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Abstract

Deep Reinforcement learning enables autonomous
robots to learn large repertories of behavioral skill with
minimal human intervention. However, the applications
of direct deep reinforcement learning have been restricted.
For complicated robotic systems, these limitations result
from high dimensional action space, high freedom of robotic
system and high correlation between images. In this pa-
per we introduce a new definition of action space and pro-
pose a double-task deep Q-Network with multiple views
(DMDQN) based on double-DQN and dueling-DON. For
extension, we define multi-task model for more complex
jobs. Moreover data augment policy is applied, which in-
cludes auto-sampling and action-overturn. The exploration
policy is formed when DMDQN and data augment are com-
bined. For robotic system’s steady exploration, we designed
the safety constraints according to working condition. Our
experiments show that our double-task DON with multiple
views performs better than the single-task and single-view
model. Combining our DMDQN and data augment, the
robotic system can reach the object in an exploration way.

1. Introduction

Reinforcement learning methods have been applied to
a wide range of robotic tasks from locomotion [6} [1]] to
manipulation [12] [4]] and autonomous vehicle con-
trol [3]. Recently deep learning performs well in image
classification and object detection especially from [7], and
researchers focus on changing the architecture of neural
network to tackle different tasks, [ [10]. For exam-
ple, [14] extended single neural network with synthesis-
loss function to complete double-task. proposed deep
Q-learning which combined Q-learning with deep learn-
ing to play Atari and to matched human performance.
developed DQN to dueling-DQN and double-DQN
based on [I1]] to reduce overestimation and split state-
action value function into state value function and ac-
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tion advance value function. Deep reinforcement learning
has become the most promising candidate algorithm for
robotic auto-manipulation, because reinforcement learning
equipped with convolutional neural network uses the raw
pixels of images instead of robot’s joint parameters.

[8] applied DQN in robotic manipulation and proposed
an idea which converts search policy into supervised learn-
ing. [2] developed a way to reduce training time by paral-
lelizing the algorithm across multiple robots. defined a
reward and terminate function for robotic system. But all of
them used relatively simple robotic system. Moreover they
defined the joint angles as action space and obtained the
state information with single view angle. In practice, more
complicated robotic systems have been applied for special
propose, which indicates that it is difficult to use joint an-
gles as action space of reinforcement learning due to high
dimensional action space with continuous action values. In
addition, using single camera can’t describe the current state
of robotic system and results in a high correlation coeffi-
cient between current state and next state.

In this paper, we define a new kind of discrete action
space which uses target coordinate and pose angle of end-
effector instead of joint angles to remedy the high dimen-
sional action space. According to the definition of action
space, we propose double-task Deep Q-Network with Mul-
tiple views, DMDQN, an off-policy and model-free control
policy, based on double-DQN and dueling-DQN, as Figure
[l showed.

Figure 1. The architecture of DMDQN.

1050



Double-DQN can tackle overestimations of the original
DQN, and dueling-DQN is able to estimate the state value
and each action-advance value. The double-task neural net-
work shares the hyper parameter of convolutional layers, in-
volving estimating state-coordinate action values and state-
radian action values. Furthermore the double-task model
can be extended to multiple tasks for more sophisticated
works. To tackle the high correlation between images, we
apply multi-view strategy which uses multiple cameras to
sample from different view angles. Before being fed to neu-
ral network the frames are added random noise. Consider-
ing the dataset’s covering a narrow part of the state space
and absence of some actions, we develop a data augment
policy including auto-sampling and action-overturn to up-
date the replay memory. The auto-sampling policy requires
only small dataset to pre-train our DMDQN and updates the
replay memory through training and exploring repeatedly,
and the action-overturn can double the replay memory with-
out increasing required RAM. Combining DMDQN with
data augment, the robotic system is able to explore the en-
vironment to attempt to complete the prior task effectively.
We equipped the safety constraints to our algorithm system
for steady exploration . In our experiments, the double-
task model with multiple views performers better in a ex-
ploration way and the action-overturn can determinate what
the terminate state of robotic system is.

Here we introduce the structure of this paper. In Section
we describe and formulate the original deep Q-learning
and import two research achievements, double-DQN and
dueling DQN in detail. In section [3] we expatiate our al-
gorithm system, DMDQN, including the definition of ac-
tion space in Section [3.1] and the architecture of DMDQN
in Section [3.2] In Section [3.3] the training policy, reward
and terminate function is described in details. Data aug-
ment policy in Section[3.4]is equipped to the training policy,
which can update the replay memory while training. In Sec-
tion ] we did some experiments to testify our algorithm.
In section 4.1} we compared performances of the double-
task model to single-task model, while multi-view policy
and single-view policy were compared in section In
Section[4.3] the models using the data augment and without
it were put into comparison. In Section[5] we draw conclu-
sions about our algorithm system and described the further
research about the deep reinforcement learning in robotic
system. We summarize our major contributions as follows:

(1) We propose a new definition of action space of robotic
system and a new architecture of DQN which we
named as a double-task Deep Q-Network with Mul-
tiple views, DMDQN;

(2) We combine DMDQN with data augment as a explo-
ration policy to train the DMDQN while updating the
replay memory and we design safety constraints for
steady propose.

2. Background

In this section, we will formulate current robotic rein-
forcement learning problem and describe the existing algo-
rithmic foundations on which we build our DMDQN based.
The goal of reinforcement learning is to control an agent
attempting to maximize reward function after executing an
action which, in the context of robotic skills, denotes a user-
provided definition of what robot should try to accomplish.
The DQN, a topical example of DRL, satisfies both the au-
tonomy and flexibility requirements for learning from ex-
ploration. It successfully learnt to play 49 different Atari
2600 games, achieving a human-level of control [11]. The
DQN uses deep convolutional neural network to approxi-
mate state-action values which is defined by inputing raw
pixels of frames, receiving rewards and outputting state-
action value.

In robotic grasping system domain, for example, agent
perceives images s; consisting of M image frames: s; =
{4,120, 13,4, Lat, - - ., Ing,i } at state step t and chooses an
action from a discrete set a; € A = {1,...,|A|} and ob-
serves next state s;,1 and reward signal r, according to the
distance from the end-effector of robotic system to the ob-
ject in grasping task.

The agent seeks to maximize the expected discounted
return, where the discounted return is defined as R; =
2, 4" try. In this formulation y € [0,1] is discount
factor that trades off the importance of immediate and fu-
ture rewards. The goal is to find the optimal policy which
maximizes the expected sum of returns from initial state
distribution. And the state-value function and state func-
tion are defined as Q™ (s,a) = E[R¢|sy = s,ar = a, 7]
and V7™ (s) = Equr(s)[Q7 (s, a)] respectively. The preced-
ing state-action value function (@) function for short) can be
computed recursively with dynamic programming:

Qﬂ (Sa a) = Es’ [T + ’YE(Z/NTF(S') [Qﬂ (Slv a,)} |57 a, 7T] (l)

Such value iteration algorithms coverage to the optimal
action-value function, Q™ — @Q* as ¢ — oo. [11] built two
networks named as target-network and Q-network, which
have the same architecture and update target-network with
Q-network every t training steps. A Q-network is trained
by minimizing the loss functions L;(6;) = Es qr[(yi —
Q(s,al;))]* where y; = Eg.c[r + ymaxy Q(s', a[0)]
(0; is the hyper-parameter of Q-network, 6’ is the hyper-
parameter of target-network). The loss function is differen-
tiated with respect to the hyper-parameter and optimized by
stochastic gradient descent as follows:

VGiLi (91) = Es,awﬂ;s’we[(’r + 'ymaxa/Q (3/7 alwl) -
Q(87 a 91)) vGi Q(Sa a’|91)]

2)

But the application of direct deep Q-learning so far has
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been limited due to its overestimation of state-action val-
ues and inability to estimate the state value. [17, [16] de-
veloped DQN to dueling DQN and double DQN respec-
tively. Dueling DQN splits the state-action value function
into state value function and action-advance value function.
And double-DQN can tackle overestimation of state-action
value function.

The dueling architecture consists of two streams that rep-
resent the state value and action-advance value, sharing a
common convolutional feature learning module. It’s lower
layers are convolutional as in the original DQN’s. However,
the following convolutional is two sequence (or streams) of
fully connected layers instead of a single sequence stream,
which are constructed such that they have the capability
of estimating state value function and action-advance value
function. Finally, these two streams are combined to pro-
duce a single output Q function for each action as follows:

Q(s,al0,a, B) =V (5|0, 8) + (A(s,alf, a)—
1
A Z A(s,d'],a) @)

a’ €A

And the training policy of dueling network is the same
as the original DQN’s.

The double DQN defines a new training policy instead
of changing the architecture of the original DQN. The max
operator in standard Q-learning and DQN uses the same
values to select and evaluate an action and makes it more
likely to select overestimated values, resulting in overopti-
mistic value estimates. To prevent this phenomenon, [16]
proposed double Q-learning as follows:

" = 1y +9Q (5141 arg max,Q(set1, alf;)|6;) (4)

The selection of action, in the argmazx, is still due to the
hyper-parameter 6; of the Q-network. This means that, in
Q-learning, we are still estimating the value of the greedy
policy according to the current value defined by 6;. How-
ever, [16] used the hyper-parameter 0; of target-network to
fairly evaluate the value of this policy. The target-network
is updated every 7 steps as the original DQN does.

3. DMDQN
3.1. Action space

[2, [18]] defined action space according to joint an-
gles, which indicates the algorithms control robotic sys-
tem through changing the joint-angles. But in complicated
robotic system, Figure[2] shows the structure of robotic sys-
tem, it is hard to control joint angles precisely, the rela-
tion of joint-angles is not arbitrary, which implies the joint-
angles is dependent. If defining the action space through
joint-angles, we must build constraint model and solve it

accordingly which undoubtedly increases the complexity of
our algorithm.

Figure 2. The structure of Joints of the robotic system: A: Base,
B: Shoulder, C: Elbow and D, F, E: Wrist 1, 2, 3.

Our robotic system offers auto-movement policy which
auto-builds stationary Cartesian Coordinate and we only
need input the target coordinate (x¢,y:,2:) and pose an-
gle (Rxy, Ry, Rz;) of end-effector to the robotic system
then it moves to the target state automatically and safely.
In order to make full use of it, we discretize the continu-
ous space (coordinate and radian) to state point and the dis-
crete distance is coordinate_step and radian_step which
can be set on the basis of working condition of robotic sys-
tem. In three-dimensional system of coordinate, each axis
has three candidate state {—1,0, 1} (—1: negative direction;
0: no change; 1: positive direction). So we can get the next
state(coordinate and radian) as follows:

Tiy1 = Xt + coordinate_step x dx
Yi+1 = Yt + coordinate_step * dy %)

Zi41 = 2 + coordinate_step x dz

Rzxiy1 = Rxy 4+ radian_step x dRx
Ry, 1 = Ry, + radian_step x dRy (6)
Rzi11 = Rz + radian_step x dRz

(dz, dy, dz) and (dRzx, dRy, dRz) are the offset state of co-
ordinate and radian respectively, dz, dy, dz, dRx, dRy,
dRz € {-1,0,1}.

The action spaces of coordinate and radian respectively
have 27 candidate states. As Figure [3] shows the central
point (red point) is the current state and the others are the
candidate state.

3.2. DMDQN architecture

Due to the limits of DQN and it’s variants mentioned
above, this paper developed a double-task DQN with Mul-
tiple views. Recently most of reinforcement learning al-
gorithms, such as [2| [18], based on computer vision ap-
plied in controlling robotic system, employ single camera,
which leads to high correlation coefficient between current
state and next state, because single camera is not enough
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Figure 3. The red point is the current state, the others are the can-
didate states

to describe the current state of robotic system. Therefore
in our robotic system we employ multi-view policy. Multi-
camera with different observation angles records the pro-
cess of robotic system reaching the object. In practice we
used four cameras to sample data from four different direc-
tions. Figure[shows our robotic system equipped with four
cameras.

Figure 4. The left is overlook about our robotic system. The right
shows the position and observation of the four cameras

Although we define 27 candidate state action for coor-
dinate and radian respectively, how to combine the action
spaces of coordinate and radian is still of great deal. Gen-
erally, we combine them by multiply operation, generating
729 (27%27) candidate actions, which increases the compu-
tation of fully connected layers and the difficulty of training
tremendously.

In convolutional network, convolutional layers aim to ex-
tract feature of images and state-action values are computed
in the fully connected layers. So we constructed a double-
task structure with sharing the hyper-parameters of convo-
lutional layers.

In the DMDQN algorithm, as Figure [I] shows, four im-
ages from four different cameras is fed to the neural net-
works. At the end of network, there are two sets of fully
connected layers, coordinate and radian respectively, which
have the same structures but different hyper-parameters.
The single network maps the raw pixels images to the state-
action values of coordinate and radian respectively. We can
execute argmax operator to choose coordinate-action and
radian-action.

3.3. Training Detail

To ease the training, the dataset, /N experience tuples,
is loaded to the replay memory. In training iteration, the
stochastic mini-batch from the relay memory, which con-
tains {St’ St+15 Qcoor,ts Tcoor,ts Arad,ts Trad,ts tt} is fed to
the neural network. The uniform sampling from the replay
memory gives equal importance to all transition in the re-
play memory. s; and s, containing four channels which
are generated respectively by four cameras with different vi-
sual angle, refer to the current state and next state of robotic
SYStem; Gcoor,t> Arad,r denote executing the action of coor-
dinate and radian in state s;; T'coor.t, 'rad,: refer to feedback
from robotic system after executing Gcoor,: and arqq.¢; t
denote whether s; is terminate state.

Our DMDQN uses double-task which maps the state of
robotic system to the action of coordinate and radian, based
on double-DQN and dueling-DQN. In the following de-
scription about our training detail, the actions mentioned
below both include the coordinate action and radian action.

S¢4+1 is fed to the Q-network and the maximum state-
action value is selected as follows:

a/coor,t+1 = argmax Qcoor,q (5t+17 acoorler)

a;ad,t—i-l = argmax QT’ad,q (st+1a arad‘ar)

)

And s;4; is input to the target-network and the
state-action  value  Qcoor target (St+15 Groor¢+1107) and

Qrad,target(5t+1, a;ad,tJrl |97—) are choosen.
Then target values of Q-network is generated

/ / /
Y coor = Tcoort + 7Qcoor,target(5t+lv a’coor,t+l|0 )

(3)
y/rad = Trad,t + ’YQTad,taTget(St-i-h a';ad,t-t,-l |0/)
And the prediction value of  Q-network,
Qcoor,q(8t7 acoor,t|97) and Qrad,q(st7 arad,t|67'), iS
computed

We generate loss functions of coordinate and radian and
synthesis-loss function, « is the loss coefficient

Lcoor (97) = [(y/coor - Qcoor,q (Sta aCOO'I’,t|0T) ]2
Lrad (97) = [(y/rad - Qrad,q (Sty arad,t|97'))]2

L (97') - aLcoor (07') + (1 - a)Lcoor (97') (10)

The synthesis-loss function is differentiated with respect
to the hyper-parameter and optimized by stochastic gradient
descent.

In reinforcement learning, the agent obtains a feedback
and terminate signal from the environment after executing
an action. The feedback in context of a robotic skill is a
user-provided definition of what the task is.In reaching ob-
ject domain, the distance to the terminate state can be com-
puted easily, because each state information can be obtained
from the robotic system. Some tricks about the reward and

9
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terminate function were tried to our algorithm system, such
as the distance directly, the functions with respect to the
distance and so on. Finally we equipped the DMDQN with
Algorithm [T}

Algorithm 1 Reward and terminate algorithm (Coordinate
and Radian respectively)

1: for Sequence j = 1, S do
2 for State i = 1,7 do o
3 Dis] = ComputerDistance(P;, Py
4 DisChange=Dis — PreviousDis

—1 DisChange > 0

5: Rg = 0 DisChange =0
1 DisChange <0

6: R.=R!+R, ,+R _,+R_,

7: if R, < 0 then

8: t{ =1

9: else

10: t] =0

11: end if

12:  end for

13: end for

3.4. Data augment and safety constraints

In our robotic system, we sampled dataset through con-
trolling VR/AR device. Due to personal error, some trou-
ble might happen, for example, changing the position of the
object during sampling and the unstable velocity of robotic
system lead to wrong dataset. In addition the dataset sam-
pled artificially only covers a narrow part of the state space
and several actions are absent. In reinforcement learning,
the algorithm should allow the robot to explore the environ-
ment to finish special task and update the experience. In this
section we present our data augment policy including auto-
sampling and action-overturn. In practice we combine our
DMDQN with data augment policy to form an exploration
policy of robotic system, described as Algorithm

We trained our DMDQN using small data set gener-
ated by individual controlling VR/AR device, which we
named as pre-training. Then we applied the pre-trained
model to control the robotic system to update the experi-
ence of robotic system, and the DMDQN is fine-tuned by
the updated replay memory in return. Finally, the two pro-
cesses continue repetitively until the distribution of the Q-
network’s hyper parameter changes slightly.

The histogram of action demonstrates that in replay
memory the distribution of action space focuses on a few
specific actions and some action did not appear during the
entire replay memory because robotic system reached the
object toward specific direction. So the replay memory is
incomplete owing to the imbalance distribution of action
histogram even the absence of several actions. According

to our definition of action space, half of the actions is in
the same line but opposite direction for example Oth and
26th, 14th and 12th, as Figure [5] shows. So we proposed
action-overturn policy to balance the distribution of action.
We swapped the current state s, and the next state s;.1, and
changed the reward and action to —r; and 27 — a;.

z
® o ®
/O/ o 14 O/
/
° 4
Lv
10 @=— @16
13
2,® Y
O
-
A

x,
Figure 5. 10th and 16th, 22th and 4th, 12th and 14th are both in
the same lines but opposite directions

In practice we sampled mini-batch, {s, Si41, @coor s
Qrad,ts Tcoort> Trad,t> t+} from replay memory uniformly
at random and generated a random number which indicates
whether using action-overturn. If the random number is
greater than 0.5 we swap the sampled mini-batch to {s:;1,
St, 27 = eoor,ts 27 — Qrad,t» —Tcoor,t> —Trad,ts tt}~ Figure
[6] shows the distribution of action. After using the action-
overturn policy, it can be seen that the distribution of action
is balanced partically.

action_hist_action action_hist_action_overturn

Figure 6. The left is the distribution without action-overturn. The
right is generated by action-overturn

To make robotic system able to tackle task in an explo-
ration way, we proposed a exploration policy combining
the DMDQN and data augment, which trains the DMDQN
while updating the replay memory. Every test_internval
iterations of training, we applied the trained Q-network
model of DMDQN to control the robotic system to explore
environment to reach object while updating the replay mem-
ory. At each state the reward and terminate function is com-
puted until terminate signal is received.

Our double-task DQN based on dueling DQN and dou-
ble DQN with multiple views, using replay memory and
data augment, updates 6, by stochastic gradient descent and
the entire pseudocode of the exploration policy as Algo-
rithm 2] shows.
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Algorithm 2 double-task DQN with Multiple views using
replay memory and data augment
1: Load dataset to replay memory
2: Initialize action-value function Q.00 and Q.,..q Wwith
random hyper-parameter 6
3: Initialize target action value function QCOOT and de
with ' =0
4: for episode = 1, M do
5 for train = 1, T" do
6: Sample from replay memory using action-
7
8
9

overturn and get e; =
{5t7 St4+15 Qcoor,ts Arad,ts Tcoor,ts Trad,ts tt}

/
: Select agy. 141 = arg max Qcoor,q (8415 Acoor|0)
10: and

11: a;ad7t+1 =arg max Qrad,q(St+1, @radld)
12: Set
Tcoor,t ifty =1
13: y(/:‘OOT t— TCOOT,t—’_ :
’ ’YQcoor,target' otherwise
(St+1’ a::oor,t-&-l ‘9/)
14: and
Trad,t if tt =1
/ Tra,d,t+
1> Iradt =\ 4Q ad target- otherwise
(8t+1, afr‘ad,t-&-l 0')
16: Perform a gradient descent step on o0 (#) and
17: L,q4(0) with respect to the network parameters
18: 0
19: Synthesis-loss function «aL.oor(0) + (1 — a)
20: Leoor(0) and update 6 by stochastic gradient
21: descent
22: Every C steps reset §/ = 6

23:  end for

24:  Execute action-value function with current parame-
ter 6

25:  for test iteration j = 1, P do

26: Initialize robotic system position

27: while ¢/ # 0 do

28: Get current state sg € {Iii, Iii, Igﬂ., Iii}
29: Select and execute ‘

30: @ pori = ATEMAX Qcoor g (575 Geoor|0) and
31: @)og; = AEMAX Qrad (5], aradl0)

32: Execute security detection function and get
33: security coefficient CY

34: if Cf > threshold value then

35: Pass

36: else

37: Break

38: end if ‘ _ ‘ ‘

39: Calculate rioom, rﬁad’i, t] and store s,

40: aioom-, aia a.; in the replay memory and disk
41: end while

42:  end for

43: end for

Ensuring safe exploration poses a significant challenge
for DMDQN and data augment, due to robotic system’s
working different environmental conditions. In our robotic
system, we proposed a set of safety constraints and set an in-
terface for special purpose. we set a maximum commanded
velocity to allow per joint as well as strict position limits
for each joint. In addition to joint limits, we used a bound-
ing sphere for the end-effector position to avoid the end-
effector to crash other joints. Our safety constraints are safe
enough to ensure robotic system exploring steadily. How-
ever they are strict and restrict the motion space of end-
effector. Much proper safety constraints should be studied
further.

4. Experiments and Results

To evaluate the feasibility of the DQN-based system,
DMDQN algorithm and data augment policy in learning tar-
get reaching, we did some experiments in both simulation
and real-world scenario. In these experiments, our double
tasks model was able to train large neural network using the
DQN-based system and stochastic gradient in stable man-
ner. And we compared our results with the best performing
methods from the RL literature. The experiments consist of
some parts as follows:

(1) Comparison of double tasks DQN with multiple views
and single task DQN with multiple views during train-
ing and testing;

(2) Comparison of double tasks DQN with multiple views
and double tasks DQN with single view in simulation
and real world,;

(3) Comparison of the model using the data augment and
the model without data augment.

To ensure the experiment (1) and (2) working effectively,
we used VR/AR device to control the robotic system to
sample dataset which satisfies the DMDQN and DQN algo-
rithm. We sampled 1500 sequences, each of which recorded
the robotic system from initial position to terminate posi-
tion. And every sequence of the dataset includes about 600
states of our robotic system. As mentioned above, each state
contains four images from four different cameras. So we
prepared about 4 million images which indicated 1million
states about the robotic system for replay memory. Before
being fed into the neural network, all of the images will be
resized from 160 x 320 to 84 x 84 and added random noise
on each image.

In our experiments, we used the RM S P Prop algorithm
with mini-batch of size 32. And discount factor of v = 0.99
and the loss coefficient of & = 0.6 with the base learning
rate of either 0.0001 or 0.001 were used for all the exper-
iments. The behavior policy during auto-sampling was e-
greedy with e annealed linearly from 1 to 0.1 over the first
million frames, and fixed at 0.1 thereafter. We trained all
of million states and used a replay memory of one million
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most recent states.
4.1. double tasks vs single task

The content in this section is to compare double tasks
DQN with multiple views and single task DQN with mul-
tiple views. We used the dataset to train our double-task
model and single-task model respectively, then the trained
models were applied to complete the reaching target. Fig-
ure [I] and Figure [7] show the architectures of double-task
and single-task model respectively. In this experiment, the
coordinate task is used to our single-task model.

e (Coordinate)

M e
R

NN
I

Figure 7. The single-task DQN model.

NS
'\\

i& M =&

After training the double-task model and the single-task
model respectively, we used the trained models to control
our robotic system for thousands of episodes. Figure [§]
shows the terminate states of one of testing episode. In
double-task model, the coordinate and the pose angle of
end-effector can be adjusted. However in single-task model,
the reaching task is determined by it’s initial pose angle
which is fixed all the time. In our experiment, the model
with multiple tasks reached object at 98.6% of the average
rate of success compared with 74.2% using signal task

Figure 8. The left one used the double-task model and the right
one used the single-task model

Our experiment proves that in the robotic system, we can
design the double-task model according to the structure of
system and the special tasks. We can define multiple action
spaces to work together effectively. Meanwhile, the multi-
task model can reduce the computation of the neural net-
work. Figure [9] shows the multi-task more than two tasks.

And the multi-task model is not only suit for the DQN-
based algorithm but also for other reinforcement learning
method.

e

Figure 9. The architecture of the Multi-task DQN with multiple
views.

4.2. multiple views vs single view

To compare the performance of multiple views and sin-
gle view, we did several experiments. In this section, we
used four observation angles together and the four observa-
tion angle respectively to feed the DMDQN. So there were
five sets of experiment named as A, B, C, D, E.

Experiment A used the multi-view setting; Experiment
B, C, D, E used the single-view settings respectively. The
observation angles of B, C, D, E are (45°, 90°,135°), (90°,
90°, 180°), (135°,90°, 135°), (90°, 45°, 135°) respectively.
Figure [T0] shows the image used to train Experiment B, C,
D, E is from the left to the right respectively. And Experi-

ment A used all of them as training data.

Figure 10. The images from left to right were used by Experiment
B, C, D, E respectively

We used the corresponding images to train the DMDQN
respectively and used the trained policy to control robotic
system to complete the reaching target. We trained the five
models for 7 days using Tesla GPU. Table [I] shows the re-
sults of five experiments. After training these models, we
used them to control robotic system from initial position to
terminate position for 10000 times. As the result implies,
Experiment A achieves the highest score, 98.6%, in five
experiments.Compared with Experiment A, Experiment C
gets score 97.5%, competitive with Experiment A. Experi-
ment B and D have similar scores, 85.4% and 86.8% due to
symmetrical views. While Experiment E has obvious differ-
ence to the others because the data used to train the neural
network is the third image in Figure [T0} not containing the
end-effector and losing most of information. These sets of
experiments indicate that the view angle right above robot
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acquire most of state information, and other three view an-
gle provide auxiliary information.

Table 1. The average rate of success of five experiments.

Experiment ID \ View angle \ The rate of success
All. of the 98.6%
following angles
B (45°,90°,135°) 85.4%
C (90°,90°,180°) 97.5%
D (135°,90°,135°) 86.8%
E (90°,45°, 135°) 47.3%

4.3. data augment vs without data augment

As mentioned above, the data augment policy including
action-overturn and auto-sampling is equipped with our al-
gorithm system. In the deep reinforcement learning, the re-
play memory is updated by exploring instead of sampling
artificially. To consider this the data augment policy is de-
veloped.

In this section, we analyze our experiment below
to explain the effectiveness of data augment, especially
the action-overturn. In this experiment, we trained the
DMDQN using the action-overturn mentioned above and
without it respectively until the loss function changes
slightly. The two trained models controlled robotic system
to reach the object for thousands of episodes and we an-
alyze the distribution of the coordinate-action and radian-
action. As Figure @ shows, the distribution of action can
reflect the dataset in some way during exploring.The action-
overturn can remedy the non-uniform distribution of the re-
play memory partially. Furthermore, the model trained us-
ing the action-overturn can generate the terminate signal in
appropriate position effectively and the other model control
the robotic system to unsafe state as Figure [I2]shows. Due
to the action-overturn policy, the model is able to determine
whether the current state is the terminate state.

Figure 11. The left and the right is the distribution of using the
action-overturn and without action-overturn respectively

During testing, we also noticed even equipped with data
augment, the exploration policy controlled the robot to an
unsafe position. The safety constraints mentioned above
endow the system able to detect potential danger and initial-
ize the position. However the imperfect safety constraints
limit the space of exploration of the robotic system, thus

Figure 12. The left state was generated without action-overturn.
The right is obtained using it

the safety constraints will be further studied. In our contrast
experiment, 30% of test episode couldn’t generate termi-
nal signal and exposed robot in an unsafe state without data
augment and the score would decrease to under 5% using
data augment in an exploration way.

5. Conclusion and Future Research

In this paper, we pose an algorithm system which in-
cludes the definition of action space, double-task Deep Q-
Network with multiple views, data augment policy and
safety constrains. The definition of action spaces can be
applied to complicated robotic systems, which can reduce
the computation of algorithm. The double-task Deep Q-
Network with multiple views performs better than current
control policy, [8 2 [18]], all of which used the single-task
Deep Q-Network with single view. The approach of double-
task model can be extended to multi-task model, which will
be used to handle more sophisticated missions of robotic
system for further research. Compared with those single-
view policies, multi-view policy can record more informa-
tion of each state of robotic system but the disadvantage is
that the observation angles must be fixed and the dataset
can’t be general. In further research, we would like to equip
cameras to robotic system instead of environment. Data
augment containing action-overturn and auto-sampling can
update the replay memory effectively. The action-overturn
policy can balance the distribution of actions and decrease
required RAM and generate the terminate signal accord-
ing to the coordinate and radian information. The auto-
sampling can sample data only on the base of small dataset.
In practice we combined the DMDQN with data augment to
form training policy which can update the replay memory
while training, as Algorithm [2] describes. The safety con-
strains can ensure the training policy working steadily and
protect robotic system, but the it is not perfect and restrict
possible positions of robotic system. The safety constrains
will be developed in future work.
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