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Abstract

Fine-grained classification of objects such as vehicles,

natural objects and other classes is an important prob-

lem in visual recognition. It is a challenging task be-

cause small and localized differences between similar look-

ing objects indicate the specific fine-grained label. At the

same time, accurate classification needs to discount spuri-

ous changes in appearance caused by occlusions, partial

views and proximity to other clutter objects in scenes. A key

contributor to fine-grained recognition are discriminative

parts and regions of objects. Past work has often attempted

to solve the problems of classification and part localiza-

tion separately resulting in complex models and ad-hoc

algorithms, leading to low performance in accuracy and

processing time. We propose a novel multi-task deep net-

work architecture that jointly optimizes both localization of

parts and fine-grained class labels by learning from train-

ing data. The localization and classification sub-networks

share most of the weights, yet have dedicated convolutional

layers to capture finer level class specific information. We

design our model as memory and computational efficient

so that can be easily embedded in mobile applications. We

demonstrate the effectiveness of our approach through ex-

periments that achieve a new state-of-the-art 93.1% per-

formance on the Stanford Cars-196 dataset, with a signif-

icantly smaller multi-task network (30M parameters) and

significantly faster testing speed (78 FPS) compared to re-

cent published results.

1. Introduction

Fine-grained classification amongst various classes of

man-made and natural objects is currently an active area

of research because of numerous practical applications. For

instance, recognizing make-models of vehicles can improve

tracking of vehicles across non-overlapping camera views,

or searching for a given vehicle in a forensic investigation

using captured video from multiple locales. Similarly, rec-

ognizing types of birds can enable their counting in an area

or understanding patterns of migration. While related to

generic image classification, fine-grained classification is

a significantly distinct problem because it must focus on

small, localized intra-class differences (e.g., make-models

of vehicles, birds species) instead of inter-class differences

that are often easier to account for (e.g., vehicles vs. birds).

Accounting for differences between similar looking objects

within a class to recognize specific instances, while being

robust to spurious changes caused by occlusions and over-

lap with surrounding objects makes this task very challeng-

ing.

An important aspect of the solution to the fine-grained

classification is locating discriminative parts of objects. If a

learning network can be designed to focus on parts such as

the position of car headlights, then it will learn representa-

tions that distinguish makes and model of cars based upon

different shapes of headlights. Also, it may enable us to

solve more challenging tasks, such as ”locate a Honda Civic

2006 with a dent on the left front door”, since we have an

understanding of parts semantics and their relative geome-

try. However, it is challenging to solve part localization and

fine-grained classification simultaneously because the for-

mer is geometric in nature while the latter is a labeling prob-

lem. Previous work either solved these two problems sepa-

rately or fused them together in complicated frameworks.

We describe a multi-task deep learning approach to si-

multaneously solve part localization and fine-grained clas-

sification, and demonstrate the mutual benefits of the multi-

task approach. Our network architecture (see Figure 1) and

training procedure are less complex than competing meth-

ods while achieving better results with significant speedup

and with smaller memory footprint. In order to reduce the

difference in the nature of localization and classification

problems, We model part localization as a multi-class clas-

sification problem by representing parts as a label mask that

annotates part locations, as opposed to the traditional re-

gression of geometric coordinates of parts. This narrows
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Figure 1: Overview of our deep multi-task learning architecture applied for joint part localization and fine-grained classifica-

tion. The localization network (b) and fine-grained classification network (c) share the first four levels of convolution (a) and

also have task-specific dedicated convolution layers. The whole architecture is trained end-to-end. Our multi-task network

can simultaneously predict fine-grained class and part locations.

the gap between part localization and fine-grained classi-

fication. It allows us to share a significant number of net-

work parameters between the fine-grained classification and

the part localization tasks and enables us to take advantage

of pre-trained models as a starting point for optimization.

A set of fully-convolutional layers produce the part label

mask while a mixture of convolutional and embedded bi-

linear pooling layers are used for fine-grained classifica-

tion. The part localization loss and fine-grained classifica-

tion loss are combined, enabling an end-to-end multi-task

data-driven training of all network parameters. Our contri-

butions are three-fold:

• We propose a novel multi-task deep learning and fu-

sion architecture that have both shared and dedicated

convolutional layers for simultaneous part labeling and

make-model classification.

• The accuracy of our approach is competitive to state-

of-the-art methods on both car and bird domains.

• Our network architecture is more compact (30 M pa-

rameters) and runs much faster (78 FPS) than competi-

tors, enabling real-time, mobile applications.

Our paper is arranged as follows: Section 2 compares our

approach to related work. Section 3 details the design of

our deep multi-task architecture. Section 4 shows analysis

of experiments comparing our approach with state-of-the-

art methods in terms of task performance and computational

efficiency. Conclusions are presented in Section 5.

2. Related Work

In this section, we introduce related work from the fields

of fine-grained classification and part localization.

Fine-grained classification, using discriminative parts,

has been the subject of active research. [3] built a human-in-

loop classification game that revealed the importance of dis-

criminative parts for the fine-grained task. [1] first demon-

strated the usefulness of part based one-versus-one discrim-

inative features. [9] tried to detect parts using several unsu-

pervised part detectors. Later, [10] improved such work by

proposing a co-segmentation based method that can gen-

erate discriminative parts without using part annotations.

Most recently, [26] showed promising improvements in the

use of parts by including geometric constraints between

triplets of discriminative parts.

Meanwhile, fine-grained classification performance has

seen improvements owing to developments in deep network

architectures. [19] showed that simply using off-the-self

CNN features could lead to significant improvement over

traditional hand-crafted features. [4] combined deep convo-

lutional activation features with a deformable parts model to

further improve fine-grained performance. More recently,

part information has been used more directly in the train-

ing process for deep networks. [2] applied deep convolu-

tional networks to batches of image patches that were lo-

cated and normalized by pose. Similarly, [28] borrowed the

idea of region-based CNN and fine-tuned it on object parts.

These two methods showed the great potential of merg-

ing part information into deep network models. However,

they required ground truth part annotations during testing

for good performance. To solve the part localization prob-

997



lem, [20] proposed a multi-proposal consensus network to

predict part locations. Recently, there is a trend toward try-

ing to solve part localization and fine-grained classification

simultaneously. [13] proposed a valve linkage function that

connected part localization, alignment and classification to-

gether. However, this approach attempted only to discrim-

inate the heads of birds from their bodies. [14] proposed a

network containing two streams of appearance models com-

bined with a bilinear pooling layer, arguing that manually

defined parts were sub-optimal and the bilinear pooling ap-

proach could explore optimal parts implicitly. Although the

approach benefited from data-driven end-to-end learning of

the deep network’s parameters, the degree to which parts

were discovered by the network was hard to interpret. [11],

demonstrated the benefits of training with larger amounts

of data (and a larger number of classes) to a fine-grained

recognition task, even in the presence of noisy training la-

bels. We consider our work separate from that. The ma-

jor purpose of this paper is to illustrate the benefits of a

compact network that can efficiently perform fine-grained

classification and part localization simultaneously. Most

recently, [7] proposed a framework that solved localized

network and fine-grained classification together, which is

most similar to this paper. However, this approach solved

part localization and fine-grained classification separately

and used a region based feature pooling around the parts to

merge the discriminative information from parts. Although

it showed the effectiveness of localizing and utilizing of the

parts, the framework does not support end-to-end learning.

Our approach also tries to solve part localization and fine-

grained classification at the same time. However, unlike

previous approaches, our model (and its associated training

approach) is constructed to explicitly share information be-

tween parts localization and fine-grained classification; the

architecture itself forces weight-sharing between the two

tasks, and our training approach ensures that the part local-

ization and fine-grained classification tasks influence one

another. The network and training regime allows us to per-

form seamless end-to-end training, and makes our approach

efficient.

3. Model

We start by introducing the overall architecture of our

model to perform fine-grained classification and part local-

ization simultaneously. The detailed analysis of our build

components is demonstrated in the further subsections.

3.1. Representation Learning with Deep Multi­task
Architecture

Multi-task learning has proven to be effective in sev-

eral computer vision tasks. Deep networks with end-to-end

training are well-suited for multiple tasks because they learn

generic representations in early layers prior to specialization

in later stages of the network. Recent work [28, 15, 18] has

shown promising results by attaching multiple shallow and

task-specific output layers to the final fully connected layer,

and training the network to minimize combined losses for

each task output. These approaches mainly change the last

fully connected layers dedicated to specific tasks while not

learning any low or mid-level representations that could in-

fluence the accuracy of multiple tasks. Our approach differs

from previous vanilla multi-task models in: (i) its design of

common low and mid-level representation layers for multi-

ple tasks, (ii) application of a careful analysis to select lay-

ers that are suitable for sharing between the two tasks, and

(iii) designing task-specific deep sub-networks to capture

task-specific representations. The end-to-end training for

multiple tasks ensures that the task-specific representations

benefit from task-specific tuning, while the shared repre-

sentations are jointly influenced by the needs of both tasks.

Such architecture enables joint learning of part localization

and fine-grained classification effectively and efficiently.

Choosing a Base Model. Our architecture is based

upon a VGG-16 network pre-trained on ImageNet [21]. We

choose VGG due to several reasons. First, VGG mainly

utilizes 3 by 3 convolutional kernels that can be efficiently

computed. Meanwhile, the the layers of a VGG network

captured low and mid-level representations are easily inter-

preted. Since we explicitly rely on learning common rep-

resentations, VGG serves as an appropriate based model

for our fusion architecture. With portability in mind, we

skip state-of-the-art Inception and ResNet models on pur-

pose, although such models may further improve the per-

formance.

Figure 2: The experimental setups to determine which lay-

ers can be shared between tasks. Blue means layers are for

localization. Red are trained for classification. We switch

different weights between two network in different config-

urations, and retrain the later layers. This leads us to check

the probability of fusion at desired point

Determining Multi-task Structure. Previous ap-

proaches [28, 15, 18] implement multi-task learning by
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sharing all network parameters up until the final fully-

connected (FC) layers; new FC layers are added for each

task. Given the representational power of a single FC layer,

this strategy has limited effectiveness. Our multi-task ar-

chitecture uses deep sub-networks for different tasks, shar-

ing earlier convolutional layers. Specifically, our part local-

ization network and our fine-grained classification network

architectures (described above) use the same architecture

(VGG-16) in their first five convolutional layers. We aim

to fuse the two networks together such that they use the

same weights for a number of shared layers; if we share

only the earliest layers, we may render ineffective gradient

flows from task-specific sub-networks to the fused layers.

If we share too many layers, we may degrade performance

of the later task-specific sub-networks. To find the appro-

priate number of layers to share, we conducted a series of

experiments. We first of all trained our localization net-

work and classification networks separately to serve as a

baseline (shown in Figure 2 as ”Base”) for measuring per-

formance on the two tasks. Next, we switch the weights

of the first three, four and five convolutional layers (shown

in Figure 2 as ”Config1, Config2, Config3”), and retrain

the latter stages of the networks (this experiment is possible

owing to the common architecture of the first layers of the

two task networks) . Swapping weights like this, and then

measuring task performance, allows us to establish which

weights can be shared across tasks. For example, we found

the performance of both task-specific networks drops signif-

icantly when we aggressively switch all convolution layers

(”Config3”). The performance of both tasks with weights

switched as in ”Config2” indicated that features learned by

the first four convolutional layers in both task-specific net-

works can be applied effectively to the other task, so our

final architecture shares these weights. The whole parame-

ter setup of our deep multi-task architecture is described in

Table 1.

Multi-task training. We jointly train our multi-task ar-

chitecture in an end-to-end fashion using a typical multi-

task fusion loss:

Lfuse = Lloc + λLcls , (1)

where λ is a weight factor to control the influence of each

task during joint training. We determine an appropriate

value in our experiments below. Our architecture (figure 1)

shares layers between the two tasks, the detailed parameter

setup is shown in Table 1. We describe the detailed designs

of dedicated layers for each tasks in the following sections.

3.2. Localize Parts and Key­points with Pseudo­
masking

Key-point (and, equivalently, part) localization has been

widely studied for the purpose of pose estimation [17, 22,

16] and has largely been solved by learning a regression

layer at the end of a deep network to extract the x, y co-

ordinates of trained key-points. These papers have demon-

strated that the regression task is sufficiently different from

the image classification task that networks must be trained

from scratch, rather than fine-tuned from a pre-trained net-

work; this not only increases the amount of training data

required, but also extends training time. Motivated by our

desire to share layers between the localization task and the

fine-grained classification task, and inspired by recent suc-

cesses in semantic segmentation, rather than model part lo-

calization as a regression problem, we instead model it as a

multi-class part classification problem. This decision allows

us to fine-tune from a pre-trained classification network and

enables weight-sharing with the fine-grained classification

network. Our experiments show that this design decision

also provides excellent part localization performance.

Architecture. Our parts localization approach is based

upon mask generation; to support this we modify the VGG-

16 architecture to be fully convolutional in the latter stages

such that our output mask has dimensions 28× 28. Specif-

ically, we keep the first four convolution layers unchanged,

except for dropping spatial pooling after conv4. We modify

conv5 to use dilated (or atrous) convolutions, also without

downsampling. In addition, we change the fully connected

layers into fully convolutional layers with kernels in spa-

tial size of 1 × 1. These modification allow us to reuse

the same pretrained VGG-16 network weights, but output a

28 × 28 spatial part localization mask instead - similar to

semantic segmentation, this mask is a labeled image, with

pixels marked as background, or as containing a particular

model part, as appropriate. The detailed configuration can

be viewed in Table 1(b).

Learning. Given a specific part pc ∈ P =
{p1, p2, · · · , pK}, where c is the part class (such as ”Front

left light” of car) of total K classes (K + 1 is the back-

ground class label), with normalized spatial coordinate x ∈
[0, 1], y ∈ [0, 1], we want our localization network to gen-

erate a m × m spatial map S that predicts Su,v = c, with

u = ⌊x ·m⌋ and v = ⌊y ·m⌋, where ⌊x⌋ is the truncating

operator to an integer from a real number. However, consid-

ering the the area of part locations on this spatial map will

be significant smaller k ≪ m2, which causes the learning

process highly imbalanced (background vs. key-points ra-

tio will be m2
−k
k

→ 1), we apply a pseudo-masking around

ground-truth part locations to make the learning easier. We

define our pseudo masking strategy as

Mi,j =

{

K + 1, if min dist((i, j), (xc, yc)) ≥ t

argmin
c

dist((i, j), (xc, yc)), otherwise ,

(2)

where dist(·) is a function that measures the distance; t is a

trade-off to control the background/key-point ratio, we use

t = 0.1m.
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(a) Shared layers

1 2 3 4 5 6 7

layer 2 × conv max 2 × conv max 3 × conv max 3 × conv

filter-stride-padding 3-1-1 2-2-0 3-1-1 2-2-0 3-1-1 2-2-0 3-1-1

#channel 64 64 128 128 256 256 512

activation relu idn relu idn relu idn relu

size 224×224 112×112 112×112 56×56 56×56 28×28 28×28

(b) Dedicated localization layers

8a 9a 10a 11a 12a 13a 14a 15a

layer max 3 × dconv max avg dconv conv conv fc

filter-stride-padding 3-1-1 3-2-1 3-1-1 3-1-1 3-12-1 1-1-0 1-1-0 -

#channel 512 512 512 512 512 1024 #part 1

dilation - 2 - - 12 - - -

activation idn relu idn idn relu relu relu softmax

size 28×28 28×28 28×28 28×28 28×28 28×28 28×28 28×28

(c) Dedicated classification layers

8b 9b 10b 11b

layer max 3 × conv embedding fc

filter-stride-padding 2-2-0 3-1-1 - -

#channel 512 512 1 1

activation idn relu idn softmax

size 14×14 14×14 8192 #class

Table 1: The detail configuration of our final multi-task architecture. The attributes of the column ”conv”, ”max”, ”avg”,

”dconv”, ”embedding”, ”fc” represent ”convolution”, ”max pooling”, ”average pooling”, ”dilated convolution”, ”feature

embedding” and ”fully connected layer”.

Our loss function is:

Lloc = −
m
∑

i=1

m
∑

j=1

log
f(i, j,Mi,j)

∑K+1
c=1 f(i, j, c)

, (3)

where f(·) represents the network. The loss includes the

background class K + 1.

Inference. Although our localization network predicts a

pseudo part map, we can still recover the accurate key-point

coordinate by exploring the probability maps underneath.

Differing from the approach of [7], we don’t need to set

up a threshold to decide the existence of specific part loca-

tion,since it is already handled by our pseudo masking strat-

egy. Given a m×m prediction map S and a m×m×(K+1)
probability map Prob extracted from last fully convolu-

tional layer of the part-localization network, the coordinate

ic, jc of a part c can be inferred by:

(ic, jc) = argmax
i,j

{

Probi,j,c · 1Si,j=c

}

, (4)

where 1a is the indicator function which is 1 if condition

a is true and 0 otherwise. Our localization network design

has multiple advantages:

• Our localization network shares the same amount of

weights as VGG-16, hence can be fine-tuned using ex-

isting models

• Our network requires a small 224×224 input size , but

yet generates a large part prediction mask

• Most importantly, we model the localization task as a

classification problem, which enables straightforward

fusion with the fine-grained classification task

3.3. Fine­grained Classification with Feature Em­
bedding

We now describe the detailed implementations for our

dedicated fine-grained classification layers.

Embedded bilinear pooling. Bilinear pooling has been

proven effective to represent the feature variations from

multiple streams of features. In a departure from previous

work [14] that utilizes two different networks to conduct

bilinear pooling, we demonstrate the effectiveness of using

embedded bilinear pooling within a single network. Given a

w×h×ch shaped feature map F generated from a network,

embedded bilinear pooling can be calculated as:

E =

w
∑

i=1

h
∑

j=1

Fi,j · F
⊤

i,j , (5)

where Fi,j is a ch-dimensional column vector. This form

is closely related to region covariance [23], that captures

second order statistics between features, and can improve

the classification performance.
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Dimensionality reduction. Embedded bilinear pooling

reduces the training parameters from w × h × ch × l to

ch × ch × l, where l is the number of hidden units of fully

connected layer for prediction. However, this is still a large

number that can overwhelm the whole training process, and

may also lead to inefficient utilization of learned weights.

We use compact bilinear pooling [6, 5], a projection method

that further reduces the number of dimensions in our feature

vector while preserving desirable properties of the feature.

Given mapping vectors h ∈ N
d where each entry is uni-

formly sampled from {1, 2, · · · , c}, and s ∈ {+1,−1}d

where each entry is sampled with either +1 or −1 with

equal probability, the sketch function is defined as:

Ψ(x, s, h) = [C1, C2, · · · , Cc] (6)

where

Cj =
∑

i:h(i)=j

s(i) · x(i) (7)

To reduce the dimensionality of bilinear features, the

ch× ch size bilinear feature E is first vectorized to x ∈ R
d

where d = ch × ch and further projected to a lower c-

dimensional vector Ê ∈ R
c by:

Ê = F−1(F(Ψ(x, s, h)) ◦ F(Ψ(x, s′, h′))) (8)

where s′ and h′ are drawn similarly to s and h, ◦ operator

represents element-wise multiplication, and F represents

the Fast Fourier Transformation. The result of the tensor

sketching process is a lower-dimensional version of E, Ê;

the number of dimensions in E and Ê used in our experi-

ments are detailed in Table 1(c).

Classification loss. Finally, the reduced features Ê can

be mapped to our C fine-grained classes using a small fully

connected layer fc(·), trained using multinomial logistic

loss:

Lcls = −
C
∑

i=1

log
fc(Ê, i)

∑C

c=1 fc(Ê, c)
. (9)

Our classification network design has multiple advan-

tages:

• We greatly reduce the number of parameters by replac-

ing fully connected layers with an embedded bilinear

layer.

• We are able to explore the second order information

between feature maps through our embedded bilinear

layer.

• We further reduce number of parameters required by

introducing a random mapping technique.

4. Experiments

We first compare the performance of our method on the

fine-grained classification task versus other leading meth-

ods considering both the performance and efficiency (speed

and memory usage). Next, we demonstrate the effectiveness

of part localization. We do an ablation study to illustrate

that multi-task architecture improves classification perfor-

mance at the end.

4.1. Dataset and Implementation Details

Dataset. We evaluate our approach on two standard fine-

grained benchmarks. The Stanford Cars-196 [12] dataset

contains 196 classes of car categories described by make,

model and year, and has a total of 16185 images. This

dataset is challenging due to: the large variation of car

model, pose, and color; and often minor differences be-

tween models. We use the provided car bounding boxes dur-

ing training and testing. This dataset does not provide infor-

mation about parts, hence we manually annotated 30 images

per class with 18 parts, such as ”front right light”, ”rear left

bumper” and so on. Our second dataset is Caltech-UCSD

Birds (CUB-200-2011) [24], which contains 200 bird spices

with 11788 images captured in the wild. Each image is

annotated with a bounding box and 15 body parts such as

”head”, ”breast”, etc. This dataset is used as a cross-domain

reference that shows our approach is easily applied to tasks

from quite different domains.

Implementation. We implement our proposed multi-

task network using a customized Caffe [8] package. Each

input image is cropped to the object’s bounding box and

then resized to 224 × 224. We adopt a 3-step process to

speed up the training process: 1) we freeze the weights

of the part localization sub-network and fine-tune the clas-

sification network (including layers shared with the lo-

calization task); 2) we freeze the classification network

weights and fine-tune the localization network (including

the shared weights); 3) We fine-tune the whole network to-

gether with small learning rate and high momentum. The

training approach is a gradual specialization of the base

VGG-16 weights by incrementally adapting the network to

new tasks. Step 1 adapts the classification network to the

new image domain. Step 2, assisted by adapation of the

shared layers in step 1, adapts the part-localization sub-

network to domain-specific parts. Step 3 tunes the entire

network via the multi-task loss, enabling task-to-task feed-

back via the shared layers.

4.2. Efficiency and Performance

We compare our method with several recent alternative

methods [13, 29, 10, 14, 7] that aimed to improve fine-

grained classification problem by solving part localization.

Each method is evaluated with speed and memory usage on
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Method Setup Input Resolution #Parameters Speed Accuracy

Deep-LAC[13] Parts 227 – – 80.3

Part-RCNN[29] BBox + Parts 227 60M <1 FPS 76.4

Parts[10] BBox 224 135M <1 FPS 82.8

Bilinear[D,M][14] BBox 448 70M 8 FPS 85.1

Stacked-CNN[7] BBox + Parts 448 115M 20 FPS 76.7

Ours BBox + Parts 224 30M 78 FPS 84.3

Table 2: Comparison with state-of-art methods on efficiency. The number of parameters estimation is calculated as Caffe

weight size.

Parts throat beak crown forehead right eye nape left eye back

Stacked-CNN[7] 0.908 0.894 0.894 0.885 0.861 0.857 0.850 0.807

Ours 0.963 0.952 0.950 0.960 0.939 0.937 0.943 0.867

Parts breast belly right leg tail left leg right wing left wing Overall

Stacked-CNN[7] 0.799 0.794 0.775 0.760 0.750 0.678 0.670 0.866

Ours 0.877 0.858 0.752 0.841 0.740 0.775 0.755 0.874

Table 3: APK comparison with state-of-art methods on the CUB 200 2011.

a few key factors: input resolution, setup, number of train-

ing parameters, testing speed and accuracy, as shown in Ta-

ble 2. All the experiments were conducted on a single Titan

X (Maxwell). Our implementation runs significantly faster

than all other methods, achieving about four times speed

up compared to the previous fastest method. The efficiency

gain mainly comes from the benefits of effective network

fusion. Meanwhile, our classification performance is still

competitive to state-of-the-art methods.

We further evaluate our method on Stanford Car196

dataset with the state-of-art methods, such as [12, 25, 9, 27,

14, 26, 10] on the Cars-196 dataset. Table 4 shows results;

our multi-task approach achieves 93.1% top-1 accuracy and

is better compared to the previous best [10] with a 0.3% im-

provement. Considering the minor improvement published

recently, we think our improvement is noticeable. In addi-

tion, our approach is much more computationally efficient

and solve part localization at the same time.

Method Accuracy

BB-3D-G[12] 67.6

LLC[25] 69.5

ELLF[9] 73.9

CNN Finetuned[27] 83.1

FT-HAR-CNN[27] 86.3

Bilinear[D,M] [14] 91.7

BoT[26] 92.5

Parts[10] 92.8

Ours 93.1

Table 4: Comparison with state-of-art methods on the Stan-

ford Car-196.

We also evaluate our part localization performance us-

ing the APK (average precision of key points) metric. This

metric considers a predicted key-point (part location) to be

correct if it lies in a radius of α×(image size) around the

ground-truth location. We use α = 0.1 following [7] to

compare the results on CUB 200 2011. As shown in Ta-

ble 3, the localization performance is significantly better

than the previous approach [7] in all part categories except

”right leg” and ”left leg”. Qualitative part localization re-

sults are shown in Figure 3. Our approach is capable of pre-

cisely pinpointing parts across a range of pose and aspect

variations for both birds and cars.

4.3. Ablation Study

We first analyze the influence of the parameter λ that

controls the balance between part localization and classi-

fication loss during training, and then illustrate the pos-

itive influence of multi-task training on the classification

task. Figure 4 shows the evolution of test loss during

training for both classification and part localization, with

λ = {0.1, 0.2, 0.5, 1} and using a small fixed learning rate

over 70 epochs. Our experiments indicate that as λ in-

creases, the gradient flow from the part localization sub-

network overwhelms the training of the classification sub-

network. Our best performance is with λ = 0.2.

We now evaluate the effectiveness of our multi-task ar-

chitecture. We use a fine-tuned VGG-16/ImageNet as a

baseline model, which archives a reasonable performance

on both the CUB 200 2011 and Stanford Cars-196 datasets.

In order to compare the performance before and after multi-

task training, we disable the localization sub-network dur-

ing training to form a classification standalone result. As

shown in Table 5, our multi-task architecture performs bet-

ter than the baseline and standalone-trained model on both
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(a) (b)

Figure 3: The visualization selected results of key-point localizations on both Stanford Car-196 (a) and CUB-200-2011 (b).

Solid dots represent the key-point location we predict. The transparent mask presents the part map we predict.

Figure 4: The influence of different λ value chosen on the

multi-task training.

datasets. This demonstrates the effectiveness of our multi-

task training.

Base Class Part Stanford Car196 CUB 200 2011

X 89.1 80.0

X X 92.7 83.9

X X X 93.1 84.3

Table 5: Evaluating the effectiveness of the multi-task train-

ing on datasets .

5. Conclusion and Future Work

In this paper, we propose a compact multi-task archi-

tecture that simultaneously performs part localization and

fine-grained classification. We are able to fuse the local-

ization network and classification network effectively and

efficiently. Experiments demonstrate that our approach is

general, being competitive on both the Stanford Cars-196

and the Cub-200-2011 birds datasets. Furthermore, our pro-

posed network is both significantly smaller and faster than

previous state-of-the-art methods, which makes real-time

mobile applications possible.

With the success of such compact multi-task architec-

ture, our future work will mainly focus on applying this ar-

chitecture on car specific tasks, such as car re-identification

and searching. Enhancement of the techniques presented in

this paper will help solve multiple problems such as crowd-

sourcing car re-identification problem with wearable de-

vices and specific instance recognition problems using fea-

tures such as a ”dent” in a specific location.
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