
UDNet: Up-Down Network for Compact and Efficient Feature

Representation in Image Super-Resolution

Chang Chen Xinmei Tian Zhiwei Xiong Feng Wu

University of Science and Technology of China

Abstract

Recently, image super-resolution (SR) using convolu-

tional neural networks (CNNs) have achieved remarkable

performance. However, there is a tradeoff between perfor-

mance and speed of SR, depending on whether feature rep-

resentation and learning are conducted in high-resolution

(HR) or low-resolution (LR) space. Generally, to pursue

real-time SR, the number of parameters in CNNs has to be

restricted, which results in performance degradation. In

this paper, we propose a compact and efficient feature rep-

resentation for real-time SR, named up-down network (UD-

Net). Specifically, a novel hourglass-shape structure is in-

troduced by combining transposed convolution and spatial

aggregation. This structure enables the network to trans-

fer the feature representations between LR and HR spaces

multiple times to learn a better mapping. Comprehensive

experiments demonstrate that, compared with existing CNN

models, UDNet achieves real-time SR without performance

degradation on widely used benchmarks.

1. Introduction

Single image super-resolution (SISR) is a typical in-

verse problem in low-level image processing, aiming at

reconstructing a high-resolution (HR) output from a low-

resolution (LR) input. SISR methods can be largely di-

vided into three classes: interpolation based [1, 24], recon-

struction based [22, 23], and learning based [5, 6, 7, 13, 14].

Among them, the learning-based methods are widely inves-

tigated, which either exploit internal similarities within the

same image for self-learning [4, 32] or learn the LR-to-HR

mapping from external image patches [18,27,29,30,31,33].

As two representatives, Huang et al. [10] utilized the trans-

formed self-similarity to achieve good performance in im-

ages with considerable internal patch redundancy, and Dong

et al. [5] first trained an end-to-end convolutional neural net-

work (CNN) for external example-based SR with state-of-

the-art performance.

Following the seminal work of SRCNN in [5], increas-

ingly more CNN-based methods begin to search for bet-

ter regression functions in HR space. By introducing the

successful deep CNN designed for image recognition (e.g.,

VGG-Net [21]) into SISR, high reconstruction accuracy has

been achieved [13,14]. In early CNN-based SR models, the

LR image is first upsampled to HR space using bicubic in-

terpolation and then the SR operation is performed in HR

space. Recently, to accelerate the speed of SR and to avoid

the sub-optimal bicubic interpolation, models that recon-

struct the HR image directly from the LR image (without

bicubic interpolation) become popular. In these models, a

single transposed [7] or sub-pixel [20] convolutional layer

is adopted as the last layer to transform the LR feature rep-

resentations into the HR output. Alternatively, Romano et.

al [19] decomposed the input image for individual process-

ing and aggregated them into an output image with learned

parameters. It notably reduced the computational complex-

ity and can be used on mobile devices.

However, it is still a tradeoff that above models accel-

erate the speed at the cost of performance degradation. To

achieve the real-time speed demanded by practical applica-

tions, the number of network parameters has to be reduced

to the greatest extent possible. Such restrictions on parame-

ters limit feature representation and learning. Thus, enhanc-

ing the efficiency of restricted parameters is important for

practical usages. In this paper, we propose a compact and

efficient feature representation for real-time SR, named up-

down network (UDNet). In our UDNet, a novel hourglass-

shape structure is introduced by combining transposed con-

volution and spatial aggregation. This structure enables the

network to transfer the representations between LR and HR

spaces multiple times to learn a better mapping. In compari-

son, existing fast CNN models have at most one transposed

or sub-pixel convolution to directly transform LR feature

representations to the HR output.

Specifically, we adopt a down-sampling convolutional

layer to perform spatial aggregation subsequent to the trans-

posed convolution for upsampling. This structure is named

as Up-Down Network (UDNet). By controlling the num-

ber of filters in each layer, UDNet realizes a compact and

efficient feature representation without additional parame-

ters. Moreover, we investigate a few variants of UDNet for

further improved reconstruction accuracy, by expanding it

1069

Untitled Page

Res. image (predicted) Res. image (ground truth)The outputs of spatial aggregationFeatures mapped into HR space

Conv.

Feature extraction

Conv. T.Conv.

Shrinking Upsampling

Conv.

Expanding

Conv.

Spatial aggregation

T.Conv.

Residual reconstruction

+

Bicubic interpolation

Conv.Conv.

Shrinking Upsampling

Exported from Pencil Sun Jul 30 2017 12:25:48 GMT+0800 (CST) Page 1 of 1

Figure 1. Up-Down Network. Instead of transforming the LR feature representations into the HR output in the last layer, UDNet transfers

them between LR and HR spaces multiple times to learn a better mapping. We visualize some typical feature representations from

intermediate layers of UDNet to show the processing of network. A representative area is zoomed in at the relative coordinates. And the

intensity value of each feature is displayed with a positive offset for better visual experience.

both in width with more filters and in depth with a cas-

caded structure. Comprehensive experiments demonstrate

the superiority of UDNet over previous CNN models on

widely used benchmarks, in terms of either speed or perfor-

mance. We also evaluate the performance of real-time SR

of 720p videos, where UDNet outperforms the competitors

by a large margin.

2. Related Work

CNN-Based SISR: SRCNN [5] is the first end-to-end

convolutional network for SISR that brings the sparse cod-

ing algorithm [33] into a trainable network structure. After

that, increasingly more network structures are designed for

SISR [6, 7, 13, 14]. Although the detailed implementations

of these models are different, they all have the same strategy

following SRCNN, which contains three main stages: fea-

ture extraction, feature integration, and reconstruction. By

focusing on designing various topology structures for better

feature integration and reconstruction, CNN-based models

for SISR have achieved promising results.

Scheme for Acceleration: To accelerate the inference

speed for practical applications, the LR image is directly fed

into the network, rather than operating on the bicubic inter-

polated image in HR space. Therefore, a transposed convo-

lution [34] is mostly employed as the last layer to perform

upsampling. Dong et al. proposed the FSRCNN model [7]

which is a representative. On the other hand, as a notable

alternation of transposed convolution, the sub-pixel convo-

lution proposed in ESPCN [20] shifts pixels in a fixed order

to perform upsampling. Due to the non-parametric charac-

teristic, a convolution with a kernel size of 1 × 1 is often

adopted to adjust the channels of features. Following the

scheme for acceleration, we also adopt an LR image as in-

put. With the proposed UDNet, we alleviate the degradation

in a large degree without additional parameters.

Deep residual learning: The concept of residual learn-

ing, which is first proposed in ResNet [9] for image clas-

sification, has been successfully introduced into image SR

[13]. By directly adding the bicubic interpolated image to

the output of network, it enables the whole network to learn

the residual information. Inspired by that, we introduce an

identical connection across the whole network to apply the

residual learning.

3. Up-Down Network

UDNet is a fully convolutional network with a light-

weight structure (as shown in Fig. 1). Let “Conv.” de-

note the convolutional layer and “T.Conv.” denote the trans-

posed convolutional layer. We use three parameters (i.e.,

kernel size, stride, and the number of filters) to represent

each layer in UDNet. Since all of the convolutional lay-

ers adopt paddings to keep the boundary from cropping,

we omit them for simplifying the expression. Additionally,

except for the last layer for residual image reconstruction,

1070

Untitled Page

Feature embedding

Bicubic interpolation

Updown structure Cascaded updown structure Reconstruction

LR
HR SR

Exported from Pencil Mon Jul 24 2017 21:28:22 GMT+0800 (CST) Page 1 of 1

Figure 2. UDNet-C1: The cascaded variant of UDNet with double up-down structures. We concatenate the features of the last layers from

each up-down structure to construct the residual image.

each layer adopts ReLU [17] as the activation function. We

divide the components of UDNet into six classes: feature

extraction, shrinking, upsampling, expanding, spatial ag-

gregation, and residual reconstruction.

To better clarify the structure of UDNet, we use FSR-

CNN [7] for reference. Both of them has a lightweight

structure and the number of filters is restricted to control

the computational complexity for real-time applications.

The main different between them is the implementation of

mapping. In FSRCNN, the same convolutional layers are

stacked for mapping in LR space only. While our pro-

posed UDNet transfers the feature representations between

LR and HR spaces. We describe the details of implementa-

tion as follows.

Feature extraction and shrinking: UDNet adopts two

convolutional layers to extract features, which is a widely

used approach in existing CNN-based SR models [5, 6, 7,

13, 14, 20]. These two layers can be represented as Conv(3,

1, n1) and Conv(3, 1, n2). To avoid the sub-optimal bicu-

bic interpolation and reduce the computational complexity,

UDNet extracts features in LR space directly. The shrink-

ing strategy aims to reduce the dimension of the extracted

features and accelerate the speed of subsequent inference.

Upsampling and expanding: Most existing fast models

(e.g., FSRCNN [7]) operate the mapping in LR space only

and perform upsampling in the last layer with a single trans-

posed convolutional layer. To better model the inverse one-

to-many mapping, we introduce another transposed convo-

lutional layer before the final reconstruction to transform

the representations from LR space to HR space. The set-

ting of stride is related to the scale factor. For instance, we

adopt Conv(4, 2, n3) for 2x SR and Conv(5, 3, n3) for 3x

SR. The expanding strategy is implemented by two convo-

lutional layers which can be represented as Conv(3, 1, n2)-

Conv(3, 1, n3). Inspired by [7], it is designed to refine the

mapped HR feature representations in the contextual area.

Spatial aggregation and residual reconstruction: A

single convolutional layer is adopted to learn spatial ag-

gregation (i.e., down-sampling). The value of stride is re-

lated to the scale of factor. The residual reconstruction is

composed of two parts: bicubic-interpolated image and pre-

dicted residual image. It not only facilitates the convergence

but also prevents the low-frequency context from copying

through the entire network.

Loss function and visualization: Let x denote the input

LR image and y denotes the ground truth. The predicted

image is represented as x̂, which is the approximation of y
(i.e., x̂ → y). Then, the inference can be represented as:

x̂ = RΘ(x) + B(x). (1)

where RΘ(·) stands for the residual output from the net-

work with parameters Θ and B(·) stands for the bicubic

interpolated image. Following the majority of previous

works, the loss function chosen for optimizing the parame-

ters is the mean square error (MSE):

L(Θ) =
1

2N

N∑

i=1

||x̂i − yi||
2

2 (2)

where Θ stands for the parameters in UDNet and N denotes

the size of mini-batch for the algorithm of stochastic gradi-

ent descent.

To visually understand the feature representations in

UDNet, we illustrate the typical feature mappings selected

from intermediate layers of UDNet and the predicted image

in comparison with the residual image (as shown in Fig. 1).

4. Variants of UDNet

In this section, we explore the variants of UDNet in three

aspects: increased number of filters, deeper network struc-

tures with cascading and the different scale factors.

UDNet with added filters: The number of filters is an

essential parameter of CNN-based models. Let three vari-

ables n1, n2 and n3 denote the number of filters as de-

scribed in Sec. 3. In UDNet, we set n1 = 24, n2 = 12
and n3 = 6. With additional filters, we design five set-

tings for these variables to explore the expansibility of fil-

ters: n1 = 32, n1 = 48, n1 = 64, n1 = 80 and n1 = 96.

Corresponding to the setting of n1, n2 is set as n1/2 and n3

is set as n1/4. We name this series of variants as UDNet-

n1. The experimental results in Sec. 5.5 show that UDNet

can achieve higher reconstruction accuracy by releasing the

restriction on parameters.

1071

UDNet with cascaded structures: Cascading is widely

used in several methods [4,29] to further enhance the perfor-

mance. Our proposed UDNet is also suitable for cascading.

We design the network based on the UDNet-64 and name

this series of variants as UDNet-Ck, where k represents the

number of cascaded structures. We illustrate the structure

of UDNet-C1 in Fig. 2 for a better understanding. In con-

trast to the method proposed in [29], the cascaded structure

of UDNet only works at a fixed scale factor.

Meanwhile, with the cascaded structure, the depth of net-

work is increased. It thus results in difficulty in conver-

gence. To make the network converge to a stable equilib-

rium point, batch normalization (BN) [11] is appended after

each layer following [9]. Experimental results demonstrate

that the cascaded variants of UDNet achieve state-of-the-art

reconstruction accuracy on widely used benchmarks.

Applying recursion for large scale factors: Facility of

different scale factors is often required in SISR. UDNet sup-

ports larger scale factors by setting the value of stride in the

transposed convolutional layer. For instance, when the scale

factor is 3, we set the stride as 3 correspondingly. However,

the dimensionality gap between LR and HR spaces will in-

crease along with the scale factors. Thus, inspired by [29],

we apply recursion to UDNet for alleviating this issue. For

instance, to scale up the input LR image at a factor of 4,

we first pass the input image into UDNet and obtain the HR

image with a scale factor of 2 as output. Then, we feed the

output image as the input into the same UDNet to obtain

the target result. As for the scale factor of 3, we obtain it by

down-sampling from the 4x image.

5. Experiments and Results

5.1. Datasets

Training datasets: There are four main datasets for

training: 91 images from Yang et al. [33], 100 images

from “General-100” [7], 200 images from “BSD200” [16],

and millions of images from ImageNet. We assume that

more training data stands a better probability of achiev-

ing state-of-the-art performance. However, various meth-

ods have proposed their best results which are trained on

different datasets. For eliminating the influence of differ-

ent training datasets, we train our models on the “General-

100” dataset to evaluate the real-time performance follow-

ing [7] and train on the 291 images (i.e., containing 91 im-

ages from [33] and 200 images from [16]) for comparison

with state-of-the-art methods following [13]. Moreover, de-

tailed results trained on each dataset can be found in the

supplementary document.

As for the implementation, we convert all of the image

patches into HDF5 format to adapt for the I/O interface of

Caffe [12]. We partition them into the sub-image patches

with a size of 96×96. And we set the number of each mini-

Models PNet UDNet

Input ILR

Stage 1
C(3,24,1) C(3,12,24)

C(5,6,12) s = 1 TC(5,6,12) s = 3

Stage 2

C(3,12,6) C(3,6,12)

C(3,24,6) s = 1 C(3,24,6) s = 3

C(3,12,24)

Stage 3
TC(5,6,12) s = 3

C(3,1,6)

PNSR / SSIM 33.10 / 0.9143 33.27 / 0.9165

(Set5 & Set14) 29.43 / 0.8249 29.53 / 0.8266

Table 1. Ablation experiments of UDNet. We evaluate the mean

PSNR (dB) and SSIM on “Set5” [2] and “Set14” [35] datasets

at the scale factor of 3. Here, “C” and “TC” denote convolution

and transposed convolution, respectively. And we use (kernel size,

output channels, input channels) to denote each layer. By default,

the stride is set as 1 and we adopt the symbol “s” to emphasize the

different settings of strides.

batch as 32 for stochastic gradient decent.

Benchmarks: Four commonly used datasets, “Set5” [2],

“Set14” [35], “BSD100” [16] and “Urban100” [10], are em-

ployed as benchmarks for SISR. To evaluate real-time SR in

videos, we adopt six 720p videos from Xiph 1 as the testing

dataset.

5.2. Settings for Training

We adopt “Adam” [15] as our solver for optimization

with β1 = 0.9 and β2 = 0.999, and the coefficient of weight

decay (l2 norm) is set at 0.0001. The global basic learning

rate is set at 0.001, and we multiply by 0.1 for biases in

each layer in particular. The decay policy of the learning

rate follows a polynomial function:

lb × (1− i/N)p, (3)

where lb stands for the basic learning rate, i denotes the

current time of iterations, N denotes the total number of

iterations, and we set p = 1. We stop the training proce-

dure when no notable improvement can be observed after

1.2 × 106 iterations. For initialization, we use the method

proposed in [8] to initialize the weights and set zeros for the

initialization of biases.

5.3. Ablation Experiments of UDNet

In this section, we discuss a plain network for compari-

son with UDNet. We replace the intermediate transposed

convolution with a standard convolution of same hyper-

parameters to derive the plain network (named as PNet).

As listed in Table 1, we decompose the overall structure

into three stages: feature extraction, feature integration, and

reconstruction. The PNet operates the feature integration

1Xiph.org Video. https://media.xiph.org/video/derf/

1072

https://media.xiph.org/video/derf/

Models SRCNN [5] SRCNN-Ex [6] CSCN [29] ESPCN [20] FSRCNN [7] UDNet (Ours)

Input IHR IHR IHR ILR ILR ILR

Stage 1 C(9,64,1) C(9,64,1) C(5,4,1) C(5,100,4) C(5,64,1)
C(5,56,1) C(3,24,1) C(3,12,24)

C(1,12,56) TC(5,6,12)

Stage 2 C(1,32,64) C(5,32,64) 3× linear layers
C(3,32,64) 4× C(3,12,12) C(3,12,6) C(3,6,12)

C(3,9,32) C(1,56,12) C(3,24,6) C(3,12,24)

Stage 3 C(5,1,32) C(5,1,32) C(1,25,1) C(5,1,25) sub-pixel TC(9,1,56) TC(5,6,12) C(3,1,6)

Parameters 8,032 57,184 ≈ 32,000 22,624 12,464 11,646

Time (s) 0.2648 0.8163 1.1302 0.1016 0.1004 0.0924

PSNR/SSIM 32.39/0.9033 32.75/0.9090 33.10/0.9144 33.01/0.9121 33.16/0.9140 33.27/0.9165

Table 2. Comparisons of mean PSNR (dB) and SSIM between UDNet and existing CNN-based methods. We decompose the overall

structure into three stages: feature extraction, feature integration, and reconstruction. The linear layers in CSCN [29] are related to the

over-complete dictionary. We train UDNet on the “General-100” dataset following [7] and evaluate the results on the dataset “Set5” [2] at

the scale factor of 3 on the uniform test platform. The mean running times are calculated using a single CPU following [20].

0 2 4 6 8 10 12

Iterations of mini-batch 10
5

36.9

37

37.1

37.2

37.3

37.4

37.5

37.6

37.7

P
S

N
R

 (
d

B
)

UDNet

UDNet-32

UDNet-48

UDNet-64

UDNet-80

UDNet-96

UDNet-C

UDNet-C 2

1

Figure 3. Convergence curves of UDNet and its variants. We dis-

play the change of mean PSNR on “Set5” at a scale factor of 2.

in LR space only, which is similar to FSRCNN [7]. While

the UDNet transfers the feature representations between LR

and HR spaces. We train both of them on the “General-100”

dataset [7]. Experimental results demonstrate the advantage

of UDNet over the plain network in Table 1.

5.4. UDNet with Restricted Parameters

Uniform test platform: We establish a uniform plat-

form based on the libraries of MatConvNet2 [28] for evalu-

ating CNN-based models with publicly available implemen-

tations. We convert the trained filters of various models into

the same format to prevent error in evaluating the running

time on different platforms. To measure the running time

of each model exactly, we repeat the testing procedure of

each model 20 times and report the average running time.

For evaluation, we crop the boundary of each image in the

benchmarks as the same pixel as the scale factor following

the majority of previous works. We calculate the PSNR and

SSIM using only the luminance components, following the

evaluation platform first established in [25].

2MatConvNet. http://www.vlfeat.org/matconvnet/

Models UDNet UDNet-32 UDNet-48 UDNet-64

PSNR 27.88 27.93 28.02 28.05

Models UDNet-80 UDNet-96 UDNet-C1 UDNet-C2

PSNR 28.08 28.07 28.10 28.14

Table 3. Comparisons between UDNet and its variants. We evalu-

ate the mean PSNR results on “Set14” at a scale factor of 4.

Enhancing performance without adding parameters:

Let “C” denote the convolution and “TC” denote the trans-

posed convolution. We use three values inside the brack-

ets to represent the primary variables of convolutional lay-

ers (kernel size (S), output channels (Cout), input channels

(Cin)). The number of parameters (P) is the product of

these three values: P = S2 × Cout × Cin. Although the

parameter number is quite essential for measuring the ca-

pacity of a model, it cannot exactly represent the computa-

tional complexity in practice. Thus, we further evaluate the

average running time on the uniform test platform using a

single kernel of a general CPU running at 4GHz (as listed

in Table 2). We adopt “Set5” [2] as the testing dataset and

train our model on the “General-100” dataset following [7].

We list the experimental results of the comparison with

several CNN-based models in Tabel 2. By receiving the

LR image ILR directly as input without pre-interpolation,

UDNet has a clear advantage in performance compared to

previous models. It has neither additional parameters nor an

increase in computational complexity.

5.5. Comparison between UDNet and its Variants

Investigation of variants with added parameters: As

shown in Fig. 3, UDNet and its variants converge fast and

achieve high accuracy after a few iterations. By releasing

the restriction on parameters, even better performance is

achieved. According to the results shown in Table 3, a mod-

erate number of parameters can help to achieve better per-

formance. However, too many parameters (such as UDNet-

96) is not an efficient choice since it may cause redundancy

1073

http://www.vlfeat.org/matconvnet/

(a) Original (PSNR/SSIM) (b) Bicubic (23.30/0.750) (c) ANR(24.16/0.808) (d) A+ (24.32/0.819) (e) SRCNN (24.39/0.821)

(f) CSCN (24.28/0.816) (g) FSRCNN (24.62/0.830) (h) VDSR (24.87/0.843) (i) UDNet (24.71/0.836) (j) UDNet-C2 (24.89/0.843)

Figure 4. Comparisons of image “58060” from “BSD100” [16] dataset at a scale factor of 2.

Dataset Scale
Bicubic A+ [27] RAISR [19] CSCN [29] ESPCN [20] FSRCNN [7] VDSR [13] UDNet UDNet-C2

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5

×2 33.66/0.9299 36.54/0.9544 36.15/0.951 36.93/0.9552 -/- 37.00/0.9558 37.53/0.9587 37.29/0.9576 37.67/0.9591

×3 30.39/0.8682 32.58/0.9088 32.21/0.901 33.10/0.9144 33.01/0.9121 33.16/0.9140 33.66/0.9213 33.32/0.9176 33.74/0.9222

×4 28.42/0.8104 30.28/0.8603 29.84/0.848 30.86/0.8732 30.78/0.8681 30.71/0.8657 31.35/0.8838 31.04/0.8772 31.42/0.8850

Set14

×2 30.23/0.8687 32.28/0.9056 32.13/0.902 32.56/0.9074 -/- 32.63/0.9088 33.03/0.9124 32.88/0.9110 33.08/0.9128

×3 27.54/0.7736 29.13/0.8188 28.86/0.812 29.41/0.8238 29.44/0.8255 29.43/0.8242 29.77/0.8314 29.63/0.8291 29.83/0.8324

×4 26.00/0.7019 27.32/0.7491 27.00/0.738 27.64/0.7587 27.70/0.7591 27.59/0.7535 28.01/0.7674 27.88/0.7639 28.14/0.7705

B100

×2 29.56/0.8431 31.21/0.8863 -/- 31.40/0.8884 -/- 31.50/0.8906 31.90/0.8960 31.72/0.8935 31.90/0.8959

×3 27.21/0.7384 28.29/0.7835 -/- 28.50/0.7885 28.51/0.7895 28.52/0.7893 28.82/0.7976 28.66/0.7949 28.81/0.7986

×4 25.96/0.6674 26.82/0.7087 -/- 27.03/0.7161 27.03/0.7166 26.96/0.7128 27.29/0.7251 27.15/0.7226 27.30/0.7277

U100

×2 26.88/0.8403 29.20/0.8938 -/- 29.76/0.9009 -/- 29.83/0.9016 30.76/0.9140 30.31/0.9078 30.88/0.9155

×3 24.46/0.7349 26.03/0.7973 -/- 26.45/0.8093 -/- 26.42/0.8064 27.14/0.8279 26.72/0.8161 27.09/0.8290

×4 23.14/0.6577 24.32/0.7183 -/- 24.75/0.7372 -/- 24.58/0.7269 25.18/0.7524 24.91/0.7409 25.15/0.7562

Table 4. Comparisons of mean PSNR/SSIM on four widely used benchmarks at scale factors of 2, 3 and 4. The best results reported in the

corresponding papers are presented. For ESPCN [20], we measure the results using the given images from its supplementary material.

in the feature representation.

Cascading – the deeper, the better: The hyper-

parameters of each layer for cascading are the same as

UDNet-64, where n1 = 64, n2 = 32 and n3 = 16. As

shown in Fig. 3, it is more difficult for the UDNet-Ck to

find a stable way to converge at the beginning of training

due to the increase of depth. Along with the gradual reduc-

tion of learning rate during training, they have a notable ten-

dency to achieve better performance than the variants with

added parameters. This result suggests that by optimizing

the policy of learning rate, the reconstruction accuracy of

the cascaded variant can be further improved. Moreover,

according to the results listed in Table 3, we believe that the

deeper the cascaded structure is, the larger improvement can

be achieved.

5.6. Comparison with StateoftheArt Methods

Single image super-resolution: As shown in Table 4,

we adopt six representative models for comparison. Among

these models, A+ [27] is a representative of traditional SR

methods. RAISR [19], ESPCN [20] and FSRCNN [7] are

typical models with compact structures for real-time perfor-

mance. CSCN [29] and VDSR [13] are models with high

reconstruction accuracy. The experimental results show that

the cascaded variants of UDNet achieve state-of-the-art per-

formance at various scales on four widely used benchmarks.

In Fig. 6, we further evaluate the efficiency of various mod-

els considering both performance and running time evalu-

ated using a single GPU 980Ti. Among them, additional

models (i.e., DRCN [14], IA [26], ANR [25] and NE+LLE

[3]) are adopted for comparison.

1074

(a) Original (PSNR/SSIM) (b) Bicubic (28.00/0.841) (c) ANR (28.59/0.873) (d) A+ (28.70/0.877) (e) SRCNN (28.59/0.876)

(f) CSCN (28.31/0.870) (g) FSRCNN (28.31/0.875) (h) VDSR (28.41/0.878) (i) UDNet (28.50/0.877) (j) UDNet-C2 (28.60/0.878)

Figure 5. Comparisons of the image “barbara” from the “Set14” [35] dataset at a scale factor of 2.

10
-3

10
-2

10
-1

10
0

10
1

Slow <-- Running time (seconds) --> Fast

35.5

36

36.5

37

37.5

38

P
S

N
R

 (
d

B
)

VDSR
DRCN

SRCNN

SRCNN-Ex

FSRCNN
CSCN

IA

ANR
NE+LLE

A+

UDNet-64

UDNet

UDNet-C2

Figure 6. Illustration of the trade-off between accuracy and speed

for various models. We evaluate the average running time and

mean PSNR on “Set5” at a scale factor of 2. From this figure,

we can have the following conclusions. Compared with fast (real-

time) SR models, our methods can largely boost the reconstruc-

tion accuracy. When compared with SR models which have high

reconstruction accuracy, our methods can greatly accelerate the

speed without performance degradation.

Also, several examples of visual comparison are pre-

sented. As shown in Fig. 4, with the same training dataset,

UDNet-C2 has a distinct advantage over VDSR [13] in the

areas with streaks. In Fig. 5, previous methods do not per-

form well in the pinstripe areas, and UDNet-C2 is the only

Dataset Scale Bicubic SRCNN FSRCNN UDNet UDNet-32

4People ×2 35.66 38.41 39.33 39.54 39.86

K.&S. ×2 35.46 38.32 40.11 40.18 40.44

Mobcal ×2 30.79 32.55 32.95 33.13 33.14

P.Run ×2 25.86 27.08 27.41 27.43 27.46

Shields ×2 31.54 33.18 33.72 33.78 33.85

STO ×2 32.21 33.72 34.20 34.33 34.38

Average ×2 31.92 33.88 34.62 34.73 34.86

4People ×4 30.17 31.25 31.79 32.06 32.25

K.&S. ×4 29.86 31.26 31.81 32.15 32.32

Mobcal ×4 26.48 27.19 27.74 27.78 27.90

P.Run ×4 22.26 22.71 22.71 22.84 22.89

Shields ×4 26.94 27.78 28.25 28.16 28.28

STO ×4 27.63 28.23 28.32 28.55 28.63

Average ×4 27.22 28.07 28.44 28.59 28.71

Table 5. Comparisons of the mean PSNR for evaluating real-

time SR. We evaluate the results on six 720p videos from Xiph

database. All models are trained on the “General-100“ dataset [7].

UDNet and UDNet-32 have clear advantage over the competitors.

model that reconstructs them with correct directions. More

comparisons can be found in the supplementary document.

Toward real-time SR for 720p videos: To evaluate real-

time (> 24 FPS) SR in videos, SRCNN [5], FSRCNN [7]

and the bicubic interpolation are employed for comparison,

as listed in Table 5. We adopt six 720p videos from Xiph

database for evaluation. UDNet and UDNet-32 achieve

38.1 and 27.8 FPS on a single GPU 980Ti, respectively. Un-

der the premise of real-time speed for 720p videos, UDNet

outperforms the competitors by a large margin.

1075

6. Conclusion

In this paper, we propose a novel Up-Down Network

for compact and efficient feature representation in real-time

SR. By transferring the feature representations between LR

and HR spaces multiple times, UDNet learns a better map-

ping for this inverse problem. Comprehensive experiments

demonstrate the superiority of UDNet and its variants over

previous CNN models on widely used benchmarks, in terms

of either speed or performance. These results make it a solid

step for exploring more efficient feature representation and

learning in SISR.

References

[1] H. A. Aly and E. Dubois. Image up-sampling using total-

variation regularization with a new observation model. In

TIP, 2014. 1

[2] M. Bevilacqua, A. Roumy, C. Guillemot, and M. A. Morel.

Low complexity single-image super-resolution based on

non-negative neighbor embedding. In BMVC, 2012. 4, 5

[3] H. Chang, D. Y. Yeung, and Y. Xiong. Super-resolution

through neighbor embedding. In CVPR, 2004. 6

[4] Z. Cui, H. Chang, B. Z. S. Shan, and X. Chen. Deep network

cascade for image super-resolution. In ECCV, 2014. 1, 4

[5] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In ECCV,

2014. 1, 2, 3, 5, 7

[6] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. In TPAMI,

2015. 1, 2, 3, 5

[7] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In ECCV, 2016. 1,

2, 3, 4, 5, 6, 7

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In CoRR, 2015. 4

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 4

[10] J. B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In CVPR, 2015.

1, 4

[11] S. Ioffe and C. Szegedy. Batch normalization: accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 4

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In arXiv:1408.5093,

2014. 4

[13] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2016. 1, 2, 3, 4, 6, 7

[14] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolu-

tional network for image super-resolution. In CVPR, 2016.

1, 2, 3, 6

[15] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In arXiv:1412.6980, 2014. 4

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001. 4, 6

[17] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010. 3

[18] G. Riegler, S. Schulter, M. Ruther, and H. Bischof. Condi-

tioned regression models for non-blind single image super-

resolution. In ICCV, 2015. 1

[19] Y. Romano, J. Isidoro, and P. Milanfar. Rapid and accurate

image super resolution. In TCI, 2016. 1, 6

[20] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In CVPR, 2016. 1, 2, 3, 5, 6

[21] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. In

arXiv:1409.1556, 2014. 1

[22] J. Sun, Z. Xu, and H. Y. Shum. Image super-resolution using

gradient profile prior. In CVPR, 2008. 1

[23] J. Sun, N. N. Zheng, H. Tao, and H. Y. Shum. Image hallu-

cination with primal sketch priors. In CVPR, 2003. 1

[24] Y. W. Tai, S. Liu, M. S. Brown, and S. Lin. Super resolution

using edge prior and single image detail synthesis. In CVPR,

2010. 1

[25] R. Timofte, V. De, and L. V. Gool. Anchored neighborhood

regression for fast example-based super-resolution. In ICCV,

2013. 5, 6

[26] R. Timofte, R. Rothe, and L. V. Gool. Seven ways to improve

example-based single image super resolution. In CVPR,

2016. 6

[27] R. Timofte, V. D. Smet, and L. V. Gool. A+: Adjusted an-

chored neighborhood regression for fast super-resolution. In

ACCV, 2014. 1, 6

[28] A. Vedaldi and K. Lenc. Matconvnet - convolutional neural

networks for matlab. In CoRR, 2014. 5

[29] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep

networks for image super-resolution with sparse prior. In

ICCV, 2015. 1, 4, 5, 6

[30] Z. Xiong, X. Sun, and F. Wu. Image hallucination with fea-

ture enhancement. In CVPR, 2009. 1

[31] Z. Xiong, D. Xu, X. Sun, and F. Wu. Example-based super-

resolution with soft information and decision. In TMM,

2013. 1

[32] J. Yang, Z. Lin, and S. Cohen. Fast image super-resolution

based on in-place example regression. In CVPR, 2013. 1

[33] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-

resolution via sparse representation. In TIP, 2010. 1, 2, 4

[34] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-

volutional networks for mid and high level feature learning.

In ICCV, 2011. 2

[35] R. Zeyde, M. Elad, and M. Protter. On single image scale-up

using sparse-representation. In Curves and Surfaces, 2012.

4, 7

1076

