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Abstract

Feature representation/learning is an essential step for

many computer vision tasks (like image classification) and

is broadly categorized as 1) deep feature representation;

2) shallow feature representation. With the development

of deep neural networks, many deep feature representation

methods have been proposed and obtained many remark-

able results. However, they are limited to real-world ap-

plications due to the high demand for storage space and

computation ability. In our work, we focus on shallow fea-

ture representation (like PCANet) as these algorithms re-

quire less storage space and computational resources. In

this paper, we have proposed a Compact Feature Repre-

sentation algorithm (CFR-ELM) by using Extreme Learn-

ing Machine (ELM) under a shallow network framework.

CFR-ELM consists of compact feature learning module and

a post-processing module. Each feature learning module

in CRF-ELM performs the following operations: 1) patch-

based mean removal; 2) ELM auto-encoder (ELM-AE) to

learn features; 3) Max pooling to make the features more

compact. Post-processing module is inserted after the fea-

ture learning module and simplifies the features learn by the

feature learning modules by hashing and block-wise his-

togram. We have tested CFR-ELM on four typical image

classification databases, and the results demonstrate that

our method outperforms the state-of-the-art methods.

1. Introduction

Feature representation/learning is an critical part for

many computer vision tasks, such as object detection [6, 22,

27], object recognition [10, 2], object segmentation [9, 12]

and image classification [11, 16, 21]. With years of re-

search, a lot of work has been done on how to extract effi-

cient and discriminative features manually or automatically.

But this is still a hot research field because of facing chal-

lenges from illumination, occlusion, deformations and so

on. Nowadays, neural network-based feature representation

methods have made remarkable achievements, and they can

be broadly categorized as deep and shallow feature learning.

Many deep feature learning algorithms have been pro-

posed for image classification problems. Ciregan et al. [4]

proposed a multi-column deep neural network which is a

wide and deep artificial neural network architecture, which

was claimed could match human performance on tasks like

traffic signs image classification. A pyramid convolutional

neural network was proposed for face representation by

adopting a greedy-filter-and-down-sample operation in [7].

Ouyang et al. [27] proposed deformable deep convolutional

neural networks to learn features for object detection. Sho-

jaeilangari et al. [28] used extreme sparse learning to repre-

sent facial images for robust facial emotions recognition and

achieved a high accuracy. However deep feature learning

algorithms require a lot of computational resources, large

amount of training time and huge storage space [29, 1].

In contrast, shallow feature learning algorithms usu-

ally don’t have these disadvantages and for some tasks

achieve performance comparable to deep feature learning

algorithms. For example, Coates et al. [5] analyzed the fea-

ture learning ability of single-layer networks and achieved

a high performance when the number of hidden nodes and

other parameters are pushed to their limits. A method of

unsupervised representation learning based on ELM is pro-

posed on in [31], in which, ELM-AE was adopted as the

learning unit, and a transferred layer was introduced. Be-

sides, local contrast normalization (LCD) and whitening

were employed as pre-processing steps. Chan et al. [3]

proposed a simple learning architecture named PCA net-

work (PCANet for short, and PCA is the abbreviated form

of ‘Principle Component Analysis’), which is quite intuitive

and can be efficiently estimated. PCANet has attained re-

markable results, but computing PCA costs a lot of time

and resources [17].

Our work is partially motivated by the recent results
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Figure 1. A schematic of two-stage PCANet.

in dimension reduction using ELM [17] which proved the

ELM’s generalization capability of learning local feature

with fast speed. Besides, our work is inspired by PCANet

architecture for its astonishing performance on image clas-

sification and pooling method adopted in many deep learn-

ing methods for its compact ability on feature extraction.

All of these lead us to come up with a novel ELM-based

shallow framework to learn compact features for image

classification.

In the following sections, we introduce the related work

on PCANet and ELM briefly. Then, we explain the whole

compact feature representation method (CFR-ELM) we

proposed, including the details of each feature learning

module, max-pooling module and the overall framework

for image classification which has a support vector machine

(SVM) as a classifier. The proposed algorithm is tested on

four typical image classification databases, and conclusions

are given finally.

2. Related work

PCANet was introduced as a shallow feature learning al-

gorithm in [3] and can be used as a simple baseline for deep

feature learning algorithms. It contains three different types

of modules: pre-processing, PCA filter convolution, post-

processing. In general, the first two types of modules are

combined together to form one feature learning layer. The

overall architecture of PCANet is created by connecting the

feature learning layers and the post-processing, and a two-

stage PCANet architecture is shown in Fig.1.

In the pre-processing state, the sliding window with no

stride is used to extract patches and remove the mean as:

x̄k = xk −

∑n
i=1

xki

n
1 (1)

, where xk denotes the k-th patch which contains n pixel

values, and 1 is an all one vector whose size is the same with

xk. All patches are combined together to form a normalized

matrix X . After that, a PCA filter convolution operation is

done. The objective function of PCANet is to minimize the

reconstruction error with a set of filters, which is expressed

as

argmin
V

‖X − V V TX‖2
F

(2)

, where V is an orthogonal matrix, and ‖ · ‖2
F

is the Frobe-

nius norm. The solution of the objective function is known

as the principal eigenvectors of X’s covariance matrix.

First l principal vectors (called PCA filters) are chosen as

a convolution core to extract the features of the original im-

ages.

The second stage is similar to the first stage, and the main

difference is that the total number of patches to be processed

is L (the number of filters in the first stage) times of the first

stage. With the increase of stages, the amount of patches to

be processed becomes larger and larger.

From the above analysis, we know that PCA learns a

linear transformation, and it is not enough for represent-

ing the complex real-world features. ELM can make up

this by its inherent abilities of linear and nonlinear rep-

resentation. Extreme learning machines (ELM) was pro-

posed along with the interdisciplinary development of ef-

fective machine learning theories and techniques in 2006

[15]. ELM has been attracting the increasing attentions

from more and more researchers due to the amazing abilities

of classification, regression, feature learning, sparse cod-

ing, and compression [14]. It has successfully been applied

in more and more real industrial applications and usually

achieves comparable or better results than many conven-

tional learning algorithms at much fast learning speed.The

basic ELM is expressed as:

β = Y (g(WX +B))†. (3)

In Equ.3, X is a D × N matrix that denotes the input

data, where D is the number of features, and N is the num-

ber of samples. W is a Nh × D weight matrix between

the input layer and the hidden layer, and the elements in

W is randomly initialized. B is a Nh × N bias matrix of

the hidden neurons, where the first column is randomly ini-

tialized, and other columns are the duplicates of the first

column. Y is the target data, and it is replaced by X for

the auto-encoder, that is, Y = X . β is a D × Nh weight

matrix between output layer and hidden layer. g(·) is an

activation function, which can be a Sigmoid function (de-

fault), a Sine function, a Radbas function, etc. The (·)† is a

Moore-Penrose pseudoinverse operator.

Feature learning with ELM based on auto-encoder

(ELM-AE) for big data is introduced in [23]. Recently, di-

mension reduction with extreme learning machine is ana-

lyzed in [17]. In this paper, ELM-AE is adopted as the core

function of learning the features of input patches.

Most closely to our work is the hierarchical extreme

learning machine (H-ELM) proposed in [31], which also

uses ELM-AE to extract local receptive features and the

training patches are randomly selected. In our proposed

method, we drop out no patches and adopt a full connec-

tion network, which simplifies the network and need fewer

parameters. Besides, we have a max-pooling layer for each

feature learning state for learning a compact feature repre-

sentation and the network architecture of our method is far
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simpler since we have no whitening pre-processing and the

connections between the first layer and last layer.

3. Compact Feature Representation using

ELM

3.1. Overall Framework

To learning compact features efficiently, we proposed a

shallow feature-learning architecture using ELM and the

framework is shown in Fig.2. Each central processing

unit of this framework consists of three parts: patch-based

ELM auto encoder (AE), patch-based ELM decoder, and

max-pooling operation. After the main process, two post-

processing modules are added, and they are binary hashing

and block-wise histogram respectively.

For image classification, assume the database has N im-

ages Ii (i ∈ [1, N ], and the resolution of each image is

W ×H) and the corresponding labels are Yi. The target of

learning a more efficient representationR(·)of Ii is to mini-

mize the loss function
∑N

i=1
‖C(R(Ii)− Yi)‖, where C(·)

denotes a classifier. In our work, support vector machine

(SVM, [8]) is adopted to find the patterns of the learned

features.

3.2. Unit of CFR­ELM

To remove the influence of illumination, we implement a

patch operation of subtracting the mean. Assume the width

and the height of the patch are wp and hp respectively, then

we convert each sliding wp × hp window of the image Ii
into a column. All the columns construct a matrix Xi by

subtracting their means one by one. The width of Xi is

(W − wp + 1)× (H − hp + 1) and the height is wp × hp.

An auto-encoder based on ELM is implemented to learn

the features from all the Xi, which are denoted as X. We

have introduced the details of ELM in Section 2. Three

differences between ELM-AE and the basic ELM are listed

as below:

• The input weight W and the bias B are both orthog-

onal matrixes. That is, we have W TW = I and

BTB = I with regard to ELM-AE.

• The output weight β is an orthogonal matrix. That is,

βTβ = I .

• The output of the ELM-AE network equals to the in-

put.

Here, the number of hidden nodes NFk
corresponds to

the number of convolution filters Fk that we use in the k-th

stage of the network. The filters are named as “channels”

that are presented in Fig. 2. NFk
can be learned by opti-

mization, and empirically it can be assigned a number less

than 10 due to the limitation of the resources.
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Figure 2. The framework of CFR-ELM

With the filters we get from ELM-AE, we can compute

the outputs of the patches (overall denoted as X) from the

raw samples. The outputs are used to represent the patterns

of the raw samples. To keep the information on the edges,

we pad each sample with zeros in its surroundings. In our

experiments, we pad w−1 columns and h−1 rows of zeros

before the first element and after the last element along the

horizontal and vertical directions respectively. After that,

the same process of mean-removal patch operation is per-

formed. Finally, we can achieve all the patches X of one

sample, whose output O in the k-th stage of the network is

1017



expressed as

O = Fk ∗X, (4)

where Fk is the filter banks that we have achieved from

the ELM-AE, and X indicates the input samples that have

been processed with zeros-padding and mean-removal op-

erations. The output O have NFk
layers for each X in the

k-th stage.

Noted that the size of each channel after the first ELM

feature learning module is still W1 ×H1 with the cropping

operation has been performed to countervail the impact of

padding. So, the dimension of the output O of X increases

toW1×H1×NFk
, which requests lots of storage space and

a large amount of computation. To learn a compact feature

representation, O is fed to a max pooling layer (shown in

Fig.2 which is highlighted with golden poppy font).

Max pooling (MP) can significantly reduce the dimen-

sion of the input representation with losing limited valid

information by the assumption that features are contained

in the subregions. Each non-overlap subregion of O is pro-

cessed with a max filter, and the maximum values are re-

tained to represent the corresponding subregions. Assume

the size of the subregion of max pooling is WMP ×HMP ,

then after passing the max pooling layer, the dimension of

O will be (W1/WMP )×(H1/HMP ∗NFK
). Performances

on image classification are provided and compared in Sec-

tion 4.

Units of CFR-ELM are connected in sequence, and each

unit is similar to the first unit but can have different param-

eters. Two units are adopted in our proposed shallow and

compact feature representation architecture (denoted as S).

3.3. Post­processing Modules and Classification

CFR-ELM contains two post-processing modules: bi-

nary hashing and block wise histogram. They play an im-

portant role to transfer the output of the central processing

units into a more efficient form. From the explanation of

ELM, we can achieve NF output images for each sample,

and all the output images are reshaped into the same size

with the input images. Here, we have NF =
∏S

k=1
NFk

.

There are NFS−1
outputs Ψ for one raw sample in the

stage S − 1, and each ψ♯ ∈ Ψ (♯ ∈ [1, NFS−1
]) is processed

by FS filters in the stage S and generates FS correspond-

ing outputs Θ. Each θ~ ∈ Θ (~ ∈ [1, FS ]) is converted to

a binary data matrix θ′
~

with a zero threshold. A hashing

processing is performed on all the θ′, and the operation is

expressed as

T♯ =

FS∑

~=1

2FS−~θ′
~
. (5)

The block-wise histograms are computed for all the

blocks we achieved with the sliding window technique. As-

sume the size of the block is represented as wb ×hb and the

overlap rate of the blocks is denoted as ǫ, then the stride size

of the sliding windows is 〈(1 − ǫ)wb × (1 − ǫ)hb〉 (〈·〉 is a

rounding operator). We go through the entire T♯ with this

stride and compute the block-wise histogram for each block

and combine them together to form the final features.

SVM is adopted to make a classification decision based

on the obtained compact features. It constructs an optimal

hyperplane for the independent samples in feature space to

maximize the functional margin and minimizing the mis-

classification cost (approximately equivalent to the number

of misclassification samples) simultaneously. The advan-

tage of SVM is the sparseness of the solution and good gen-

eralization ability even in a high dimension space.

4. Experiments

With the development of techniques for feature extrac-

tion and image classification, the accuracy has been very

high for many datasets. To better exhibit the effectiveness

of our proposed method, we make the test more difficult by

decreasing the amount of training samples significantly and

take more samples for testing. In our experiments, we test

our algorithms on four classical image databases: a variant

of MNIST (from Mixed National Institute of Standards and

Technology [19]), Coil-20/100 (from Columbia Object Im-

age Library [26, 25]), ETH-80 (from Eidgenssische Tech-

nische Hochschule Zrich [20]), and CIFAR-10 (from Cana-

dian Institute for Advanced Research [18]). The first dataset

is for digits classification, the second and third datasets are

for controlled-environment objects classification, and the

last one is for real-world objects classification.

To have a fair comparison with PCANet, the parame-

ters assigned in our method are the same with the optimized

PCANet (refer to [3] for more details on how to find the op-

timized parameters). We adopt two-stage(S = 2) network,

and the number of filtersNF1
andNF2

are assigned to eight.

The size of patches is 7× 7, and max-pooling size is 2× 2.

The block size wb and hb are both assigned as seven. Error

Rate is adopted to evaluate the performance of the experi-

ments, and ER equals to

∑n
i=1

([Pi 6= Ti])

N
, where the value

of [⋆] 1 when ⋆ is true and 0 if ⋆ is false. So, we know that

the smaller ER is, the better the performance is. We have

evaluated all the possible overlap rate ǫ from 0 to 0.9 by a

step of 0.1, so for each dataset, we can obtain ten error rates.

The size of all the samples used in our experiments is

consistent with the original resolution of these databases.

We consider that obtaining higher accuracy by resizing the

original images is unfair and not reasonable due to the curse

of dimension. Additionally, we use less training samples

and more test samples for the above three databases for

a better illustration of the effectiveness of our algorithms.

Even though our algorithm has the ability of generalization,

some few parameters still should be noted. In the following

subsections, we evaluate the performances of our method
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Figure 3. Several sample images from MNIST dataset.

and PCANet on these databases separately. Few of the re-

lated state-of-the-art results are also be compared briefly.

4.1. Digits Image Classification

We first evaluate our proposed method on a variant of

the widely used handwritten digits (0 - 9) image database

MNIST, whose original version includes 60k training sam-

ples and 10k samples, and the state-of-the-art error rate is

0.21% [30]. The variant of MNIST has much less training

samples and more test samples, which means that it is much

more challenging. Specifically, 10k, 2k, and 50k samples

are used for training, validation, and test respectively. Clas-

sification of Handwritten Digits is not an easy task since

thickness and rotation angles may differ a lot even for the

same digit. The resolution of each image is 28×28, and the

amounts of these ten digits have an approximate uniform

distribution. We have shown some samples from MNIST in

Fig.3 and the total number of each digit for training and test

in Fig.4.

"0"
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"2"

"3"

"4"
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"7"

"8"

"9"

1001

1127
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194

209

183

215

4892

5625

5001

5110

4875

4552

4888

5191

4916

4950

Training Validation Test

Figure 4. Amounts of the 10 digits in the MNIST variant.

For a better visualization of the mean-removal process,

we have randomly selected ten samples for each digit from

the database and show their mean-removal results in Fig.5.

Figure 5. Results of the mean-removal patch operation. Each 28×
28 image after the 7× 7 patch mean-removal process.

Table 1. Results of PCANet and CFR-ELM with and without max

pooling on the MNIST variant dataset.

Overlap

Rate (ǫ)
ER & ER+MP ([1, 1]) (%)

PCANet CFR-ELM

0.0 1.150 1.082

0.1 1.118 1.052

0.2 1.118 1.022

0.3 1.066 1.094

0.4 1.072 1.010

0.5 1.072 1.034

0.6 1.020 0.990

0.7 1.050 1.040

0.8 1.058 1.022

0.9 1.058 0.980

With the parameters we have introduced above, we have

achieved ten error rates corresponding the ten overlap rates

ǫ. The results of PCANet and our method are indicated in

Table.1 (the lower error rate has been set to bold). After

the comparison, we know that our method has got a 0.980%
error rate and achieved lower error rates for the nine out of

ten overlap rates and it performs 4.18% (the average of the

improvement rates) better than PCANet.

We have also performed our algorithm on the original

version of MNIST dataset and obtains 0.49% error rate

which outperforms PCANet’s 0.62%.

4.2. Coil­20 & Coil­100 Databases

Coil-20 is a gray-level black-background image database

of 20 objects (shown in Fig.6 (a)). Objects are placed in a

360◦ turntable, and the table rotates 5◦ each time. So 72

images are captured for each object. Each image is cropped

with a rectangle along the boundary of the object, and all
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images are resized to 128×128 by maintaining the shape

of the objects (shown in Fig.6 (b)). Coil-100 database is

collected in the same controlled environment, but with more

objects and all the images are colored. In the previous, they

selected 1/3 or 1/2 of the samples for training. To make

the classification problems more challenging, we split the

samples into six groups and randomly select one of them

for training, and the other groups are used for the test.

(a)

(b)

Figure 6. Several sample images from Coil-20 (a) and Coil-100

datasets (b).

The parameters setting for our method and PCANet are

same with to the parameters assigned on MNIST except that

the max pooling size is 2× 2. Error rates are list in Table.2

and Table.3

4.3. ETH­80 shape classes Database

Even though the images of both ETH-80 database and

Coil-100 database are colored and same size, the former is

more challenging than the latter due to the following rea-

Table 2. Results of PCANet and CFR-ELM with and without max

pooling on the Coil-20 dataset.

Overlap

Rate (ǫ)
ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 9.500 8.000 6.667 5.500

0.1 9.500 8.000 6.417 4.750

0.2 9.500 8.083 6.417 5.167

0.3 9.667 8.167 6.417 5.333

0.4 9.500 7.417 6.500 4.750

0.5 9.500 8.250 6.500 4.500

0.6 9.667 7.417 6.083 4.417

0.7 9.833 7.583 5.833 3.917

0.8 9.750 7.750 6.167 5.000

0.9 9.750 7.833 6.167 4.667

Table 3. Results of PCANet and CFR-ELM with and without max

pooling on the Coil-100 dataset.

Overlap

Rate (ǫ)
ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 11.830 9.050 6.183 5.600

0.1 11.680 10.300 6.083 5.683

0.2 11.680 8.550 6.083 5.267

0.3 11.780 8.920 6.033 5.850

0.4 11.770 10.400 5.967 5.133

0.5 11.770 10.270 5.967 5.533

0.6 11.850 9.150 5.617 5.400

0.7 11.870 10.470 5.700 5.367

sons:

• Color Background. Images of ETH-80 have a non-

uniform blue chromakeying background while images

of Coil-100 have a black background. Non-uniform

background increases the useless information and af-

fects the classifier’s performance in further.

• Subcategories. ETH-80 contains 80 objects (shown in

Fig.7) from 8 chosen categories (or super categories),

that is, each category has ten subcategories. Different

subcategories are adopted for training and test, which

requires that the feature learning algorithms be suffi-

ciently capable to learn the common characteristics of

various objects of same super categories.

In the previous work [20, 13], they use not less than half

of the dataset for training. While in our experiments, eight

out of ten subcategories are used as test samples for each

category.

We have compared our method with PCANet and the er-

ror rates are shown in Table.4 and the max pooling size is

assigned as 2 × 2. It is clear that our method outperforms

PCANet under all overlap rate.
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Figure 7. Several sample images from ETH-80 dataset.

Table 4. Results of PCANet and CFR-ELM with and without max

pooling on the ETH-80 dataset.

Overlap

Rate (ǫ)
ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 20.351 19.512 18.052 16.374

0.1 20.236 21.113 16.054 15.815

0.2 20.236 19.817 17.744 15.815

0.3 20.122 19.970 17.687 15.100

0.4 20.160 18.674 16.924 15.772

0.5 20.160 18.483 17.565 15.772

0.6 19.817 19.627 16.128 16.301

0.7 19.588 19.855 16.859 16.872

0.8 19.360 18.293 17.219 16.638

0.9 19.360 20.922 17.500 16.638

4.4. CIFAR­10

The CIFAR-10 dataset is more challenging than all the

above databases. It contains 60k 32 × 32 color images

in 10 classes, and each class has the same amount. All

the images are collected from the real-world scene, and

the images are cropped without removing the various back-

ground. Besides, objects are difficult to identify due to the

different conditions of illumination, occlusion, and non-

alignment. Some samples are randomly selected from

CIFAR-10 database and shown in Fig.8.

In our experiment, the experimental setup here is similar

to [18, 24, 3]. However, due to the limited memories, we are

30k samples in the training set, and the remains are used for

the test. And we only go through the overlap rate from 0 to

0.7 by the step of 0.1. For the experiments with max pooling

layers, WMP and HMP are both set to 4. The results of our

proposed method on CIFAR-10 are given in Table.5.

From the results we can see, our method outperforms

PCANet in the majority of cases with or without map-

pooling operation.

5. Conclusion

In this paper, we propose a novel compact feature rep-

resentation method named CFR-ELM, which has a shallow

Figure 8. Several sample images from CIFAR-10 dataset.

Table 5. Results of PCANet and CFR-ELM with and without max

pooling on the CIFAR-10 dataset.

Overlap

Rate (ǫ)
ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 27.606 26.697 26.130 24.447

0.1 27.720 25.865 24.698 24.954

0.2 27.710 26.290 25.909 24.324

0.3 27.447 26.121 26.094 25.267

0.4 26.440 25.951 25.260 23.760

0.5 26.194 26.689 24.520 25.157

0.6 26.110 26.376 24.930 24.117

0.7 26.550 26.136 26.058 24.854

network architecture. A detailed introduction is given to

its framework, which contains critical units based on ELM,

post-processing modules, and the classification using SVM.

We have explained the reason why CFR-ELM can learn

efficient and compact features by adopting ELM auto en-

coder and the max pooling operation. The experiments on

four typical variant databases prove the effectiveness of our

proposed method since CFR-ELM achieves impressive re-

sults by learning a better compact representation of the input

data. Different overlap rates have been analyzed, and ex-

periments with and without max pooling layers have been

implemented and compared. The error rate of CFR-ELM is

generally lower than PCANet.
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