
 

 

 

Abstract 

 

The problem of one-on-one target tracking from a single 

monocular image acquired from the viewpoint of a follower 

robot itself is studied in this paper. Previous works mainly 

depended on locating, onboard sensors with control 

mechanism, while robot may not carry advanced onboard 

equipment for localization or GNSS may also fail in 

GNSS-denied/Indoor environments. In this paper we 

propose a novel approach based on a deep convolutional 

neural network called Deep-Track, which trains a 

supervised image classifier only using images captured by 

the camera in the follower robot. Specifically, the 

Deep-Track system can output the estimated velocity of the 

target as well as the velocity control for the follower, by 

operating merely on two adjacent frames. In order to verify 

the effectiveness of Deep-Track, we build up a large-scale 

dataset in the simulator, in which the performance of the 

Deep-Track is evaluated and it is shown that a high 

tracking accuracy is achieved. 

 

1. Introduction 

In the research field of traditional computer vision, the 

problem of tracking is very common and many methods 

have been proposed for addressing the problem in certain 

scenarios, such as tracking a target from a video or in many 

images. Target detection, tracking and recognition are 

closely interrelated areas with significant overlaps. When 

tracking a target in a video, the target should be recognized 

and labeled in each frame of the video. Naiyan Wang et al. 

[1] cast this problem by training a stacked denoising 

auto-encoder offline to learn generic image features that are 

more robust against variations. Hyeonseob Nam et al. [2] 

propose a novel visual tracking algorithm based on the 

representations from a discriminatively trained 

Convolutional Neural Network. Tracking in many pictures 

also aims to identify the target. Fayao Liu et al. [3] propose 

to use the feature learning pipeline for visual tracking. 

Tracking problem is also necessitated in a variety of 

multi-robot systems. For example, a police robot may track 

a criminal target or an unmanned aircraft may track an 

adversarial target [4], which may be formulated as 

one-on-one target tracking: a moving target is tracked by a 

moving follower. Solving the problem of one-on-one 

tracking is also important for many other applications, 

including flocking and formation control, where a robot 

may need to track and follow the leader robot [5]. 

Several previous works deal with target tracking in 

multi-robot system based on locating and control 

mechanism. Paolo Pirjanian et al. [6] propose an approach 

for multi-robot coordination in the context of cooperative 

target acquisition, which is based on multiple objective 

behavior coordination extended to multiple robots and may 

also be used in one-on-one target tracking. Some other 

works propose to use directional onboard sensors [7], [8] 

and implemented the directional sensing of electromagnetic 

waves [9]. 

For specific formation and flocking scenarios, some 

works also develop the tracking method by exploiting the 

prior knowledge exhibited in the target-follower 

geometrical relationships. For example, when a team of 

unmanned vehicles perch a line, a robot may identify the 

robot in front as the target and follow it. Kartik Mohta et al. 

[10] formulate the position-based visual servoing problem 

for a quadrotor equipped with a monocular camera and an 

IMU relying only on features on planes and lines in order to 

fly above and perch on arbitrarily oriented lines. However, 

in a lot of scenarios, unmanned vehicles may not carry 

advanced onboard equipment for localization, while GNSS 

may also fail in GNSS-denied/Indoor environments. 

Therefore, most methods proposed in the literature may fail 

or their performance may degenerate significantly. 

Against the background, we propose a novel approach 

called Deep-Track in this paper that only depends on 

monocular images captured by a single forward-looking 

camera and cast the tracking problem in flocking and 

formation control as an image classification task. 

Specifically, we estimate the approximate velocity of the 

target only depending on the two images perceived by the 

followers in two adjacent frames. By adopting a supervised 

end-to-end machine learning approach based on Deep 

Convolutional Neural Networks (DCNNs), which operates 

directly on the image’s raw pixel values, Deep-Track 

outputs action controls for the robot. Our main 

contributions of this paper are described as follows: 
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Figure 1: The target moves from the state of T1 to the current state of T2. Image1 and image2 are perceived by the follower in T1 and T2 

respectively. After that, we construct a network to learn the difference and recognize the velocity of the target. Then, the velocity will be 

sent to the follower in order to keep tracking. 

 

 Firstly, a one-to-one target tracking algorithm relying 

only on monocular images is proposed, called Deep-Track, 

is exempted from explicit determination on the 

characteristic features of the target.  

 Secondly, a large-scale dataset is efficiently acquired in 

simulation environments, which is used for training and 

testing the Deep-Track algorithm. 

 Finally, remarkable tracking performance is achieved by 

the proposed Deep-Track. 

2. Visual tracking of the target 

In order to successfully track a target, a robot has to 

perceive where the target is and how it moves from the last 

time step, then react in order to maintain the distance from 

the target. In this paper, we propose a DCNN-based 

approach for one-on-one visual target tracking and show 

experimental results on an autonomous robot. We consider 

two monocular images in two adjacent frames from a 

forward-looking camera as inputs, as illustrated in Figure 1. 

Using a single monocular image may also train a classifier 

with lower computational complexity, however the decision 

is not reliable as it exploits very little 3-D information for 

capturing the velocity. Our method of using two adjacent 

images may be seen as the simplest form for 

image-sequence based classifier, which extracts 3-D 

information [11] by exploiting the visual difference in 

adjacent frames, achieving higher classification reliability. 

When a target moves with a certain velocity, there are 

rules to follow which is about the differences of some pixels 

between images perceived by the followers in two adjacent 

frames (see in Figure 2).  We may adopt machine learning to 

acquire these rules and cast the tracking problem as an 

image classification task by labelling input images with 

different velocities. 

  

 
a(1) a(2) 

 
b(1) b(2) 

 
c(1) c(2) 

 

Figure 2: The target moves from the state of last time step T1 to 

the state of current time step T2 with the linear velocity of 0.2 m/s 

and the angular velocity of 0.2 m/s. There are three pairs of data. 

Image1 (the left one) and image2 (the right one) are perceived by 

the follower Turtlebot in T1 and T2 respectively. 

 

Image2 in T2 

Target in T2

Target in T1 
Follower 

Image1 in T1 
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As for this tracking problem, it may also be suitable to 

use regression because the velocity of robot is continuous. 

However, this paper considers a demo with affordable 

computational complexity, by casting control problems of 

robots as classification tasks as in [12] and [13]. In our 

future work, a comprehensive comparison between 

regression and classification based approaches will be 

carried out. 

During our experiment, we choose Turtlebot-2 as the 

target and the follower. TurtleBot-2 is a low-cost, personal 

robot kit with open-source software. It was created at 

Willow Garage by Melonee Wise and Tully Foote in 

November 2010. With TurtleBot, we are able to build a 

robot that can drive around the indoor environment, possess 

enough horsepower to create exciting applications. More 

importantly, its full-3D model is available in simulators, 

which captures the sensing, control, kinematics and 

dynamics behavior of TurtleBots. 

 
a(1) a(2) 

  

b(1) b(2) 

 
c(1) c(2) 

Figure 3: There are three pairs of images that are collected when 

the linear velocity is 0.5 m/s and the angular velocity is 0.5 m/s. 

When the target robot moves, it may get out of the view of the 

camera on the follower robot easily (See the second image of each 

pair of data). 

 

Due to the limitation of robotic maneuverability and in 

order to track accurately, we consider a discrete set of 

velocities for the target robot: the range of the linear 

velocity and the angular velocity are (0.0 m/s, 0.5 m/s] and 

[-0.3 m/s, 0.3 m/s] respectively. The two kinds of velocities 

are not within the same range because target tracking may 

fail when the angular velocity of target is too large and 

beyond the perceiving capabilities of the camera on the 

follower robot (See in Figure 3). The follower robot can 

change its pose until the camera is able to perceive the target 

robot, but this process is time-consuming, thus cannot meet 

the real- time requirement. Therefore, we consider a 

velocity set that contains eight velocities for the sake of 

classification, as illustrated in Figure 4. 

 
(1) Linear velocity: 0.2m/s 

Angular velocity: 0.0 m/s 

(2) Linear velocity: 0.5 m/s 

Angular velocity: 0.0 m/s

 
(3) Linear velocity: 0.4 m/s 

Angular velocity: 0.3 m/s 

(4) Linear velocity: 0.4 m/s 

Angular velocity: -0.3 m/s 

 
(5) Linear velocity: 0.5 m/s 

Angular velocity: 0.2 m/s  
(6) Linear velocity: 0.5 m/s 

Angular velocity: -0.2 m/s 

 
(7) Linear velocity: 0.2 m/s 

Angular velocity: 0.2 m/s 

(8) Linear velocity: 0.2 m/s 

Linear velocity: -0.2  m/s 

Figure 4: Illustrations of the selected velocity classes. 

2.1. Dataset 

One of the advantages of Deep-Track in one-on-one 

target tracking is that the information about the distances 

and positions of robots can be effectively and directly 

extracted from the visual images. The DCNN-based 

classifier in Deep-Track needs to be trained to achieve 

satisfactory performance and there is no dataset readily 

available, hence a wide range of data is collected with 

different poses, positions and distances between the target 

and the follower. 

Each pair of images is classified according to its 

Euclidean distance from the candidates in the velocity 
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classes, i.e. associated to its ground-truth class. All images 

are perceived by a forward-looking camera and we collect  

 
Figure 5: This is the scenario when we collect the dataset and there 

is no obstacle. 

 

Step 1: At first, the follower robot captures the 1-st image of the 

target. 

Step 2: A certain velocity is sent to the target robot. 

Step 3: At the meantime, the follower robot captures the 2-nd 

image of the target 

Step 4：The follower robot adopts the same velocities as the 

target. 

Figure 6: The process when we collect the dataset. 

the dataset in the scenario illustrated in Figure 5. The 

dataset is composed by 8000 pairs, namely, 16000 images 

collected at 20 positions. For a certain pair of the images 

generated in the dataset, the follower robot captures the 1-st 

image of the target, then a sequence of velocities is sent to 

the target robot in the next time step and the target robot 

moves. At the meantime, the follower robot captures the 

2-nd image of the target, then adopts the same velocities as 

the target. In this paper, we use a vector to represent the 

velocity: [linear velocity, angular velocity]. 

A labeled data is composed of two images perceived by 

camera on the follower, along with the label indicating its 

ground-truth velocity within the velocity class. The process 

is described in Figure 6 and three examples of data are 

shown in Figure 7. 

 
a.(1) a.(2) 

(a) Left image is the first one and right image is the second 

image. The groundtruth class is the velocity of [0.5, 0.2]. 

 
b.(1) b.(2) 

(b) Left image is the first one and right image is the second 

image. The groundtruth class is the velocity of [0.2, -0.2]. 

 
c.(1) c.(2) 

(c) Left image is the first one and right image is the second 

image. The groundtruth class is the velocity of [0.5, 0.0]. 

Figure 7: two examples of data. 

2.2. Deep Convolutional Neural Network for Tracking  

Based on the labeled dataset, we address the tracking 

problem as a supervised machine learning task. We use 

DCNN as the image classifier, and design its architecture as 

shown in Figure 8. We consider two matrices with a size of 

 Vt 

Vt 
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Figure 8: The architecture for the Deep Convolutional Neural Network used in our method. The input image I1, as well as image I2, are all 

fed into a 6 × 6 convolution with stride 2, followed by a 5 × 5 convolution and a 3 × 3 max-pooling. This is followed by a 5 × 5 convolution 

and a 3 × 3 max-pooling again. Then they are merged to the size of 27 × 27 ×64 using concatenation. The result is then processed by three 

5 × 5 convolutions, two 3 × 3 max-pooling layers, and four fully connected layers after which the network outputs the classification result. 

 

3×472×472 as inputs, followed by several hidden layers and 

eight output neurons. The input image pair is firstly resized 

from 640×480 to 472×472 pixels, and the resulting 

3×472×472 RGB values are directly mapped to the neurons 

in the input layer. 

Then, the images pass through a two-stage DCNN, where 

the first stage includes two independent channels, while the 

second stage merges the two channel outputs using the 

operation of concatenation and extracts the difference 

feature together with the output of the classification results. 

As a first remark on the DCNN design, we divide the DCNN 

into two channels at first. As for two channels, we extract 

features of the first image and the second image 

respectively. It can be more efficient and targeted when we 

extract features than merging the two images at first. 

The two stages are described as follows: 

 First-stage: Each pair of images is passed through the 

network respectively to extract the features of each image. 

After 6 × 6 convolution with stride 2, followed by two 5 × 5 

convolutions and two 3 × 3 max-pooling layers, they are 

compressed to feature vectors having the size of 27 × 27 

×64.  

 Second-stage: In order to extract the features of 

differences between two images in one pair, the result after 

concatenation is then processed by three 5 × 5 convolutions, 

two 3 × 3 max-pooling layers, and three fully connected 

layers with 8 units, after which the network outputs the 

classification result. For a given input, the DCNN outputs 

eight values, representing the probability that the input has 

for each velocity class. 

The network takes the image I2 of the current time step T2, 

together with an additional image I1 perceived in the last 

time step T1 as inputs. This additional image is used to be 

compared with the current image and they are all passed 

through the hierarchical classifier and the classifier outputs 

the velocity of the target according to raw pixels. In order to 

keep tracking, the velocity retrieved from the network is 

then sent to the follower.  

Implementation details of the layers in the Deep-Track 

DCNN is given below: 

1. Firstly, layers of the first-stage are all processed by the 

batch normalization except concatenation layer. We use a 

decreasing learning rate from 0.01 to 0.0001 and the 

iterations of training phase is 30000. 

2. Secondly, the convolutional layer performs 2D 

convolutions of their input channels with a rectangular filter 

[14]. If there are several channels in the previous layer, the 
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results of the corresponding convolutions are summed and passed by a scaled hyperbolic tangent activation function. If 

3. the filter better matches the content of the map, a higher 

activation is given.  

4. Thirdly, the max-pooling layers [15] also referred to 

subsampling layer are adopted for decreasing the map size, 

thus reducing the network complexity.  

Finally, the output layer is a fully connected layer with 

one neuron per class activated by a soft-max function. Each 

output neuron’s activation can be interpreted as the 

probability of the input image belonging to that class. We 

train this network with a Cross-Entropy loss and using 

Gradient Decent method for optimization. 

3. Experimental results 

In order to validate the effectiveness of our method, we 

first choose an environment to collect the data, then 

construct, train and test the DCNN in Deep-Track. 

3.1. Experimental setup 

As for the first work, we form our dataset in the simulator 

named Gazebo [16] based on Robot Operating System 

(ROS) [17]. The ROS is a set of software libraries and tools 

that enable us to build robot applications. Gazebo offers the 

ability to accurately and efficiently simulate populations of 

robots in complex indoor and outdoor environment. In ROS, 

programs exist in the form of nodes and message exchange 

occurs among nodes when one node publish or subscribe 

topics. Considering formation or flocking applications, we 

assume that the target and the follower are at the same pose 

all the time.  

The developed message publishing and subscribing 

structures in data collection process and testing process in 

ROS are illustrated in Figure 9 and Figure 10 respectively.  

(1) The data collection process: 

As shown in Figure 9, there are two modules, the data 

collection module and the simulation module. In the data 

collection module, node A is responsible for collecting the 

image data consisting of multiple image pairs denoted by I1 

and I2, while node B is responsible for collecting the image 

labels, namely the velocities of the target robot. In the 

simulation module, node C and node D simulate the 

behavior of the follower and the target robot in the Gazebo 

environment respectively. 

The detailed steps of the data collection process are given 

below: 

 Firstly, node A subscribes the topic referring to message 

of the camera in the follower robot and stores the image as 

I1.  

 Then, node E publishes the topic referring to the velocity 

of the target for 5-second, while the target robot 

implemented by node D subscribes the topics.  

  Afterwards, node A subscribes the topic referring to 

message of the camera in the follower robot again and stores 

the image as I2.  

 The topic lasting 5-second about the velocity of the 

target/follower is published by node E again, while the 

follower robot implemented by node C subscribes the topic 

in order to keep track of the target robot. 

Following the process indicated in Figure 10, we collect 

8000 pairs, 16000 images in one scenario that are described 

in Section 2. 

 
Figure 9. The nodes relationship graph for the training process. 
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Figure 10. The nodes relationship graph for the testing process. 

 

(2) Testing process 

The nodes relationship graph for the testing process is 

shown in Figure 9. Compared to the data collection process, 

the major difference implemented in the testing process is 

that an additional module DCNN is adopted, which is the 

core module in Deep-Track.  

The DCNN subscribes the images captured by the camera 

of the follower robot, classifies its class and hence gets the 

velocity of the follower robot. In comparison, in the data 

collection process, the velocity of follower robot is directly 

generated from node E. 

When constructing the model of DCNN, we program it 

with the library of TensorFlow [18] which is an open source 

software library for numerical computation using data flow 

graphs. Computation nodes in the data flow graph represent 

mathematical operations, while the graph edges represent 

the multi-dimensional data arrays (tensors) that flow 

between them. When we construct the model of DCNN, 

roughly five steps are required: 

 Define the layers: convolutional layer, pooling layer and 

normalization layer. 

 Define the variables of weights and bias and construct the 

graph using the layers that are defined before. The images 

used as input and labels are all described as placeholders. 

 Define loss, accuracy and optimization function. 

 Initialize all variables. Create the session to run the graph 

and feed data to placeholders. 

 Create circles to optimize the loss using the method of 

Gradient Decent. 

In the period of training, A GPU with the memory of 6G is 

used to speed up training. 

3.2. Results 

During the training stage, our experiment involves 5-fold 

cross validation. Specifically, the dataset is divided into five 

folds of equal size, according to the positions of two robots 

with same poses. The DCNN model is trained based on four 

of the folds and tested in the remaining fold. We repeated 

the process five times, for each an individual fold as test 

data and computed the average accuracy of each model in 

three iterations as its final result. The result is shown is 

Table 1 
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Iteration 1 2 3 4 5 Average 

Accuracy 0.783 0.813 0.750 0.807 0.778 0.786 

Table 1: The classification accuracy after training. 

3.3. Discussions and future work 

We take a further analysis by looking into the cases of 

failure. Figure 11 reports three of the most representative 

failure cases. 

a(1) a(2) 

b(1) b(2) 

c(1) c(2) 

Figure 11: Two failure cases, where the ground-truth of the 

velocity is [0.2, 0.2] and the network all outputs the class of [0.4, 

0.3]. 

 

Hence, our future work will be devoted to addressing the 

following limitations of the Deep-Track:  

(1) The set of velocities is limited to eight discrete classes, 

which should be extended for practical fine-grained 

tracking.  

(2) The environment around Turtlebots is relatively simple. 

Further work will incorporate more sophisticated 

environment models. 

  With regard to the limitations, we will do the next work: 

(1) We will collect the dataset in a larger scale of positions 

and velocities. 

(2) More kinds of collisions will be put into the 

environment including moving objects. 

(3) We will find a mechanism for continuous servoing 

when the robot tracks the target that moves 

continuously. 

4. Conclusions 

In this paper, we propose an end-to-end visual target 

tracking method called Deep-Track in Multi-Robot Systems 

using deep convolutional neural networks (DCNNs). 

Deep-Track only relies on monocular images captured by a 

forward-looking camera and cast the tracking problem as an 

image classification task. By operating the raw pixels 

directly, we train a DCNN to complete the classification 

task with a large scale dataset. The performance of the 

Deep-Track is evaluated and it is shown that a high tracking 

accuracy is achieved. 
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