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Abstract

Evolutionary deep intelligence was recently proposed as

a method for achieving highly efficient deep neural network

architectures over successive generations. Drawing inspi-

ration from nature, we propose the incorporation of sexual

evolutionary synthesis. Rather than the current asexual syn-

thesis of networks, we aim to produce more compact feature

representations by synthesizing more diverse and general-

izable offspring networks in subsequent generations via the

combination of two parent networks. Experimental results

were obtained using the MNIST and CIFAR-10 datasets,

and showed improved architectural efficiency and compa-

rable testing accuracy relative to the baseline asexual evo-

lutionary neural networks. In particular, the network syn-

thesized via sexual evolutionary synthesis for MNIST had

approximately double the architectural efficiency (cluster

efficiency of 34.29× and synaptic efficiency of 258.37×) in

comparison to the network synthesized via asexual evolu-

tionary synthesis, with both networks achieving a testing

accuracy of ∼97%.

1. Introduction

Deep learning methods, especially deep neural net-

works [2, 9, 15, 27], have recently exploded in popularity

due to their demonstrated ability to significantly improve

the performance over other machine learning methods in

various challenging areas of research. However, this boost

in performance of deep neural networks is largely attributed

to increasingly large model sizes, resulting in growing stor-

age and memory requirements.

These computational requirements make high-

performance deep neural networks infeasible for devices

without access to cloud computing. For many practical

situations such as self-driving cars and smartphone appli-

cations, the available computing resources are limited to

low-power, embedded GPUs and CPUs; with such limited

computational power and storage, smaller and more com-

pact versions of deep neural networks are highly desirable.

As such, research into compact feature representations via

highly efficient deep neural networks has been conducted,

and methods have been developed for significantly reducing

the memory and computational requirements with minimal

drop in performance.

One of the first approaches for adapting the size of a neu-

ral network was optimal brain damage [18]. The method

removed unimportant weights (as determined using the sec-

ond derivative of the objective function as a saliency ap-

proximation of a parameter) from the network to improve

network generalizability, increase the speed of learning, and

reduce the number of training sampled required.

Gong et al. [8] proposed a network compression frame-

work where vector quantization was leveraged to shrink the

storage requirements of deep neural networks trained for

computer vision tasks. Gong et al. noted that vector quan-

tization has clear advantages over existing matrix factor-

ization methods, and found a good balance between model

size and accuracy could be achieved via the application of

k-means clustering to the weights or product quantization.

Han et al. [11] introduced deep compression to address

the limitations of computational power and memory that

comes with embedded systems via a three stage pipeline:

pruning, trained quantization, and Huffman coding. The

method reduced the storage requirements of a neural net-

work by 35x to 49x with no loss in accuracy. Han et al. [10]

also reduced the storage and computational requirements

of neural networks with no drop in accuracy by training a

network to learn which weights are important, pruning the

unimportant connections, and retraining the network to fine

tune the remaining weights.

Another method for deep compression is hashing [3],

which uses a low-cost hash function to group network

weights into hash buckets with a single shared parameter

value. Exploiting the redundancy in both network layers,

the HashedNet architecture leverages the idea of weight-

sharing and allows for considerable savings in terms of
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memory and storage.

Other methods for reducing the computational require-

ments of neural networks include low rank approxima-

tions [12, 13]. Jaderberg et al. [13] used low-rank expan-

sions to speed up the computation of deep neural networks

(specifically the convolutional layers of convolutional neu-

ral networks) by exploiting cross-channel or filter redun-

dancy to construct a low rank basis of filters. Similarly,

Ioannou et al. [12] created computationally efficient net-

works using low rank representations of convolutional fil-

ters by learning a set of small basis filters that are then com-

bined into more complex filters.

Sparsity learning [5, 19, 28] is another strategy used

to sparsify deep neural networks. Feng and Darrell [5]

demonstrated a novel method for learning components of

the structure of a neural network by incorporating the In-

dian Buffet Process prior; especially effective when there

is limited labelled training data, this method captures com-

plex data distributions in an unsupervised generative man-

ner. Liu et al. [19] showed how to reduce the number of

parameters in neural networks via sparse decomposition by

exploiting both intra-channel and inter-channel redundancy.

Lastly, Wen et al. [28] recently proposed a Structured Spar-

sity Learning (SSL) method to regularize the structures

within deep neural networks (e.g., filters shapes, channels,

layer depth).

Rather than attempting to compress existing deep neu-

ral networks into smaller and more compact representa-

tions directly, Shafiee et al. [21] proposed an entirely novel

concept: Can deep neural networks naturally evolve to be

highly efficient? Inspired by biological evolution, Shafiee et

al. developed an evolutionary deep intelligence approach

to produce highly efficient and compact deep neural net-

works by allowing these networks to synthesize new net-

works with increasingly compact representations and natu-

rally sparsify over successive generations. Biological evolu-

tionary mechanisms are mimicked via three computational

constructs: i) heredity, ii) natural selection, and iii) random

mutation.

While previous studies [1, 7, 24, 25, 26] have been con-

ducted that leverage the idea of using evolutionary tech-

niques to generate and train neural networks, there are key

differences between these and the evolutionary deep intelli-

gence method proposed by Shafiee et al. [21]. Past works

have primarily focused on improving a network’s training

and accuracy, while evolutionary deep intelligence shifts

the focus to organically synthesizing networks with high

architectural efficiency. In addition, these previous stud-

ies use classical evolutionary computation approaches such

as genetic algorithms and evolutionary programming, while

Shafiee et al. introduced a novel probabilistic framework

that models genetic encoding and environmental conditions

via probability distributions.

More recently, Shafiee et al. proposed a modification

of the original evolutionary deep intelligence approach via

synaptic cluster-driven genetic encoding [22]. Further in-

vestigating the genetic encoding scheme used to mimic

heredity, Shafiee et al. proposed the incorporation of synap-

tic clustering into the genetic encoding scheme, and intro-

duced a multi-factor synapse probability model. Modelling

the synaptic probability as a product of the probability of

synthesis of a particular cluster of synapses and the prob-

ability of synthesis of a particular synapse within the clus-

ter, this new genetic encoding scheme demonstrated state-

of-the-art performance while producing significantly more

efficient network architectures and compact feature repre-

sentations specifically tailored for GPU-accelerated appli-

cations.

The current work in evolutionary deep intelligence [21,

22], however, formulates the evolutionary synthesis process

based on asexual reproduction; that is, offspring neural net-

works are synthesized by stochastically sparsifying a clone

of their parent network. While effective at synthesizing effi-

cient networks with comparable testing accuracies, asexual

evolutionary synthesis results in a limited range of possi-

ble offspring networks as the offspring network structure

is highly constrained by the parent network. Motivated by

the aim of promoting diversity in evolutionary deep neural

networks, we explore the use of sexual reproduction when

synthesizing offspring network architectures in this study.

Evolutionarily speaking, sexual reproduction is thought

to have developed in living organisms due to the fact that it

favours the survival of groups rather than individuals by al-

lowing for accelerated adaptation to changing environments

via the combination of mutations occurring in distinct indi-

viduals in a single descendant [6, 20]. Relative to asexual

reproduction, sexual reproduction has the potential to ac-

celerate evolution by several orders of magnitude [4], with

its effects most prominent in a large population with a high

frequency of beneficial mutations. This motivates the idea

that the use of sexual reproduction in evolutionary synthesis

can accelerate the generation-by-generation development of

useful compact feature representations.

To evaluate the validity of sexual reproduction in

evolutionary deep intelligence, we propose an extension

of Shafiee et al.’s cluster-driven genetic encoding ap-

proach [22] via the incorporation of a second parent net-

work during the synthesis of an offspring network at each

generation. The methodology for the proposed model is de-

scribed in Section 2. The experimental setup and results are

presented in Section 3. Lastly, conclusions and future work

are discussed in Section 4.

2. Methods

In this work, we propose an extension of Shafiee et al.’s

cluster-driven genetic encoding [22] via an adaptation of
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Figure 1: The proposed evolutionary synthesis process over successive generations as an extension of cluster-driven genetic

encoding. The effects of sexual evolutionary synthesis are explored via the incorporation of a second parent network during

the synthesis of offspring networks. At each generation, two parent networks from the preceding generation are combined

via a mating function to synthesize new offspring networks.

the network synthesis process towards more compact fea-

ture representations using sexual evolutionary synthesis. To

explore the effects of sexual evolutionary synthesis when

synthesizing offspring network architectures, we augment

the evolutionary deep intelligence scheme in [22] to incor-

porate a second parent network during the process of syn-

thesizing new offspring networks as shown in Figure 1. At

each generation, two parent networks from the preceding

generation are combined via a mating function to synthe-

size new offspring networks containing information from

both parent networks.

2.1. Sexual Evolutionary Synthesis

Let the network architecture be formulated as H(N,S),
where N denotes the set of possible neurons and S the set

of possible synapses in the network. Each neuron nj ∈ N

is connected to neuron nk ∈ N via a set of synapses s̄ ⊂ S,

such that the synaptic connectivity sj ∈ S has an associ-

ated wj ∈ W to denote the connection’s strength. In the

seminal paper on evolutionary deep intelligence [21], the

synthesis probability P (Hg|Hg−1,Rg) of a new network

at generation g is approximated by the synaptic probabil-

ity P (Sg|Wg−1, Rg) to emulate heredity through the gen-

erations of networks, and is also conditional on an envi-

ronmental factor model Rg to imitate natural selection via

a changing environment for successive generations of net-

works to adapt to. That is, the synthesis probability can be

formulated as follows:

P (Hg|Hg−1,Rg) ≃ P (Sg|Wg−1, Rg). (1)

More recently, Shafiee et al. [22] reformulated the syn-

thesis probability to incorporate the multi-factor synaptic

probability model and different quantitative environmental

factor models at the synapse and cluster levels:

P (Hg|Hg−1,Rg) =
∏

c∈C

[

P (sg,c|Wg−1,R
c
g) ·

∏

j∈c

P (sg,j |wg−1,j ,R
s
g)
]

(2)

where Rc
g and Rs

g represent the environmental factor mod-

els enforced during the synaptic cluster synthesis and the

synapse synthesis, respectively. P (sg,c|Wg−1,R
c
g) rep-

resents the probability of synthesis for a given cluster of

synapses sg,c; that is, P (sg,c|Wg−1,R
c
g) denotes the like-

lihood that a synaptic cluster sg,c (for all clusters c ∈ C)

will exist in the network architecture in generation g given

the cluster’s synaptic strength in generation g − 1 and

the cluster-level environmental factor model. Comparably,

P (sg,j |wg−1,j ,R
s
g) represents the likelihood of the exis-

tence of synapse j within the synaptic cluster c in generation

g given the synaptic strength in the previous generation g−1
and synapse-level environmental factor model. This multi-

factor probability model encourages both the persistence of

strong synaptic clusters and the persistence of strong synap-

tic connectivity over successive generations [22].

With asexual evolutionary synthesis, however, a lim-

ited range of possible offspring networks is explored as the

structure of each network is constrained by its parent net-

work. Taking inspiration from nature, we aim to increase

the diversity and compactness of evolutionary deep neural

networks by incorporating information from multiple par-

ent networks when synthesizing a new offspring network.

In addition to increasing diversity, previous work in the field

of evolutionary biology has concluded that sexual reproduc-

tion will accelerate adaptation to a new environment given

that the genetic variance arises due to a changing environ-

ment [23]. This motivates the idea that more efficient and

diverse offspring networks with increasingly compact fea-

ture representations can be synthesized in fewer generations

using sexual evolutionary synthesis, particularly in the case
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of non-stationary environmental factor models.

In this work, we propose a further modification of the

synthesis probability P (Hg|Hg−1,Rg) via the incorpora-

tion of a two-parent synthesis process to drive network di-

versity and adaptability by mimicking sexual reproduction.

Thus far for the ith synthesized network, the cluster syn-

thesis probability P (sg,c|Wg−1,R
c
g) and the synapse syn-

thesis probability P (sg,i|wg−1,i,R
s
g) have been conditional

on the network architecture and synaptic strength of a sin-

gle parent network in the previous generation and the en-

vironmental factor models. To explore the effects of sexual

evolutionary synthesis in evolutionary deep intelligence, we

reformulate the synthesis probability to combine the clus-

ter and synapse probabilities of two parent networks, e.g.,

HA and HB , during the synthesis of an offspring network

via some cluster-level mating function Mc(·) and some

synapse-level mating function Ms(·):

P (Hg,i|HA,HB ,Rg) =
∏

c∈C

[

P (sg,c|Mc(WHA
,WHB

),Rc
g(i))·

∏

j∈c

P (sg,j |Ms(wHA,j , wHB ,j),R
s
g(i))

]

. (3)

2.2. Mating Rituals of Deep Neural Networks

In this work, we restrict the the parent networks, HA and

HB , to the immediately preceding generation; that is, for an

offspring Hg,i at generation g, the parent networks HA and

HB are from generation g−1. We propose the cluster-level

and synapse-level mating functions to be as follows:

Mc(WHA
,WHB

) = αcWHA
+ βcWHB

(4)

Ms(wHA,j , wHB ,j) = αswHA,j + βswHB ,j (5)

where WHA
and WHB

represent the cluster’s synaptic

strength for parent networks HA and HB , respectively.

Similarly, wHA,j and wHB ,j represent the synaptic strength

of a synapse j within cluster c for parent networks HA and

HB , respectively.

2.3. Realization of Genetic Encoding

In this study, we employ the simple realization of cluster-

driven genetic encoding proposed in [22]. The probability

of synthesis for a given synapse cluster sg,c is realized as:

P (sg,c|Wg−1) = exp
(Σi∈c⌊wg−1,i⌋

Z
− 1

)

(6)

where ⌊·⌋ encodes a synaptic weight truncation and Z is

the normalization factor required to construct a probability

Figure 2: Sample images from the MNIST hand-written

digits dataset [17].

Figure 3: Sample images from the CIFAR-10 object classi-

fication dataset [14].

distribution, i.e., P (sg,c|Wg−1) ∈ [0, 1]. The truncation of

synaptic weights lessens the impact of weak synapses in a

synaptic cluster.

Similarly, the probability of synthesis for a particular

synapse sg,i within a synaptic cluster c is realized as:

P (sg,i|wg−1,i) = exp
(wg−1,i

a
− 1

)

(7)

where z is a layer-wise normalization factor. This genetic

encoding scheme allows for the simultaneous consideration

of both inter-synapse relationships and individual synapse

strength [22].

3. Results

3.1. Experimental Setup

The asexual and sexual evolutionary synthesis of deep

neural networks were performed over multiple generations,

and the effects of sexual evolutionary synthesis relative

to asexual evolutionary synthesis were explored using the

MNIST [17] hand-written digits and CIFAR-10 [14] object

classification datasets with the first generation ancestor net-

works trained using the LeNet-5 architecture [16]. Figure 2
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and Figure 3 shows sample images from the MNIST and

CIFAR-10 datasets, respectively.

Similar to Shafiee et al.’s work [22], we designed the en-

vironmental factor models Rc
g(i) and Rs

g(i) to enforce that

an offspring deep neural network is limited to 70% of the

total number of synapses in its parent network in the previ-

ous generation; this allows increasingly more compact fea-

ture representations and for the synthesized deep neural net-

works to become progressively more efficient in the succes-

sive generations while minimizing any loss in accuracy. In

addition, each filter (i.e., collection of kernels) was consid-

ered as a synaptic cluster in the multi-factor synapse prob-

ability model, and both the synaptic efficiency and cluster

efficiency were assessed along with testing accuracy.

3.2. Experimental Results

An extension of Shafiee et al.’s cluster-driven genetic en-

coding scheme [22] for asexual evolutionary synthesis, the

use of sexual evolutionary synthesis during the synthesis of

offspring networks for evolutionary deep intelligence was

explored in this study. At each generation, the network test-

ing accuracy was evaluated and the corresponding architec-

tural efficiency was assessed in terms of cluster efficiency

(defined as the reduction in the total number of kernels in

a network relative to the first generation ancestor network)

and synaptic efficiency (defined as the reduction in the total

number of synapses in a network relative to the first gen-

eration ancestor network). Figure 4 and Figure 5 show the

testing accuracy, synaptic sparsity, and cluster sparsity of

networks synthesized using asexual and sexual evolution-

ary synthesis as a function of generation number, and eval-

uated on the MNIST and CIFAR-10 datasets, respectively.

Note that in both the asexual and sexual evolutionary syn-

thesis cases, there is a trade-off between testing accuracy

and architectural efficiency, i.e., testing accuracy decreases

as synaptic efficiency and cluster efficiency increase.

Figure 4 shows the MNIST testing accuracy and network

efficiency (synaptic and cluster) for networks synthesized

using asexual (red) and sexual (blue) evolutionary synthe-

sis. Figure 4 (a) shows the testing accuracy for networks

synthesized using asexual and sexual evolutionary synthe-

sis. For this experiment, the original fully-trained ances-

tor network (generation 1) had a testing accuracy of 99.5%
with 143,136 synapses and 7,200 kernels (corresponding to

a 1-channel input LeNet architecture [16]). As expected,

both asexual and sexual evolutionary synthesis produced

networks with slight decreases in testing accuracy (approx-

imately 3%); however, note that sexual evolutionary syn-

thesis produced this network by generation 8 with a testing

accuracy of 97.4% while asexual evolutionary produced a

corresponding network at generation 13 with a testing ac-

curacy of 97.1%.

Figure 4 (b) shows the synaptic sparsity for networks

synthesized using asexual and sexual evolutionary synthe-

sis and evaluated using the MNIST dataset. While networks

synthesized via sexual evolutionary synthesis and asexual

evolutionary synthesis produced similar testing accuracies,

the network synthesized using sexual evolutionary synthe-

sis at generation 8 has a synaptic efficiency of 258× and the

network synthesized using asexual evolutionary synthesis

at generation 13 has a synaptic efficiency of 139×. Fig-

ure 4 (b) shows that the synaptic efficiency of networks

synthesized using sexual evolutionary synthesis increases

more steeply over generations than the synaptic efficiency

of networks synthesized using asexual evolutionary synthe-

sis. With almost double the synaptic efficiency for com-

parable testing accuracy, this indicates that networks syn-

thesized via sexual evolutionary synthesis produce notably

more efficient and compact feature representations.

Figure 4 (c) shows the cluster sparsity for networks syn-

thesized using asexual and sexual evolutionary synthesis

and evaluated using the MNIST dataset. Like synaptic ef-

ficiency, the cluster efficiency of networks synthesized us-

ing sexual evolutionary synthesis is noticeably higher than

the cluster efficiency of networks synthesized using asex-

ual evolutionary synthesis, and Figure 4 (c) shows a sim-

ilar trend of increasing cluster efficiency over generations

for networks synthesized via sexual evolutionary synthesis

relative to asexual evolutionary synthesis. Specifically, the

cluster efficiency of the network synthesized using sexual

evolutionary synthesis at generation 8 is 34.3× while the

cluster efficiency of the network synthesized using asex-

ual evolutionary synthesis at generation 13 is 14.1×, further

indicating the potential of sexual evolutionary synthesis to

produce more efficient and compact feature representations.

Figure 5 shows the CIFAR-10 testing accuracy and net-

work efficiency (synaptic and cluster) for networks syn-

thesized using asexual (red) and sexual (blue) evolution-

ary synthesis. Figure 5 (a) shows the testing accuracy

for networks synthesized using asexual and sexual evolu-

tionary synthesis. In this experiment, the original fully-

trained ancestor network (generation 1) had a testing ac-

curacy of 77.1% with 144,736 synapses and 7,264 ker-

nels (corresponding to a 3-channel input LeNet architec-

ture [16]). While both asexual and sexual evolutionary syn-

thesis produced networks with decreased testing accuracy

(approximately 3% − 4%), sexual evolutionary synthesis

produced this network by generation 4 with a testing accu-

racy of 74.1% while asexual evolutionary produced a corre-

sponding network at generation 7 with a testing accuracy of

73.4%. Similarly for a testing accuracy decrease of approx-

imately 10%, sexual evolutionary synthesis produced this

network by generation 5 with a testing accuracy of 67.9%
while asexual evolutionary produced a corresponding net-

work at generation 10 with a testing accuracy of 67.9%.

Figure 5 (b) shows the synaptic sparsity for networks
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(a) MNIST testing accuracy vs. generations for synthesized

networks.

(b) MNIST synaptic efficiency vs. generations for synthe-

sized networks.

(c) MNIST cluster efficiency vs. generations for synthe-

sized networks.

Figure 4: MNIST testing accuracy and network efficiency

(synaptic and cluster) for networks synthesized using asex-

ual (red) and sexual (blue) evolutionary synthesis.

(a) CIFAR-10 testing accuracy vs. generations for synthe-

sized networks; point at 3 – 4% accuracy drop marked.

(b) CIFAR-10 synaptic efficiency vs. generations for syn-

thesized networks; point at 3 – 4% accuracy drop marked.

(c) CIFAR-10 cluster efficiency vs. generations for synthe-

sized networks; point at 3 – 4% accuracy drop marked.

Figure 5: CIFAR-10 testing accuracy and network effi-

ciency (synaptic and cluster) for networks synthesized us-

ing asexual (red) and sexual (blue) evolutionary synthesis.
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synthesized using asexual and sexual evolutionary synthe-

sis and evaluated using the CIFAR-10 dataset. With the

3% − 4% drop in testing accuracy, the networks synthe-

sized via sexual and asexual evolutionary synthesis have

similar synaptic efficiencies of 10.7× and 13.8×, respec-

tively. At the 10% testing accuracy drop, the network syn-

thesized using sexual evolutionary synthesis at generation

5 has a synaptic efficiency of 36.3× and the network syn-

thesized using asexual evolutionary synthesis at generation

10 has a synaptic efficiency of 30.7×. While only a slight

increase, this increase in synaptic efficiency still allows for

somewhat more compact feature representations, and net-

works synthesized using sexual evolutionary synthesis ex-

hibit a more exponential increase in synaptic efficiency rel-

ative to asexual evolutionary synthesis.

Figure 5 (c) shows the cluster sparsity for networks syn-

thesized using asexual and sexual evolutionary synthesis

and evaluated using the CIFAR-10 dataset. Unlike the

synaptic efficiency where the increase at the 10% testing

accuracy drop is marginal, however, the cluster efficiency

of networks synthesized using sexual evolutionary synthe-

sis is notably higher than the cluster efficiency of networks

synthesized using asexual evolutionary synthesis. Quanti-

tatively, there is marginal improvement in cluster efficiency

when comparing the networks with 3% − 4% drop in test-

ing accuracy; the cluster efficiency of the network synthe-

sized using sexual evolutionary synthesis is 2.20× at gen-

eration 4, and the cluster efficiency of the network synthe-

sized using asexual evolutionary synthesis is 1.96× at gen-

eration 7. At the 10% testing accuracy drop, the difference

in cluster efficiency becomes more pronounced. The cluster

efficiency of the network synthesized using sexual evolu-

tionary synthesis at generation 5 is 4.82× while the cluster

efficiency of the network synthesized using asexual evolu-

tionary synthesis at generation 10 is 3.06×. A more obvi-

ous increase relative to synaptic efficiency both in terms of

increase in cluster efficiency over generations and quanti-

tatively, the increase in cluster efficiency of networks syn-

thesized via sexual evolutionary synthesis allows for more

compact networks and feature representations.

Notice that in both the experiments with MNIST and

CIFAR-10 datasets, fewer generations were required to

reach similar levels of network performance (in this study,

the expected drop in testing accuracy) using sexual evolu-

tionary synthesis. It is worth noting that achieving a more

efficient deep neural network at earlier generations is ben-

eficial as it reduces the number of training steps required,

which is the most computationally complex aspect of the

evolutionary process. While more obvious in the experi-

ment with the MNIST dataset, it can also be seen that sex-

ual evolutionary synthesis produced networks that are more

efficient on both the synaptic and cluster levels. This is par-

ticularly noticeable when comparing the trends of synaptic

and cluster efficiency increase over generations, as the in-

creases in efficiency for networks synthesized via sexual

evolutionary synthesis follow a steeper exponential trend

than networks synthesized via asexual evolutionary synthe-

sis. Lastly, it is worth noting that the MNIST dataset allows

for considerably more increases in architectural efficiency

relative to the CIFAR-10 dataset; this is likely due to the

simplicity of the MNIST dataset (1-channel images of hand-

written digits) relative to the CIFAR-10 dataset (3-channel

natural images of objects).

4. Conclusion

In this work, we explored the effects of sexual evolu-

tionary synthesis when synthesizing offspring deep neu-

ral networks in an evolutionary deep intelligence approach.

An extension of the cluster-driven genetic encoding scheme

proposed by Shafiee et al. [22], we incorporated a second

parent network into the offspring network synthesis process

at each generation.

Overall, the use of sexual evolutionary synthesis showed

noticeable improvement in the architectural efficiency of

the synthesized networks with maintaining comparable test-

ing accuracy. In the case of the MNIST dataset, the off-

spring network synthesized via asexual evolutionary syn-

thesis at generation 13 had a cluster efficiency of only

14.1× and a synaptic efficiency of 139× while the offspring

network synthesized via sexual evolutionary synthesis at

generation 8 had approximately double the architectural ef-

ficiency (cluster efficiency of 34.3× and synaptic efficiency

of 258×); both networks had a testing accuracy of around

97%. Similarly for the CIFAR-10 dataset, the offspring net-

work synthesized via asexual evolutionary at generation 10

had a cluster efficiency of only 3.06× and a synaptic ef-

ficiency of 30.7× while the offspring network synthesized

via sexual evolutionary synthesis at generation 5 had a clus-

ter efficiency of 4.82× and a synaptic efficiency of 36.3×;

both networks had a testing accuracy of around 68%.

This suggests that sexual evolutionary synthesis in evo-

lutionary deep intelligence via the synthesis of offspring

neural networks using two parent networks can produce

more efficient network architectures and increasingly com-

pact feature representations, allow for higher levels of gen-

eralizability and adaptability in synthesized networks, and

encourage more diversity in the genetic encoding. As such,

further investigation into the effects of sexual versus asex-

ual evolutionary synthesis for network synthesis in evolu-

tionary deep intelligence would be beneficial, particularly

with the deep neural networks in a changing environment,

i.e., non-stationary environmental factor models.

Future work in this area includes a more thorough inves-

tigation into various methods for combining the parent neu-

ral networks, e.g., determining whether favouring the genet-

ics of the parent with a better fitness score (such as testing
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accuracy) would allow for a higher probability of passing

on beneficial traits to the offspring network and subsequent

generations. Other potential areas of future work include

associating strong task performance with specific synapses

or synaptic clusters in a deep neural network, and favouring

these specific sections of different parent networks during

the offspring synthesis process. Lastly, it would be ben-

eficial to extend the mating and synthesis process to in-

clude mate selection from a pool of potential neural net-

work mates to incorporate the notion of “survival of the

fittest” [29] into the evolutionary deep intelligence approach

to allow for a stronger overall population of networks.
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