This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Vision-as-Inverse-Graphics:
Obtaining a Rich 3D Explanation of a Scene from a Single Image

Lukasz Romaszko'

Christopher K.I. Williams'*
ISchool of Informatics, University of Edinburgh, UK

lukasz.romaszko@gmail.com,

Pol Moreno' Pushmeet Kohli**
The Alan Turing Institute, UK *DeepMind

c.k.i.williams@ed.ac.uk

p.moreno-comellas@sms.ed.ac.uk, pushmeet@google.com

Abstract

We develop an inverse graphics approach to the problem
of scene understanding, obtaining a rich representation that
includes descriptions of the objects in the scene and their
spatial layout, as well as global latent variables like the
camera parameters and lighting. The framework’s stages
include object detection, the prediction of the camera and
lighting variables, and prediction of object-specific variables
(shape, appearance and pose). This acts like the encoder
of an autoencoder, with graphics rendering as the decoder.
Importantly the scene representation is interpretable and
is of variable dimension to match the detected number of
objects plus the global variables. For the prediction of the
camera latent variables we introduce a novel architecture
termed Probabilistic HoughNets (PHNs), which provides a
principled approach to combining information from multiple
detections. We demonstrate the quality of the reconstructions
obtained quantitatively on synthetic data, and qualitatively
on real scenes.

1. Introduction

Our goal in this paper is the classic computer vision task
of scene understanding, by which we mean obtaining a rep-
resentation that includes descriptions of the objects in the
scene (shape, appearance and pose) and their spatial layout,
as well as global factors like the camera parameters and light-
ing. This work is carried out in a vision-as-inverse-graphics
(VIG) or analysis-by-synthesis framework, where we seek
to reconstruct the input image by using a graphics engine
to render the scene description output by the analysis stage.
Analysis-by-synthesis is an old idea (see e.g. [8, 9]) but it
can be reinvigorated using recent advances in deep learning
for the analysis stages.

Our work is summarised in Fig. 1. Object detectors (stage
A) are run over the input image, producing a set of detections.

* This work was carried out when PK was at Microsoft Research.

We then predict the scene latent variables, consisting of the
camera parameters (stage B), object descriptions (stage C)
and global parameters (stage D), and back-project objects
into the scene given the predicted camera (stage E). To solve
the problem of inferring the camera parameters we introduce
a novel Probabilistic HoughNets (PHNs) architecture, which
carries out a principled integration of information from mul-
tiple object detections. The scene latent variables can then be
rendered by a graphics engine to produce a predicted image,
and by optimizing them the match to the input image can be
refined iteratively.

One highly attractive aspect of the VIG framework is that
it produces a compact and interpretable representation of
the scene in terms of an arbitrary number of objects. Such a
representation can be useful e.g. if we wish to edit/modify ob-
jects in the scene. Much recent work on unsupervised learn-
ing of images such as the variational autoencoder [13, 20]
or the generative adversarial network (GAN) [7] use a fixed
dimensional representation of the image in the latent code.
This is reasonable for encoding a single object, although it
is also helpful to disentangle factors of variation like shape,
appearance and pose. However, such fixed dimensional rep-
resentations are much more problematic for a whole scene.
Our target representation is a scene graph (see e.g. [2, sec.
9.8]) as used in computer graphics for describing a scene
in terms of objects as well as lighting and cameras etc. (for
instance X3D' is a modern format for scene graphs). The
stages in Fig. 1 act like the encoder of an autoencoder, with
the decoder being graphics rendering.

Our contributions are as follows: (i) we develop a VIG-
based framework to the problem of scene understanding in
3D from a single image, i.e. predicting the camera and illu-
mination as well as the 3D pose of each object—this is to be
contrasted with methods that simply predict 2D image-based
bounding boxes or pixel labelling; (ii) we develop accurate
recognition models trained on latent variables of realistic
synthetic images in a way that they transfer to work with

"https://en.wikipedia.org/wiki/X3D

851

Input Detected

image

Heat-maps

Input image

Multiple
objects

objects (C) Object
a™w 4 variables 4 ““‘“’!lil
Single object ‘j&\“\“ B i

(D), Global
- s’ latent = [-
ki h 4 variables

(E)

Camera
latent
variables

-.5“v

Back-projected objects
in a 3D scene

Figure 1. Overview: (A) Objects are detected in the image (green dots: contact points), which jointly predict the camera parameters (B)
using PHNs. Then (C) object latent variables and (D) global parameters (e.g. lighting) are predicted. These allow back-projection of the

objects into the scene (E), and iterative refinement.

real images; (iii) we consider the camera estimation problem
in a novel manner, where given a set of object detections
in an image, we seek to estimate the camera parameters by
combining information from all of the detections — previ-
ous VIG camera-estimation approaches for multiple objects
considered only a restricted problem with fixed camera ele-
vation and distance relative to the ground plane; (iv) we in-
troduce PHNs—a coherent and robust probabilistic method
for combining predictions from multiple voting elements
which represent the predictions using a mixture of Gaussians
(not bins), and make these predictions with a deep neural
network.

2. Methods

We first introduce Probabilistic HoughNets and their use
for estimating the camera parameters in sec. 2.1, as per
label B in Fig. 1. In sec. 2.2 we describe the networks
used for object detection (label A) and the prediction of
object-specific (label C) and global (label D) latent variables.
Eventually, we present how we obtain the final 3D scene
representation (label E).

2.1. Probabilistic HoughNets

We introduce Probabilistic HoughNets (PHNs) in order
to combine information from a number of voting elements”.
Our primary example below is the estimation of the camera
parameters z based on detections of multiple objects {x;}
in a scene. Each voting element ¢ has a local descriptor
x;, and provides evidence via a mixture of Gaussians in the
Hough space for the instantiation parameters z. With Hough
transforms, the predictions of a voting element can lie (in the

2We use the terminology from [4].

noise-free case) on a low-dimensional manifold in Hough
space. When noise is present the manifold is “fuzzed out” in
the remaining dimensions. In our case a 1D manifold arises
from the trade-off between the distance of an object from the
camera and the camera’s focal length (or zoom) in creating
an object image of a given size. Each detection provides one
such manifold and by intersecting them (probabilistically)
we reduce the uncertainty on the camera parameters.

The Hough transform (HT) is a classic computer vision
algorithm dating back to 1962 [10]. It was originally pro-
posed for detecting lines, but was then generalized [3] to
arbitrary templates. Let the set of voting elements {x;} be
denoted by X. Stephens [23] pointed out how the HT can
be made probabilistic by writing

p(z|X) = © (z;f%m = 2 [Tnexle),)

assuming that the x;’s are conditionally independent given
z. By taking logs of this equation Stephens shows how
terms involving log p(x;|z) can be added up, mirroring the
standard Hough space accumulator. If x is high dimensional
(e.g. an image patch) and z is low dimensional it makes more
sense to model p(z|x;) rather than p(x;|z). Applying Bayes’
theorem again to eq. 1 we obtain

p(2] X) o Hp—(§9<Ix>

ignoring terms involving p(X) or p(x;) which are fixed
given the image evidence. This argument in eq. 2 was given
in [1, §3.5] and [4]. An important aspect of the Hough
transform is the ability to deal with outliers; in the frame-
work above this can be handled by robustification, replacing

; 2

852

(1,0, 21) (22,0, 22)

(A)

o max

(R RRRRRRRRRR

(B) ©)

Figure 2. Camera parameters and PHNs: (A) camera set-up where z = (o, h, w); (B) Probabilistic HoughNets framework. A CNN is given
the detected patch for each object, the input to a PHN is its last dense layer plus position (z, y) of the image patch and size s (projection
scale) of the object. Here the density plots represent predictions in (v, h)-space conditioned on wj; the dots are Gaussian means, ellipses

show standard deviations; (C) combining multiple PHNs.

p(z|x;) in eq. 2 with yp(z|x;) + (1 — v)p(z) for v € [0, 1],
where p(z) is a broad prior over z-space.

The Probabilistic HoughNet represents p(z|x;) using a
mixture of Gaussians with the means {p,} arranged in a
grid in Hough space:

p(zlx;) = Zﬂj(xi)N(zmjvE)v 3)

where j is an index over the grid, and the §;(x;)’s are x-
dependent mixing coefficients. These are implemented by
using a softmax layer at the output of a deep neural network,
as in a mixture of experts [! 1], but where only the mixing
proportions but not the pt;’s or 3 depend on x. We train
the neural network by maximising the log-likelihood of the
ground-truth instantiation parameters given a voting element.

If the Hough space dimension d is high and there are NV
components per dimension in the grid, then the softmax layer
will have N¢ outputs parameterized by a large number of
weights, which could lead to overfitting. In this case one can
make use of the chain rule, e.g. splitting z into z; U z9 and
then writing p(z|x;) = p(z1|x;)p(2z2|21, X;). In this fashion
the exponential scaling of the softmax outputs with d can be
mitigated.

The outputs from eq. 3 are combined as per eq. 2, and
inference is carried out by seeking the mode of log p(z|X)
by using BFGS hill-climbing search from each Gaussian
centre that has a mixing coefficient larger than a threshold.
Instead of using a grid in Hough space as in eq. 2 it would be
possible to use a more general mixture of experts framework
where the p1;’s and respective covariance matrices depend on
the input; this would likely require fewer experts but would
make the PHN more complex and difficult to train.

Our setup is as shown in Fig. 2. Panel (A) shows the
camera with unknown parameters z. Panel (B) illustrates
how each of the detections is fed to a PHN in order to make
predictions in the Hough space, represented as a mixture of
Gaussians; these predictions are then combined (panel C) to
give a final predictive distribution for z.

Computation of the Joint Posterior: The density p(z|X)
in eq. 2 is a product of several densities that include a Gaus-
sian Mixture Model (GMM). Although a product of two
GMMs is still a GMM, the resulting product cannot be com-
puted directly (even for only a few observations) due to the
exponential scaling of the number of components. In the
PHNs framework the whole computation given the terms
obtained from single PHNs is exact. We maintain the func-
tions p(z|x;) and p(z), and do not create the mixture with
O(N9™) components explicitly. For each observation i we
obtain p(z|x;) from a PHN and we store associated GMM co-
efficients. We can then evaluate the function at any point and
obtain the gradient using Automatic-Differentiation (AD).
The derivative is with respect to only d variables, so it is
quick to compute by AD. The gradient may be also used for
efficient sampling, such as Hamiltonian Monte Carlo [18].

Related work for Hough transforms: We have already
described several works related to Hough transforms above.
In addition, [6] used random forests to predict (in our no-
tation) p(z|x;), and were able to obtain good results for
problems of object detection, tracking and action detection.
Their method makes predictions in Hough space for each
x; as a set of Gaussians at x;-dependent locations, and then
uses a probabilistically incorrect method of summing the
predictive densities (rather than their logs); as explained
in [1, §3.5] this can be seen as an approximation due to
robustification.

Camera parameterization: We use PHNs as per eq. 2 to
find the most likely camera configuration. The camera model
has both intrinsic and extrinsic parameters. The extrinsics
are the translation and rotation of the camera; we assume
that the objects lie on the (z, z) plane, and that the camera
is at height y = h above the origin. This is valid as we wish
to estimate object poses relative to the camera. The camera
rotation is as shown in Fig. 2A, with the camera looking at

853

the ground plane at angle of elevation «. For the intrinsics,
we assume that the camera coordinate frame is centred on
the principal point, and the scaling factors m; and me in
pixels/m on the detector are known, so the parameter to be
determined is the focal length f, or equivalently the angle
of view (AoV) w, which are related by f = a¢/(2tanw/2),
where ag is the known sensor size. Thus z = (a, h,w).

2.2. Scene Explanation

Detector: We use a sliding window approach to pro-
duce candidate detections which are sparsified using non-
maximum suppression (NMS). The detector is trained to
predict whether a particular object class is present at a given
location. A positive patch is centered on the projection of
the contact point of the object on the plane. The detector
is also trained to predict the object projection scale (how
large an object is in the image frame). It was crucial to train
the detector so it does not activate for other object classes
or noisy background in real images, therefore a half of the
training dataset consists of random negative patches from
real images. The training dataset also contains negative
patches where an object is actually present but its contact
point is above some distance from the centre. In this way we
force the detector to have a local maximum where the object
is centered. The output probability map of the detector is
thresholded, and finally, NMS is carried out to produce a set
of object detections.

Object and global predictor networks: These models
predict the scene latent variables (LVs). The global variables
are illumination parameters and base plane colour. The
plane colour predictor takes the whole image as input. The
object LVs are the shape (1-of-K), azimuthal rotation and
colour (albedo). The object predictor networks are applied
individually to each detected object patch.

We use softmax output for classification and sigmoid for
regression as all our latent variables are bounded. For rota-
tions we predict the sine and cosine of the angle. Illumination
is predicted by making lighting predictions for each detected
object, and then combining these by taking medians across
the detections. This worked better than providing whole im-
ages as input; we believe that providing the detections allows
cues from shadows and shading to be used more effectively.

Scene graph, back-projection and iterative refinement:
The outputs of the above stages are assembled into a scene
graph. As the scenes we study contain only certain types of
object and lighting efc, the output of our analysis can be ex-
pressed in terms of a domain specific scene graph language.

The detected objects are back-projected into a 3D scene
given the predicted camera to obtain the 3D positions of
objects. Using the object appearances, the plane appearance
and the illumination LVs we can then render the scene, and

refine the fit iteratively. To do so we use a renderer’ based
on OpenDR: Differentiable Renderer [6], extended to sim-
plify rendering multiple textured objects and to use modern
OpenGL functionality (i.e. shaders) when rendering. We
compute the match between the actual and rendered images
using a robustified Gaussian likelihood model, as in [17, eq.
3]. The derivatives of the likelihood computed by OpenDR
are fed to a nonlinear conjugate gradient optimizer®.

3. Related Work for Scene Understanding

As discussed above, VIG is an old idea which can be
reinvigorated using recent advances in deep learning in the
analysis stages. Below we describe some recent work and
how it relates to our paper. Perhaps the most closely re-
lated work to ours is that on Neural Scene De-rendering
(NSD [24]). The authors consider scenes comprised of ei-
ther 2D sprite type objects, or simplified 3D objects (from
the Minecraft game) with 12 object types with fixed shapes
and appearances. However, note that their background scene
(green grass and blue sky) is fixed, as are the camera param-
eters and the lighting. Also their predictions are made only
for the cartoon scenes, not real images.

Another related work is the Attend, Infer, Repeat (AIR)
network of Eslami et al [5], which describes the scene in
terms of a number of attentional fixations. One issue with
the AIR network is that it uses a LSTM-based recurrent net-
work to direct the fixations, but this means that a sequential
framework is used to select an unordered set of object de-
tections. Most of the AIR work is on 2D scenes, but the
authors do provide a demonstration of the AIR network on
a simple “tabletop” scene, where different object types and
the background have fixed and unique colours, the width of
input image is only 32 pixels, where the camera is always
at fixed distance and elevation relative the ground plane.
Recent work by Ren and Zemel [19] also makes use of a
LSTM-based recurrent network to direct fixations, and ad-
ditionally includes a segmentation network for determining
segmentation masks of the detected objects. However, they
are operating in a ‘“2.1D” setting (layered occlusions of flat
leaves), and so do not face the issues of inferring the camera
or dealing with 3D geometry. Other related work in the VIG
space includes Picture [14], the deep convolutional inverse
graphics network (DC-IGN) [15], and [25, 17]. These meth-
ods incorporate “recognition network” type components for
predicting latent variables given an image, but these papers
only study inference for a single object rather than a scene
containing multiple objects.

3https://github.com/polmorenoc/inversegraphics
“http://learning.eng.cam.ac.uk/carl/code/minimize/

854

4. Experimental setup

Stochastic Scene Generator: We create realistic syn-
thetic scenes to train our recognition models. The train-
ing dataset consists of 35k objects in Tk images. For each
image we sample the global parameters and a number of
objects from the mug object class which lie on a table-top
type plane. These are rendered using Blender at 256 x 256
resolution. Background images are taken from the NYU
Depth V2 dataset [21]. We sample the camera AoV and then
height and elevation uniformly in the appropriate ranges:
w € [20°,60°], a € [0°,90°], h € [0, 150] cm. Illumination
is represented as uniform lighting plus a directional source,
with the strength of the uniform light € [0, 1], the strength
of the directional light € [0, 3], and the azimuth € [0°, 360°]
and elevation € [0°,90°] of the rotation of the directional
light. Object colours are sampled uniformly in RGB space.

To sample a scene we first select a target number of ob-
jects (up to 7). We then sample the camera parameters and
the plane colour. Objects are added sequentially to the scene,
and a new object is accepted if at least a half of it is present
in the image, it does not intersect other objects, and is not
occluded by more than 50%. If is is not possible to place
the target number of objects in the scene (e.g. when a cam-
era is pointing downwards from a low height) we reject the
scene. For each object we sample its shape (one of 15 mug
shapes from ShapeNet’), size (diameter chosen randomly
in [8.0,10.4]cm), colour and rotation, and also a random
texture in such a way that it creates a pattern but the colour
is maintained. Some examples are given in Figure 5 and
Figure 7.

Once the object detector network is trained, we obtain a
derived dataset of the true positive detected patches, which
incorporates translation errors made during the detection
step. For each detection the closest object within a fixed
range is assigned, along with the corresponding object LVs.
This range is set to 24 pixels; the average size of an object’s
bounding box is 42 x 45 pixels, so this is about half the spatial
size of the object. We then use this dataset for training the
PHNs and predictor models.

PHNs: The size of the grid where GMM means are located
that represent (v, h,w)-space is N, Ny N, = 9 x 15 x 10,
a total of 1350 components. The space between components
are (Aq, Ap, A,) = (10°,10cm, 4°). The parameter v of
the robust model was set to 0.50 and the prior is uniform in
the Hough space.

We represent the camera LVs as mixture of Gaussians
in 3D space, which allows us to illustrate how PHNs can
handle complex or multimodal distributions. In our case
we decompose the PHN using the chain rule (see sec. 2.1)
into two PHNs: H; predicts p(«, h|x;, w), as a GMM with

Shttps://www.shapenet.org/

means located in the grid of centres of size N, Ny, and Hy
predicts p(w|x;) with a grid of size N,,. The covariance
matrix of the Gaussians for H; is 31 = f2diag(A2, A?),
and o = 3?A2 for Ha, with 8 = 0.6.

Evaluation using Re-Projection Error: In addition to
average log-likelihood, we evaluate our camera calibration
using the re-projection error at the MAP prediction. This
task is carried out by placing a known object (often a checker-
board) with a set of K 3D points in the scene at a known
location, and comparing the actual locations of these points
in the image to those predicted by the estimated projection
matrix. Since we know the projection matrix of both ground-
truth camera, P9¢, and of the predicted camera, P, we can
place a checkerboard (virtually) in the scene, namely in the
front of the view of a maximum size that fits the ground-truth
image. Thus we know the exact positions of the grid-points
in the world coordinates, W. We also know the projection
of the grid-points in the image frame using the ground-truth
camera, w9 = P9'W and the ones obtained using the
camera predicted by PHNs, w = PW. The re-projection
error is simply the RMSE of a deviation of the checkerboard
grid-points in both images where w9t and W are fixed, i.e.:

K
1
E(P) = % > fwe = w2, 4)
k=1

Core details of the networks: All CNNs are based on the
VGG-16 network [22] except for those that predict colour,
which are a standard 3-layer CNN. Our main recognition
networks are based on VGG-16 network and were optimised
on a validation dataset. The networks use all 13 convolu-
tional layers of VGG for 128 x 128 input, but without the
last two max-pooling layers in order to be more spatially
accurate, resulting in an output of size 512 x 16 x 16. We
then train three convolutional layers with 50 filters each of
a size 512/50/50 x 6 x 6. We found this configuration to
work the best amongst different CNN architectures. This
leads to a CNN output with a feature map with a single entry
per feature map. Then we use this representation as an input
to fully connected layers. Since the predictor and PHNs
networks take as input the detections, we also concatenate
this representation with (z, y, s) of a patch (see Figure 2B).
We train all the layers on top of the VGG; this decreases sig-
nificantly the number of trainable weights to approximately
1 million for each of the main networks (detector and PHNs
networks, object shape predictor), and 0.4 million for the
rest of VGG-based predictor networks. Networks are trained
by SGD with Adam optimisation algorithm [12]. We found
the fanh activation in all the layers on top of VGG to be
superior to other activations for all the recognition models.
The supplement presents more details.

855

Case Evaluation metric Baseline = CNN Single-PHNs Multi-PHNs Multi better

D Log-likelihood —9.51 —8.36 —7.65 —6.18 94%
Re-projection error 9.62 4.95 3.85 241 91%

3D Log-likelihood —13.20 —12.79 —11.33 —10.18 77 %
Re-projection error 9.62 5.64 491 3.30 86 %

Table 1. Results: average log-likelihood and re-projection error for Baseline, CNN, single-PHNs and Multi-PHNs. Re-projection error is
given in % of the image width. The last column shows for each evaluation metric the percentage of images where PHNs predictions after
observing multiple detections are better than the average of single PHN predictions.

5. Results

Figure 3. Input image, reconstructed 3D scene and a different view
of it. Due to the interpretable representation, one could easily edit
the scene, e.g. change object positions or their colors.

We perform a quantitative evaluation of all components
on a synthetic test set of two hundred images containing 1k
objects for which we know all latent variables. Note we
evaluate camera pose, accuracy in object detection and each
object latent variable separately, so each aspect of the scene
reconstruction is assessed, as we are interested in the correct
underlying scene interpretation. We first perform an in-depth
evaluation of PHNs for two cases, when either the AoV is
known (‘2D case’) or unknown (‘3D case’). Next we eval-
uate the predictions of the global and object-specific latent
variables. Finally, we evaluate the prediction qualitatively
for real images, showing that all modules are able to transfer
to real images. Figure 3 shows an example of an inferred
scene representation.

Camera: A single PHN predicts z as a mixture of Gaus-
sians: to make a point prediction we find the maximum a
posteriori (MAP) value. The MAP z-value obtained from
combining multiple detections (Multi-PHNs) is found simi-
larly (see sec. 2.1).

We evaluate the quality via the average predictive log-
likelihood, and through the average re-projection error. Ta-
ble 1 shows the results; for log likelihood a higher value is
better, while for re-projection error lower is better. For the
Single-PHNs column the result is averaged over all detec-
tions in a scene, as well as over scenes. As a simple baseline
(‘Baseline’) we use the prior density p(z), and the mean of
z on the training set as a point estimate.

Standard approaches for camera pose estimation use ei-
ther known objects (e.g. checkerboards) or exploit structure

10 99
005 6
a 0 80

10 99
30
10 50 g o 55
a 80 gy 60

90 60
Figure 4. Examples of prediction for the 3D case («, h, w). The left
plot in each pair shows a randomly selected example of a prediction
for a single observation, the right plot shows the joint density with
multiple observations. The ground-truth is denoted by a green ball
located at the intersection of green guiding-lines. The magenta
ball is the MAP. The density is represented as a 3D Hinton plot:
the space is divided into voxels and each cube lies in the centre of
a given voxel. The cube volume and color-coding represents the
amount of the density mass within a single voxel.

like the vanishing points of lines in the scene, but these are
not available in our scenes. To prove that object-based PHN's
are superior to standard CNNs, as a non-trivial comparison
we use a CNN predictor which takes the whole image as in-
put and predicts z. This is based on the VGG-16 architecture
using the same configuration of all the hidden layers as the
PHN network, where there are sigmoid outputs (scaled to
match the Hough space size) for each camera LV. We use
the predicted values to evaluate the Re-projection error. To
evaluate the log-likelihood, for this CNN p(z|X) is mod-
elled as a full covariance Gaussian in 2D/3D, robustified by
including a term (1 — y)p(z) (as in sec. 2.1) to avoid paying

856

Single 2 _Single 3 Single 1 Single 2 _Single 3
d 1 1B
Sigle s Siosle 2 ~Multi
P P
Single 2, Sglel _Siogle2 Siogled
o . e O
Single 4, Multi Single 4 i
" L T
e) S

Figure 5. Four examples of PHNs prediction; the density sub-plots are in the (camera elevation, camera height)-space. Each density sub-plot
is the prediction for a single observation, apart from the bottom-right sub-plot, which shows the joint density of the multiple observations.
The ground-truth is denoted by a green circle, the MAP by a magenta circle. In the bottom-left example note that the outlying prediction
‘Single 1’ (due to a false positive detection of an object) does not corrupt the final result, due to the outlier model.

Mlumination

Ground plane colour

100

Azimuthal rotation Object colour

100

[ONN

»

E Bascline I Bascline

Percentage

Percentage

I3

(.’UU lpllll

0.05

0.10

0.05

0.10
MSE

0.15 0.15
MSE

I CONN

[CNN
I Bascline

=3 x

Percentage

20!

20

40060 80 100 120 140 160 18

Error [degrees]

0.05

0.10
MSE

0.15

Figure 6. Histograms of the errors in the latent variables.

a high penalty for outliers.

For both the 2D and 3D cases PHNs clearly make bet-
ter predictions after observing multiple detections. Even a
Single-PHN that processes a single detection outperforms
the CNN method that takes as input the whole image. The
re-projection error (3D) is 4.91 (Single-PHN) vs 5.64 (CNN),
and is significantly lower given all the detections (3.30).

Figure 5 shows four example scenes, single object predic-
tions in the 2D Hough space, and the Multi-PHNs prediction
(bottom right in each panel). Notice that in the Multi-PHNs
plots the uncertainty has significantly decreased compared
to single observation plots, so the model works as desired.
The same happens for the 3D case as density plots in Figure
4 show. Even in the cases of lower likelihood, the MAP is
very close to the ground-truth, which is confirmed by the
Multi-PHNSs re-projection error that is on average a third
lower than Single-PHNss.

Detector: Our detector has 98% precision at 93% recall,
using a radius of 24 pixels for detections (as described above).
The inclusion of real image patches in the training dataset
significantly decreased false positive detections in the back-
ground by around one order of magnitude. Our detector
is very precise, giving an average translation error of the
objects of only 1.2% of the image width in x and 1.5% in y

direction, this is several times less than the usual size of a
mug (see Figures 1A and 5).

Global LVs: The error metric of the ground plane colour
(albedo) is the mean square error (MSE) of colour (a,b)
components in the Lab space.® The baseline is the mean
intensity of each colour channel in the training set. The light-
ing is projected onto a sphere, scaled so that the difference
between maximal and no illumination is unity, and errors
are computed by MSE. For illumination we use a baseline
that minimizes the error containing both uniform illumina-
tion and directional illumination from the top, at optimal
strengths.

Object LVs: For azimuthal rotation we measure the abso-
lute angular difference between the prediction and ground
truth, but with wrap-around, so the maximum error is 180°.
The baseline is a fixed rotation angle chosen to mimimize
the error. We evaluate the object colour in the same way as
for global LVs above. For object shape prediction we make
a 1-of-K classification (K = 15).

Results are given for the global LVs and object LVs in
Table 2 and Table 3. Figure 6 shows histograms of the errors

Shttps://en.wikipedia.org/wiki/Lab_color_space

857

Predicted scene After refinement

Input image

Input image Predicted scene After refinement

Figure 7. Results on synthetic (top row) and real scenes (middle, bottom). For each example the input image, predicted 3D scene, and result

after iterative refinement are shown (left to right).

Global LVs Baseline CNN
Illumination 0.084 0.025
Colour 0.054 0.005

Table 2. Global latent variables: median errors.

Object LVs Baseline CNN
Azimuthal rotation 91° 22°
Colour 0.049 0.005

Table 3. Object latent variables: median errors.

in the latent variables for both the baseline (red) and CNN
(green predictors). For illumination and object azimuth the
median results are more than 3 times better than the baseline,
and for the plane and object colours almost 10 better. For
object shape classification the accuracy is 31.6%, compared
to 6.7% of a random choice. This is a good result as often it
is difficult to distinguish particular shapes, e.g. when a mug
is viewed from the top, or is far away.

Scene understanding — qualitative results: In Fig. 7 we
show results on both synthetic (top row) and real scenes
(middle and bottom rows). We note that our methods work
well on real images, despite not having been trained on them.
The mugs are generally predicted well in location, azimuth
and colour, and the camera parameters and lighting are in
good agreement with the input image. The iterative refine-
ment (rightmost panels of each example) mainly improves
the colours of the objects. In (e) the directional light source

is detected properly. In the cluttered scene (f) all mugs are
detected properly except one. More examples are in the
supplement.

6. Discussion

Above we have shown how to successfully put all of
the components together to create an interpretable scene-
graph representation of a 3D scene from a single image, by
accurately predicting the camera parameters using PHNs,
and global and object-based latent variables using CNNs.
Our results show the advantages of the PHNs formulation
using object detections over a deep VGG-16 based CNN that
takes the whole image as input. The framework has been
shown to work on both real and synthetic images.

There are a wide variety of extensions that we are cur-
rently exploring, including the use of more object classes,
and richer models of shape and appearance for each object
class. In this case PHNs can easily be extended to take the
predicted class variable as input.

Acknowledgements

LR was supported by Microsoft Research through its PhD
Scholarship Programme. The work of CW was supported
in part by The Alan Turing Institute under the EPSRC grant
EP/N510129/1.

858

References

(1]

(2]

(3]

(4]

(5]

(6]

[7

—

(8]
(9]
(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

M. Allan and C. K. I. Williams. Object Localization using
the Generative Template of Features. Computer Vision and
Image Understanding, 113:824-838, 2009. 2, 3

E. Angel. Interactive Computer Graphics. Addison Wesley,
third edition, 2003. 1

D. H. Ballard. Generalizing the Hough transform to detect
arbitrary shapes. Pattern Recognition, 13(2):111-122, 1981.
2

O. Barinova, V. Lempitsky, and P. Kohli. On detection of
multiple object instances using Hough transforms. [EEE
Trans. Pattern Analysis and Machine Intelligence, 34(9):1773—
1784,2012. 2

S. M. A. Esalmi, N. Heess, T. Weber, Y. Tassa,
K. Kavukcuoglu, and G. E. Hinton. Attend, Infer, Repeat:
Fast Scene Understanding with Generative Models. In Ad-
vances in Neural Information Processing Systems 29, pages
3225-3233, 2016. 4

J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky.
Hough forests for object detection, tracking, and action recog-
nition. [EEE Trans. PAMI, 33(11):2188-2202, 2011. 3

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
adversarial nets. In Advances in Neural Information Process-
ing Systems 27, pages 2672-2680. 2014. 1

U. Grenander. Lectures in Pattern Theory: Vol. 1 Pattern
Synthesis. Springer-Verlag, 1976. 1

U. Grenander. Lectures in Pattern Theory: Vol. 2 Pattern
Analysis. Springer-Verlag, 1978. 1

P. V. C. Hough. Method and means for recognizing complex
patterns. U.S. Patent 3069654, 1962. 2

R. A. Jacobs, M. 1. Jordan, S. J. Nowlan, and G. E. Hinton.
Adaptive Mixtures of Local Experts. Neural Computation,
3:79-87,1991. 3

D. P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. CoRR, 2014. 5

D. P. Kingma and M. Welling. Auto-Encoding Variational
Bayes. In ICLR, 2014. 1

T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mansinghka.
Picture: A probabilistic programming language for scene
perception. In Proc CVPR, pages 4390—4399, 2015. 4

T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. B. Tenenbaum.
Deep convolutional inverse graphics network. In Advances in
Neural Information Processing Systems 28, 2015. 4

M. M. Loper and M. J. Black. OpenDR: An Approximate
Differentiable Renderer. In Computer Vision—-ECCV 2014,
pages 154-169. Springer, 2014. 4

P. Moreno, C. K. I. Williams, C. Nash, and P. Kohli. Over-
coming Occlusion with Inverse Graphics. In Computer Vision-
ECCV 2016 Workshops Proceedings Part 111, pages 170-185.
Springer, 2016. LNCS 9915. 4

R. M. Neal. MCMC using Hamiltonian dynamics. Handbook
of Markov Chain Monte Carlo, 54:113-162, 2010. 3

M. Ren and R. S. Zemel. End-to-End Instance Segmenta-
tion and Counting with Recurrent Attention. arXiv preprint
arXiv:1605.09410, 2016. 4

(20]

(21]

(22]

(23]

(24]

[25]

859

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
Backpropagation and Approximate Inference in Deep Gener-
ative Models. In ICML, 2014. 1

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
Segmentation and Support Inference from RGBD Images. In
ECCV,2012. 5

K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Interna-
tional Conference on Learning Representations (ICLR), 2015.
5

R. S. Stephens. A probabilistic approach to the Hough Trans-
form. In Proceedings of the British Machine Vision Confer-
ence, (BMVC), pages 1-6, 1990. 2

J. Wu, J. B. Tenenbaum, and P. Kohli. Neural Scene De-
rendering. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 4

I. Yildirim, T. D. Kulkarni, W. A. Freiwald, and J. B. Tenen-
baum. Efficient analysis-by-synthesis in vision: A compu-
tational framework, behavioral tests, and comparison with
neural representations. In Thirty-Seventh Annual Conference
of the Cognitive Science Society, 2015. 4

