s)
2 }Ss=0 where 0 denotes the scale of full

resolution. The summation of r
(s)
2 with the downsampled

disparity d
(s)
1 leads to the new disparity at scale s, i.e.,

d
(s)
2 = d

(s)
1 + r

(s)
2 , 0 ≤ s ≤ S. (2)

To train DispResNet, we supervise the estimated dispari-

ties {d
(s)
2 }Ss=0 across S + 1 scales. Hence, differs from the

off-the-shelf residual block structure proposed in [10], our

network explicitly supervise the residual signals, leading to

effective disparity refinement.

In fact, a straightforward application of FlowNet 2.0 [12]

for disparity estimation is to adopt DispNetS [20]—a varia-

tion of DispNetC without correlation layer and “S” means

simple—to directly learn the disparity. Nevertheless, our

comparisons in Section 4 show that incorporating residual

learning brings more gain than its direct learning coun-

terpart, i.e., DispNetS. Furthermore, residual learning also

benefits the finetuning of the overall network, as it alleviates

the problem of over-fitting [10, 12], while using DispNetS

harms the performance after overall finetuning.

3.3. Network Architecture

Our CRL architecture is illustrated in Fig. 1, where d1 =

d
(0)
1 , and the final disparity output is d

(0)
2 . To obtain the

downsampled disparity images {d
(s)
1 }Ss=0, we have imple-

mented a differentiable bilinear downsampling layer, sim-

ilar to the sampler module in the spatial transformer net-

works [13].

The first stage, DispFulNet, enlarges the half-resolution

disparity estimates of DispNetC [20]. For a concise presen-

tation, the detailed architecture of DispFulNet is not pro-

vided here. In general, it shares similar spirits with Disp-

NetC. Though differently, we append extra up-convolutions

to the last two convolution layers of DispNetC, the output

of the upconvolutions are then concatenated with the left

image. By applying one more convolution (with one output

channel) to the concatenated 3-D array, we arrive at the out-

put of DispFulNet—a full-resolution disparity image. The

full-resolution disparity image, along with the other inter-

mediate disparity images at six different scales, are super-
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Layer K S Channels I O Input Channels

conv1 5 1 13/64 1 1 left+right+left s+err+pr s1

conv2 5 2 64/128 1 2 conv1

conv2 1 3 1 128/128 2 2 conv2

conv3 3 2 128/256 2 4 conv 3 1

conv3 1 3 1 256/256 4 4 conv3

conv4 3 2 256/512 4 8 conv3 1

conv4 1 3 1 512/512 8 8 conv4

conv5 3 2 512/1024 8 16 conv4 1

conv5 1 3 1 1024/1024 16 16 conv5

res 16 3 1 1024/1 16 16 conv5 1

pr s1 16 - - 1/1 1 16 pr s1

pr s2 16 - - 1/1 16 16 pr s1 16+res 16

upconv4 4 2 1024/512 16 8 conv5 1

iconv4 3 1 1025/512 8 8 upconv4+conv4 1+pr s2 16

res 8 3 1 512/1 8 8 iconv4

pr s1 8 - - 1/1 1 8 pr s1

pr s2 8 - - 1/1 8 8 pr s1 8+res 8

upconv3 4 2 512/256 8 4 iconv4

iconv3 3 1 513/256 4 4 upconv3+conv3 1+pr s2 8

res 4 3 1 256/1 4 4 iconv3

pr s1 4 - - 1/1 1 4 pr s1

pr s2 4 - - 1/1 4 4 pr s1 4+res 4

upconv2 4 2 256/128 4 2 iconv3

iconv2 3 1 257/128 2 2 upconv2+conv2 1+pr s2 4

res 2 3 1 128/1 2 2 iconv2

pr s1 2 - - 1/1 1 2 pr s1

pr s2 2 - - 1/1 2 2 pr s1 2+res 2

upconv1 4 2 128/64 2 1 iconv2

res 1 5 1 129/1 1 1 upconv1+conv1+pr s2 2

pr s2 - - 1/1 1 1 pr s1+res 1

Table 1. Detailed architecture of the proposed DispResNet. Lay-

ers with prefix pr s1 are downsampling layers applying on the

predictions of the first stage; while layers with prefix pr s2 are

element-wise summation layers leading to predictions of the sec-

ond stage. K means kernel size, S means stride, and Channels is

the number of input and output channels. I and O are the input and

output downsampling factor relative to the input. The symbol +

means summation for element-wise summation layers; otherwise

it means concatenation.

vised by the ground-truth through computing the ℓ1 loss.

The detailed specification of the second stage, DispRes-

Net, is provided in Table. 1. Note that at a certain scale,

say, 1/4, the bilinear downsampling layer pr s1 4 shrinks

pr s1, the disparity prediction of DispFulNet, by a fac-

tor of 4. The downsampled disparity is then added to the

learned residual res 4 by the element-wise summation

layer pr s2 4, leading to the disparity prediction at scale

1/4. We follow the typical supervised learning paradigm

and compute an ℓ1 loss between the disparity estimate and

the ground-truth disparity at each scale.

One may raise a straightforward question about our de-

sign: if a two-stage cascade architecture performs well, why

not stacking more stages? First, adding more stages trans-

lates to higher computational cost and memory consump-

tion, which is unrealistic for many practical applications.

Second, in this paper, we aim at developing a two-stage net-

work, where the first one manages to produce full-resolution

initializations; while the second stage tries its best to re-

Target Dataset
Training Schedule

Separate Overall

FlyingThings3D 1F-2F 1F-2F-0F

Middlebury 1F-2F 1F-2F-0F

KITTI 1F-1K-2F-2K 1F-1K-2F-2K-0K

Table 2. Training schedules of a two-stage network with differ-

ent target datasets. When overall finetuning is adopted, the whole

network is finetuned on the target dataset at the end.

fine/remedy the initial disparities with residual learning.

The two stages play their own roles and couple with each

other to provide satisfactory results. As to be seen in Sec-

tion 4.3, our two-stage network estimate high-quality dis-

parity images with an acceptable execution time: it takes

0.47 sec with an Nvidia GTX 1080 GPU to obtain a dispar-

ity image in the KITTI 2015 stereo dataset.

4. Experiments

Experimental setup and results are presented in this sec-

tion. To evaluate the effectiveness of our design, we re-

place the two stages of our network with the plain Disp-

NetC and/or DispNetS [20] for comparisons. We also com-

pare our proposal with other state-of-the-art approaches,

e.g., [27, 29].

4.1. Experimental Settings

Datasets: Three publicly available datasets are adopted

for training and testing in this work:

(i) FlyingThings3D [20]: a large scale synthetic dataset

containing more than 22k synthetic stereo pairs for

training and 4k for testing. We found this dataset

has a few images with unreasonably large disparities

(e.g., greater than 103), therefore we perform a simple

screening on this dataset before using it. Particularly,

for a disparity image, if more than 25% of its disparity

values are greater than 300, this disparity image (and

the corresponding stereo pair) is removed.

(ii) Middlebury 2014 [23]: a small dataset capturing var-

ious high-resolution in-door scenes, which has 23

stereo pairs with given ground-truth. We only use this

dataset for testing.

(iii) KITTI 2015 [21]: a real-world dataset with dynamic

street views from the perspective of a driving car. It

provides 200 stereo pairs with sparse ground-truth dis-

parities and 200 pairs for evaluation through its online

leaderboard. Similar to the practice in [6], we divide

its training set into a training split and a validation

split, where the training split occupies 85% of the data

and the validation split occupies the rest.
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Architecture Dataset

Stage 1 Stage 2
FlyingThings3D Middlebury 2014 KITTI 2015

Separate Overall Separate Overall Separate Overall

DispNetC - 1.84 9.67 - - 1.95 15.42 - - 0.77 3.16 - -

DispNetC DispNetS 1.74 7.98 1.77 9.04 1.94 14.72 1.96 14.91 0.75 2.71 0.78 2.82

DispNetC DispResNet 1.63 7.76 1.60 7.67 1.86 14.69 1.88 14.71 0.72 2.66 0.71 2.63

DispFulNet - 1.75 8.61 - - 1.73 12.82 - - 0.73 2.41 - -

DispFulNet DispNetS 1.51 6.93 1.53 7.09 1.52 9.69 1.51 10.04 0.72 2.29 0.73 2.33

DispFulNet DispResNet 1.35 6.34 1.32 6.20 1.46 9.35 1.40 9.13 0.69 2.12 0.68 2.10

Table 3. Comparisons of our CRL architecture (DispFulNet+DispResNet) with other similar networks. In each cell, the corresponding

endpoint-error (EPE) and three-pixel-error (3PE) are presented, respectively.

Training: The Caffe framework [14] is used to imple-

ment our CRL scheme. Generally speaking, we first train

the DispFulNet, then by fixing its weights, the DispResNet

is trained. After that, we optionally finetune the overall net-

work. Depending on the targeting dataset for testing, dif-

ferent training schedules are employed. For presentation,

we hereby encode every training schedule with a string. A

segment of such string contains two characters ND, meaning

that stage N is trained on dataset D, with stage 0 denotes the

whole network. For instance, 1F-1K means the first stage

is trained on the FlyingThings3D, then it is finetuned on

KITTI. The training schedules for the three datasets are pre-

sented in Table. 2. Note that the networks trained for Fly-

ingThings3D are directly applied on the Middlebury data

(at the quarter scale).

We adopt a batch size of 4 when training the first or the

second stage, and a batch size of 2 when finetuning the over-

all network due to limited GPU memory. We employ the pa-

rameters provided in [20] when training the first stage or the

second stage on the FlyingThings3D dataset. During fine-

tuning, we train the model for 200 K iterations; however,

when the target dataset is KITTI 2015, we only optimize

for 100 K iterations to lessen the problem of over-fitting.

Since some of the ground-truth disparities are not available

for the KITTI dataset, we neglect them when computing the

ℓ1 loss.

Testing: We test our networks on the aforementioned

datasets, with two widely used metrics for evaluation:

(i) Endpoint-error (EPE): the average Euclidean distance

between the estimated disparity and the ground-truth.

(ii) Three-pixel-error (3PE): computes the percentage of

pixels with endpoint error more than 3. We call it

three-pixel-error in this work.

4.2. Architecture Comparisons

We first compare our design with several similar net-

work architectures. Particularly, we use either DispNetC

or DispFulNet as the first-stage network; while at the sec-

ond stage, we use either DispNetS (with direct learning) or

DispResNet (with residual learning) for improving the dis-

parity estimates. The plain DispNetC and DispFulNet (with

only one stage) are also considered in our evaluation. For

DispNetC, we adopted the model released by Dosovitskiy et

al. [5]; while DispFulNet are trained in a similar manner as

that in [5] (e.g., with multi-scale loss functions). During

the training process, we follow the schedules shown in Ta-

ble 2, hence 20 different network models are obtained for

comparisons.

Objective performance of the networks on the three

datasets are presented in Table. 3. We have the following

observations:

(i) Using our DispFulNet as the first stage provides

higher accuracy compared to DispNetC.

(ii) Though appending a second-stage network improves

the results, our DispResNet bring extra gain compared

to DispNetS (the propposal in [12]).

(iii) When DispNetS is served as the second stage, the per-

formance deteriorates after overall finetuning, in ac-

cordance with [12]. In contrast, when DispResNet is

used, overall optimization further improves the perfor-

mance in most cases (except for Middlebury which

is not used for training). From [10], that is because

learning the residual is less easy to over-fit the train-

ing data, making the network more stable for overall

optimization.

As a whole, our CRL scheme (DispFulNet+DispResNet)

with overall finetuning achieves the best objective qualities

in all the three datasets. In the following, we use this net-

work model for further comparisons.

Fig. 2 shows the outputs of our CRL scheme and its

first stage, DispFulNet, as well as their absolute differences

between the ground-truth disparities. The three rows are

segments taken from the FlyingThings3D, Middlebury and

KITTI datasets, respectively. We see that not only the dis-

parities at object boundaries are greatly improved by the

second-stage (DispResNet), some of the occlusion and tex-

tureless regions are also rectified. For instance, the regions
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Metric SGM
SPS-

St

MC-

CNN-fst
DispNetC CRL

EPE 4.50 3.98 3.79 1.84 1.32

3PE 12.54 12.84 13.70 9.67 6.20

Table 4. Objective performance of our work (CRL), along with

those of the competing methods on the FlyingThings3D dataset.

within the red boxes (on the ground-truth) are corrected by

DispResNet.

Fig. 3 shows the disparity estimates of three differ-

ent two-stage networks: DispNetC+DispNetS (akin to the

proposal of [12]), DispNetC+DispResNet, and DispFul-

Net+DispResNet (our CRL), where DispNetC+DispNetS

uses the model with separate training while Dip-

sNetC+DispResNet uses the model after overall finetuning.

Again, the three rows are segments taken from the Fly-

ingThings3D, Middlebury and KITTI datasets, respectively.

We see that, firstly, the proposed CRL provides sharpest

disparity estimates among the three architectures, with the

help of its first stage, DispFulNet. Furthermore, incorpo-

rating residual learning in the second stage produces high-

quality disparities for ill-posed regions. Note the disparity

estimates within the red boxes are progressively improved

from DispNetC+DispNetS and DispNetC+DispResNet, to

CRL.

4.3. Comparisons with Other Methods

In this experiment, we compare the proposed CRL to

several state-of-the-art stereo matching algorithms. For a

fair comparison, the Middlebury dataset is not adopted in

this experiment as its amount of data is insufficient for fine-

tuning our end-to-end network.

FlyingThings3D: Since our method only takes 0.47 sec-

ond to process a stereo pair in the KITTI 2015 dataset, for

a fair comparison, we hereby consider three efficient yet

effective methods (with code publicly available), includ-

ing SPS-St [27], MC-CNN-fst [29], and DispNetC [20]. We

also employ the classic semi-global matching (SGM) algo-

rithm [11] as the baseline. Note that to compare with MC-

CNN-fst, we train its network for 14 epochs, with a dataset

containing 17 million samples extracted from the FlyingTh-

ings3D.

Performance of the proposed CRL, along with those of

the competing methods, are presented in Table. 4. Again,

we see that our approach provides the best performance

in terms of both evaluation metrics. In Fig. 4, we show

some visual results of different approaches on the FlyingTh-

ings3D dataset, note that our CRL provides very sharp dis-

parity estimates. Besides, our method is the only one that

can generate the fine details within the red boxes.

KITTI 2015 dataset: Instead of using the training split

mentioned in Section 4.1, we have also trained our network

on all available training data of KITTI 2015 and submit-

ted our results to its online leaderboard. Table 5 shows the

leading submission results reported by the KITTI website,

where only the three-pixel-error (3PE) values are available.

In the table, “All” means all pixels are taken into account

when computing 3PE, while “Noc” means only the non-

occluded pixels are taken into account. The three columns

“D1-bg,” “D1-fg” and “D1-all” means the 3PE of the back-

ground, the foreground and the all the estimates. As can

be seen, our method ranks first in the online leaderboard.

Particularly, our overall 3PE is 2.67%, while the second

method, GC-NET [15], has a 3PE of 2.87%; however, our

runtime is only about half of that of GC-NET. Visual results

are not included here for conciseness, we recommend the

readers go to the KITTI website [21] for more details.

4.4. Discussions

Existing end-to-end CNNs for stereo matching, e.g., [15,

20] and this work, all relies on a vast amount of training

data with ground-truth. However, it is costly to collect depth

data in the real physical world; while synthetic data, e.g., the

FlyingThings3D dataset, cannot fully reflects the properties

of the real environment.

A potential solution to the above dilemma is to borrow

the wisdom from traditional approaches and embed the left-

right consistency check module into the CNNs. As men-

tioned in Section 2, it is explored by [7, 16] for monoc-

ular depth estimation, leading to unsupervised (or semi-

supervised) method requiring (very) little amount of data

with ground-truth. However, recent end-to-end CNN-based

approaches already produces very accurate disparity esti-

mates, in contrast to the case of monocular depth estima-

tion. As a result, any new mechanisms (e.g., left-right con-

sistency check in this case) introduced to the networks need

to be very reliable/robust, otherwise further improvements

cannot be achieved. We leave this problem of designing

robust left-right consistency check module for future inves-

tigation.

5. Conclusions

Recent works employing CNNs for stereo matching have

achieved prominent performance. Nevertheless, estimat-

ing high-quality disparity for inherently ill-posed regions

remains intractable. In this work, we propose a cascade

CNN architecture with two stages: the first stage manages

to produce an initial disparity image with fine details, while

the second stage explicitly refines/rectifies the initial dis-

parity with residual signals across multiple scales. We call

our approach cascade residual learning. Our experiments

show that, residual learning not only provides effective re-

finement but also benefits the optimization of the whole

two-stage network. Our approach achieves state-of-the-art

stereo matching performance, it ranks first in the KITTI
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Left image Ground-truth disparity First-stage output Second-stage output First-stage error Second-stage error

Figure 2. Visual comparisons between the first-stage output by DispFulNet and the second-stage output by the whole CRL scheme (Disp-

FulNet+DispResNet). Note that the regions within the red boxes are corrected by DispResNet.

Left image Ground-truth disparity DispNetC+DispNetS DispNetC+DispResNet CRL

Figure 3. Comparisons of three two-stage network architectures. Our proposed CRL deliveries sharpest and finest disparity images. Also

note the regions bounded by the red boxes in different disparity images.
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Left image Ground truth disparity MC-CNN-fst DispNetC CRL

Figure 4. Visual results of the proposed CRL, accompanied with those of the competing methods, on the FlyingThings3D dataset. Our

method is the only one that successfully estimates the details within the red boxes.

Methods
All Noc

Runtime (sec)D1-bg D1-fg D1-all D1-bg D1-fg D1-all

CRL (Ours) 2.48 3.59 2.67 2.32 3.12 2.45 0.47

GC-NET [15] 2.21 6.16 2.87 2.02 5.58 2.61 0.9

DRR [6] 2.58 6.04 3.16 2.34 4.87 2.76 0.4

L-ResMatch [25] 2.72 6.95 3.42 2.35 5.74 2.91 48*

Displets v2 [8] 3.00 5.56 3.43 2.73 4.95 3.09 265*

D3DNet 2.88 6.60 3.50 2.71 6.08 3.26 0.35

SsSMNet 2.86 7.12 3.57 2.63 6.26 3.23 0.8

Table 5. Leading submissions of the KITTI 2015 stereo online leaderboard (as of August 2017). Three-pixel-error of our approach and the

other state-of-the-art methods are tabulated, where our approach ranks first. The symbol “*” denotes runtime on CPU.

2015 stereo benchmark, exceeding the prior works by a

noteworthy margin.
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