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Abstract

Generative adversarial networks (GANs) can be used to

learn a generation function from a joint probability distri-

bution as an input, and then visual samples with seman-

tic properties can be generated from a marginal probability

distribution. In this paper, we propose a novel algorithm

named Max-Boost-GAN, which is demonstrated to boost the

generative ability of GANs when the error of generation is

upper bounded. Moreover, the Max-Boost-GAN can be used

to learn the generation functions from two marginal prob-

ability distributions as the input, and samples of higher vi-

sual quality and variety could be generated from the joint

probability distribution. Finally, novel objective functions

are proposed for obtaining convergence during training the

Max-Boost-GAN. Experiments on the generation of binary

digits and RGB human faces show that the Max-Boost-GAN

achieves boosted ability of generation as expected.

1. Introduction

The generation of realistic and high-quality images is

achieved through generative adversarial networks (GANs)

[4]. This general method is applied extensively to other

tasks including semi-supervised learning and classification

[23], speech and language processing [15], sequence learn-

ing [18], 3D modeling [29], cross-domain transformation

[15] and semantic representation of videos [27].

Besides the successful applications of GANs, the theo-

retical aspect for GANs is well investigated. First, the abil-

ity of generation is strengthened. For example, generative

models are boosted in an incremental procedure where a

mixture model is built iteratively [25]. Second, the learn-

ing speed of the generator is improved under the GAN

framework. A feedback channel is built to allow the back-

propagation of label information to the generator from the

discriminator. This feedback channel is shown to improve

the learning speed of the generator [31]. Third, issues about

the convergence of the GANs is solved at some extend.

In particular, a popular solution is the usage of better dis-

tance measure. For example, a new equilibrium enforcing

method is proposed with a loss derived from the Wasser-

stein distance. This equilibrium can be used to train auto-

encoder based generative adversarial networks, and both the

generator and the discriminator are balanced [30]. In addi-

tion, unsupervised hierarchical representation under GANs

framework is studied. A recent method is that the hierar-

chical representation is represented in GANs through both

the representation of feature hierarchy from discriminator

and the hierarchical representation domain of the generator

[7]. Moreover, the diversity of the generative samples are

enabled even with limited training data [8]. The method is

to parameterize the latent generation of space as a mixture

model.

We start to boost the generative ability of GANs when

a large scale of training data is not available. To our best

knowledge, it is challenging for GANs to learn enough fea-

tures for unsupervised generation when the training data

is small. Therefore, a single generator is trained to learn

two mapping functions simultaneously, and then the gen-

erative ability of the same generator is demonstrated to be

boosted under several proposals, including upper bounded

error, max operation and energy-sensitive GANs [30]. In

this paper, we explore that a single generator is capable of

learning two mapping functions from two marginal prob-

ability distributions respectively under technical assump-

tions. Compared with the learning from a joint probabil-

ity distribution consisted of two marginal probability dis-

tributions, the size of the training data is small. Moreover,

the generative ability of the generator is demonstrated to be

close to the unsupervised learning from the joint probability

distribution when the size of the training data is large.

The main contribution of Max-Boost-GAN is as follow-

ing. First, Max-Boost-GAN improves the ability of the sin-

gle generator in three aspects. 1. Semantically different

visual samples are generated from a single generator when

two marginal probability distribution and a joint probabil-

ity distribution are used as input respectively. 2. The same

generator is able to generate a much more various visual
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samples when a joint probability distribution is used as in-

put. 3. Both the variety and the quality of the generated vi-

sual samples are improved. Second, Max-Boost-GAN fuses

two different semantics of real visual samples and produces

different semantic real visual samples.

2. Related Work

Various methods for improving the ability of the gener-

ator under the GAN framework are proposed during recent

years. The following literature are related to the proposed

Max-Boost-GAN.

The auto-encoder is used to improve the ability of the

generator in the GAN framework. For example, the inverse

mapping function of the generator is estimated in an auto-

encoder architecture and a two-way mapping of the genera-

tion is then calculated [14, 21]. A combination of variation

and auto-encoder is for learning both synthetic likelihoods

and implicit posterior distributions through the training of

the discriminator. The mode collapse in the learned gen-

erative model is prevented [24, 20] at some extend. Fur-

thermore, the introduction of a novel symmetric mapping

among the target and source domains jointly enables opti-

mizing the bi-directional image transformations [21]. How-

ever, the introduction of the auto-encoder is shown to in-

crease the quality of the generated visual samples, and the

variety of the visual samples and visual modes are not

boosted. Besides, the introduction of the auto-encoder is

hard to train in the GAN framework.

Moreover, the loss function of discriminators/generators

is updated to increase the generativity of the GAN network.

For example, a new equilibrium enforcing method is pro-

posed with a loss derived from the Wasserstein distance.

The Wasserstein distance is demonstrated to improve both

the convergence of GANs and the quality of generated vi-

sual samples [1]. Wasserstein-L2 distance of order 2 is then

used as a novel asymmertric statistical divergence for the

learning of GANs. This relaxed Wasserstein distance is

demonstrated to improve the speed of convergence [6]. At

the same time, loss-sensitive GAN is developed to allow the

generator to improve the poor data points that are far apart

from the real examples [19]. Least squares loss function

for the discriminator is adopted to generate high quality im-

ages and to obtain more stable learning process [16]. An

adaptive hinge loss objective function is used for the esti-

mation of hinge loss margin with the excepted energy of

the targeted distribution [28]. Exact likelihood evaluation

is performed for a particular normalizing flow generator.

A hybrid objective loss function is used to obtain the low

generation error [5]. An integral probability metrics (IPM)

framework is proposed to define a critic with its second or-

der moments of a data dependent constraint. The advantage

of stable and time efficient training is then achieved [17].

The stability of GANs is improved through the usage of a

softmax cross-entropy loss in the sample space [12]. How-

ever, the application of different loss measures under GANs

networks can not increase the variety of mode of generated

visual samples and the variety of semantics of visual sam-

ples. Nevertheless, the proposed Max-Boost-GAN is able to

increase both the variety of modes and semantics of visual

samples.

Furthermore, energy-based GANs (EGANs) are pro-

posed to solve the issues of bad gradients during the training

of GANs. For example, EGAN is proposed that the discrim-

inator is seen as an energy function that attributes energies

to the regions near the manifold of the real data. The energy

function enables multiple choice of loss functions for the

discriminator rather than several loss functions [30]. Clip-

ping weights are then developed for solving this problem

[5]. The two-player equilibrium is demonstrated to be effec-

tive for energy loss function of GANs. The instability in the

learning is solved through the acquisition of better gradients

when the generator is far form convergence [30]. Similarly,

a variational lower bound of the negative log likelihood of

an energy based model is used in the GAN framework. It is

shown to provide solutions for dealing with difficulty in the

training of GANs [27]. However, these energy-based GANs

are not able to boost the generative ability of the generator

when only a small size of training data is available, whereas

the proposed Max-Boost-GAN is demonstrated to achieve a

powerful generator with two small sets of real data.

Multiple numbers of the generators/discriminators are

also used in the context of GANs. For example, multiple

discriminators are used in the training of GAN networks and

high quality samples are obtained [2]. The message sharing

mechanism is used for guiding multiple generators to co-

operate with each other to improve the quality of generated

images [3]. Multi-view inputs can be generated with two-

direction GAN, and missing views can be predicted after-

words [2]. Triple-GAN is consisted of three players includ-

ing a generator, a discriminator and a classifier. This triple

generative adversarial nets estimate the generated samples,

predict classification labels and discriminate fake image-

label pairs. This new three-player formulation enables the

improvement of the classification accuracy [11]. However,

the proposed Max-Boost-GAN in this paper only uses a sin-

gle generator and a single discriminator. The generator vi-

sual samples are demonstrated to have a higher variety of

semantics and modes. It enhances the power of generator

without increasing the size of the network. In addition, the

practical cost of the GANs does not go up.

Other methods try to combine the GANs framework with

other frameworks. The goal of these techniques is to build

a stronger generative model compared with two separate

models. For example, Bayesian framework is combined

with the GANs to improve the generative ability including

the modeling of the hierarchical Bayesian into the GANs
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[26]. A random generator function is used to extend tradi-

tional GANS to a Bayesian framework [22]. VAE and GAN

are combined into a principled way such that the transfor-

mation between VAE and GAN enhances VAE with adver-

sarial mechanism [9]. The combination of generative mo-

ment matching network and GANs through MDD outper-

forms GMM and is competitive with GAN. A unified ge-

ometric structure in GAN is revealed with three geometric

steps. Compared with this method, the Max-Boost-GAN

boosts the generative ability of the generator without coop-

eration with other frameworks. Besides, Max-Boost-GAN

is under the pure GAN framework and the generative ability

can therefore be further improved in the cooperation of the

already-proposed frameworks.

3. Preliminaries

3.1. Problem Formulation

Let G denote the generator of the GAN network, z1 and

z2 denote high dimensional i.i.d. variables where z1 ∈ Z1

and z2 ∈ Z2 respectively. Here, Z1 and Z2 are two corre-

sponding sets. The dimension of the two variables z1 and z2
are the same. In addition, the probability density function

(PDF) of the independent probability distribution for z1 and

z2 are the same. But the domain of the two PDFs is differ-

ent. Furthermore, let Z denote the set of high dimensional

i.i.d random variables, where the PDF of each random vari-

able is the same as the ones in Z1 and Z2, and the support of

random variables in Z contains the ones of z1 and z2. Sim-

ilarly, let y1 and y2 denote samples from two sets Y1 and

Y2, respectively. y1 and y2 represent semantically different

samples. Besides, Y1 ⊂ Y and Y2 ⊂ Y where Y represents

a larger set containing semantic samples with more modes,

varieties and higher visual quality. Hierarchically, Y1 and

Y2 are seen as two leaves of Y . For examples, Y represents

the set of human faces, Y1 represents the set of female faces

and Y2 represents the set of male faces.

G is learned to generate real samples as y1 = G(z1) or

y2 = G(z2). In order to improve the generality of G, the

generator is trained by y = G(z) where y ∈ Y, z ∈ Z. That

is, the generator G is expected to be learned to draw more

various real samples y from random noise z of a larger do-

main. Furthermore, instead of training G(z) = y directly

which requires an access to a large number of target sam-

ples, an alternative training strategy is needed when only a

much smaller number of target samples is available.

3.2. Background

Among various GANs, energy-based GAN is capable of

obtaining better quality of gradients when the generator is

far from convergence [30]. This family of GAN is useful to

boost the generation ability of the generator since the gener-

ator is expected to have good quality. The main advantages

of the energy-based GAN are as follows.

First, in order to achieve a good quality of gradients

when the generator is far from convergence, a margin loss

is introduced in the objective functions of GAN networks.

In particular, the discriminator loss LD and the generator

loss LG are formally defined as LD(x, z) = D(x) + [m −
D(G(z))]+ and LG(z) = D(G(z)) where a positive mar-

gin m, a data sample x and a generated sample G(z) are

given. Here [x]+ , max(0, x). Besides, minimizing LG

with respect to the parameters of G is similar to maximiz-

ing the second term of LD, and it has the same minimum but

non-zero gradients when D(G(z)) ≥ m. The discriminator

is structured as an auto-encoder, and the formulation of the

discriminator is expressed asD(x) = ‖Dec(Enc(x))−x‖.

Under the assumption that G and D have infinite ca-

pacity, theoretical analysis of this system is developed. In

particular, samples drawn from the generator G are indis-

tinguishable from the distribution of the dataset if the sys-

tem reaches a Nash equilibrium. First, a Nash equilib-

rium is shown to exist for this system. Second, the Nash

equilibrium can be characterized by P ∗
G = Pdata, and

there exists a constant γ ∈ [0,m] such that D∗(x) = γ.

The Nash equilibrium is then formulated as V (G∗, D∗) ≤
V (G∗, D), ∀D, and U(G∗, D∗) ≤ U(G,D∗), ∀G where

G∗ and D∗ are the optimized generator and discriminator,

respectively. Here the quantity V is defined as V (G,D) =
∫

x,z
LD(x, z)pdata(x)pz(z)dxdz, and the quantity U is de-

fined as U(G,D) =
∫

z
LG(z)pzzdz. Third, p∗G = pdata

and V (D∗, G∗) = m is achieved whenD∗ and G∗ are Nash

equilibriums of the system. Next, it is shown through the

analysis of the function ψ(y) = ay + b[m− y]+ where the

function ψ(y) reaches its minimum in m if a < b and in

0 otherwise. Finally, a repelling function is introduced into

the system. It is used to prevent the model from produc-

ing samples that are clustered in only few modes of pdata.

Let S ∈ R
s×N . The repelling function is formulated as

fPT (S) = 1
N(N−1)

∑

i

∑

j 6=i(
ST
i Sj

‖Si‖‖Sj‖
)2. This repelling

function operates on a mini-batch.

4. Analysis

As mentioned in the previous section, the generator G is

expected to be trained without an access of a large number

of real samples. An alternative training method is proposed

as follows: G is trained through learning two mapping func-

tions G(z1) = y1 where z1 ∈ Z1, y1 ∈ Y1 and G(z2) = y2
where z2 ∈ Z2, y2 ∈ Y2 simultaneously.

First, an upper bound of the mutual information is calcu-

lated. This upper bound introduces that the mapping func-

tion G(z) = y with z ∈ Z, y ∈ Y can be formulated after

the learning of G(z1) = y1 and G(z2) = y2.

Second, the information entropy ofZ is then shown to be

larger than the sum of Z1 and Z2. It can be directly repre-

1158



sented that the generated output ỹ = G(z), ỹ ∈ Ỹ contains

much more information entropy than the sum of informa-

tion entropy of ỹ1 = G(z1), ỹ1 ∈ Ỹ and ỹ2 = G(z2), ỹ2 ∈
Ỹ2 under mild assumptions. Here, Ỹ1 and Ỹ2 are sets con-

taining samples drawn from G when inputs are z1 and z2,

respectively. Practically, ỹ represents a generated sample

which achieves much more varieties than ỹ1 and ỹ2. Here

Ỹ is a set containing samples which obtains much more va-

riety, and ỹ ∈ Ỹ .

Third, the novel loss functions forG andD are proposed

and the corresponding algorithm is developed.

4.1. Upper Bounded Mutual Information

4.1.1 Mutual Information as A Measure

Let Y1 and Y2 denote the ground truth for Ỹ1 and Ỹ2 re-

spectively. Moreover, let Y denote the ground truth for

Ỹ . The mutual information I of Ỹ1 and Y1, I(Ỹ1, Y1) can

be a measure to estimate the performance of the mapping

function G(z1) = y1. Similarly, I(Ỹ2, Y2) is a measure for

G(z2) = y2. Particularly, Y1 ⊂ Y , Y2 ⊂ Y , Y1 ∩ Y2 = ∅,

Y1 ∪ Y2 = Y , Z1 ⊂ Z, Z2 ⊂ Z, Z1 ∩ Z2 = ∅,

Z1 ∪ Z2 = Z. We have that p(Z1) + p(Z2) = p(Z) and

p(Y1) + p(Y2) = p(Y ).

I(Y, Ỹ ) is used to estimate the mapping functionG(z) =
y when there is a large number of real samples of Y avail-

able. However, it is hard to learn a good generator G when

the number of real samples of Y is insufficient. An alterna-

tive way is to learn G(z1) = y1 and G(z2) = y2 simulta-

neously using a much less number of real samples. I(Y, Ỹ )
can then be demonstrated to have an upper bound when G

is trained in this way.

4.1.2 Upper Bounded Errors

Suppose that I(Ỹ1, Y1) and I(Ỹ1, Y2) are upper bounded

by e11 and e12 after the mapping function G(z1) = y1
is learned. Similarly, let I(Ỹ2, Y1) and I(Ỹ2, Y2) have the

upper bounds of e21 and e22 when the mapping function

G(z2) = y2 is learned simultaneously.

First, we show that I(Ỹ1, Y1) + I(Ỹ1, Y2) > I(Ỹ1, Y ).
Let n be a very large positive number, and let ỹ1i ∈ Ỹ1,

ỹ2i ∈ Ỹ2 and ỹi ∈ Ỹ denote semantic samples from the set

Ỹ1, Ỹ2 and Ỹ , respectively for all i = {1, 2, ..., n}. yi, y1i

and y2i in a similar way. We have the following result.

I(Ỹ1, Y )−
[

I(Ỹ1, Y 1) + I(Ỹ1, Y 2)
]

=H(Y )−H(Y |Ỹ1)−
[

H(Y 1)−H(Y 1|Ỹ1) +H(Y 2)−H(Y 2|Ỹ2)
]

=
[

H(Y )−H(Y 1)−H(Y 2)]− [H(Y |Ỹ1)−H(Y 1|Ỹ1)−H(Y 2|Ỹ2)
]

=−
∑n

i=1 p(yi)log p(yi) +
∑n

i=1 p(y1i)log p(y1i) +
∑n

i=1 p(y2i)log p(y2i)

−
[
∑n

i=1

∑n

j p(yi, ỹ1i)log
p(ỹ1i)

p(yi,ỹ1i)
−

∑n

i=1

∑n

j=1 p(y1i, ỹ1i)log
p(ỹ1i)

p(y1i,ỹ1i)

−
∑n

i=1

∑n

j=1 p(y2i, ỹ1i)log
p(ỹ1i)

p(y2i,ỹ1i)

]

=
∑n

i=1

[

− p(yi)log p(yi) + p(y1i)log p(y1i) + p(y2i)log p(y2i)
]

−
[
∑n

i=1

∑n

j=1 p(yi, ỹ1i)log
p(ỹ1i)

p(yi,ỹ1i)
− p(y1i, ỹ1i)log

p(ỹ1i)
p(y1i,ỹ1i)

−p(y2i, ỹ1i)log
p(ỹ1i)

p(y2i,ỹ1i)

]

=
∑n

i=1

[

−
[

p(y1i) + p(y2i)
]

log p(yi) + p(y1i)log p(y1i) + p(y2i)log p(y2i)
]

−
∑n

i=1

∑n

j=1

(

p(y1i, ỹ1i) + p(y2i, yo2i)
)

log
p(ỹ1i)

p(yi,ỹ1i)

−p(y1i, ỹ1i)log
p(ỹ1i)

p(y1i,ỹ1i)
− p(y2i, ỹ1i)log

p(ỹ1i)
p(y2i,ỹ1i)

=
∑n

i=1

[

p(y1i)log
p(y1i)
p(yi)

+ p(y2i)log
p(y2i)
p(yi)

]

+
∑n

i=1

∑n

j=1 p(y1i, ỹ1i)log
p(y1i,ỹ1i)
p(yi,ỹ1i)

+ p(y2i, ỹ1i)log
p(y2i,ỹ1i)
p(yi,ỹ1i)

<0.

Similarly, we have I(Ỹ2, Y1) + I(Ỹ2, Y2) > I(Ỹ2, Y ).
Therefore, the upper bound of I(Ỹ2, Y ) and I(Ỹ1, Y ) can be

estimated when e11,e12,e21 and e22 are estimated through

the simultaneous training of G(Z1) = Y1 and G(Z2) = Y2.

Second, let e1 and e2 denote the upper bounds of

I(Ỹ1, Y ) and I(Ỹ2, Y ) respectively. The upper bound of

I(Y, Ỹ ) can be estimated through the following inequality

I(Y, Ỹ ) < I(Y, Ỹ1) + I(Y, Ỹ2).

This inequality is due to I(Y, Ỹ ) = I(Ỹ , Y ), and the

inequality becomes I(Y, Ỹ ) < I(Y, Ỹ1) + I(Y, Ỹ2). Since

p(ỹ1i)p(ỹ2i) = p(ỹi), ∀i ∈ {1, ..., n}, this inequality can be

shown similarly as before. Therefore, I(Y, Ỹ ) can be upper

bounded by e1 and e2. That is, I(Y, Ỹ ) < e1 + e2.

Third, as the upper bounds of

I(Y, Ỹ1), I(Y, Ỹ2), I(Y, Ỹ ) are e1, e2, e3 respectively

where e3 < e1 + e2, e1 < e11 + e12, e2 < e21 + e22.

e11, e12, e21, e22 are estimated through trainingG(z1) = y1
and G(z2) = y2 simultaneously. e11, e12, e21, e22 are very

small when the training is converged.

Therefore, the upper bounds of

I(Y, Ỹ1), I(Y, Ỹ2), I(Y, Ỹ ) are small. The small up-

per bounds shows that the mapping function G(z) = y can

be estimated accurately through the learning G(z1) = y1
and G(z2) = y2 simultaneously.

4.2. Boosting Entropy Information

4.2.1 An assumption

As I(Y, Ỹ ) is proven to have a small upper bound, the

mapping function G(z) = y can be well estimated. In
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other words, the entropy information of the latent variable

z, z ∈ Z is well transferred to the target domain. This good

transformation enables the target domain to generate sam-

ples with high visual quality and variety.

However, two generatorsG1(z1) = y1 andG2(z2) = y2
are trained separately, where G1 and G2 are two different

generator functions. Combining G1 and G2 and then com-

puting G(z) = y will lead to a large error.

Under the assumption that a generator is well trained,

the amount of entropy information of the input can be an

approximate measure for the variety of samples in the target

domain. In the following, we show that the variety of the

target domain Y1 and Y2 together is less than the variety of

the target domain of Y for a well trained generator G.

4.2.2 Relation of Entropy Information

The input high-dimensional variable z is an i.i.d variable

from the set Z. Each dimension of the variable follows

the same probability distribution, i.e., p(z(k)) ∼ p, ∀k ∈
{1, ...,m} where z(k) denotes the kth element of z and

the dimension of z is d. As p(z(k1)) ∼ p, p(z(k2)) ∼ p,

∀k1, k2 ∈ {1, ..., d}, each z(k1) can be seen from a set Z
′

where each element of Z
′

follows the same distribution p.

z1(k1) and z2(k1) can be defined similarly as an element

from the set Z
′

1 and Z
′

2 respectively. As already introduced,

z1(k), z2(k) and z(k) follow the same probability distribu-

tion p, and the support of random elements in Z
′

contains

the domains of z1(k) and z2(k) for all k ∈ {1, ..., d}. More-

over, ∀i ∈ {1, ..., n}, k ∈ {1, ..., d}, let zi(k), z1i(k) and

z2i(k) denote the ith elements in Z
′

, Z
′

1 and Z
′

2 respec-

tively. The information entropy of Z can be formulated as

follows.

H(Z)

=−
∑n

i=1 p(zi)log p(zi)

=−
∑n

i=1 p(zi(1), zi(2), . . . , zi(n))log p(zi(1), zi(2), . . . , zi(d))

=−
∑n

i=1 p(zi(1))log p(zi(1)|zi(2), . . . , zi(d))
∑n

i=1 p(zi(2))logp(zi(2)|zi(3), . . . , zi(d))

× · · · ×
∑n

i=1 p(zi(d− 1))log p(zi(d− 1))log p(zi(d− 1)|zi(d− 1), zi(d))

×
∑n

i=1 p(zi(d))log p(zi(d))

=(−1)
∑n

i=1 p(zi(1))log p(zi(1))×
∑n

i=1 p(zi(2))log p(zi(2))

× · · · ×
∑n

i=1 p(zi(d))log p(zi(d))log p(zi(d))

=(−1)d−1H(Z
′

)d.
(1)

We see that H(Z) = H(Z
′

)d holds if d is an even num-

ber.

4.2.3 Reduction of Inequality

As already introduced, we have ∀k ∈ {1, ..., d}, z(k) ∈ Z
′

,

z1(k) ∈ Z
′

1, z2(k) ∈ Z
′

2, and Z
′

1 ∩Z
′

2 = ∅, Z
′

1 ∪Z
′

2 = Z
′

.

We then have H(Z
′

1) + H(Z
′

2) > H(Z
′

) since p(Z1
′) +

p(Z2
′) = p(Z

′

) and the joint distribution p(Z1
′, Z2

′) = 0.

To see this, ∀k ∈ {1, ..., d},

H(Z
′

1) +H(Z
′

1)−H(Z
′

)

=
∑n

i=1 p(z1i(k))log p(z1i(k))−
∑n

i=1 p(z1i(k))log p(z1i(k))

+
∑n

i=1 p(zi(k))log p(zi(k))

=
∑n

i=1 p(z1i(k))log p(z1i(k))− p(z1i(k))log p(z1i(k))

−p(z2i(k))log p(z2i(k))

=
∑n

i=1 (p(z1i(k)) + p(z2i(k))) log (p(z1i(k)) + p(z2i(k)))

−p(z1i(k))log p(z1i(k))− p(z2i(k))log p(z2i(k))

=
∑n

i=1 p(z1i(k))log
p(z2i(k))+p(z2i(k))

p(z1i(k))
+ p(z2i(k))log

p(z2i(k))
p(z1i(k))+p(z2i(k))

>0.

4.2.4 Boosted generality

Let Ds = H(Z
′

1)+H(Z
′

2)−H(Z
′

)) denote the difference

between the information entropy H(Z
′

) and the sum of the

information entropyH(Z
′

1)+H(Z
′

2). The difference of the

information entropy for the high dimensional domain can

be expressed as below.

Dshigh = (H(Z
′

1) +H(Z
′

2))
d − (H(Z

′

))d

= (H(Z
′

) +Ds)d − (H(Z
′

))d.

It can be seen that limd→∞Dshigh ≫ Ds. Let the

Dshigh−up denote the upper bound of Dshigh − Ds. The

value of Dshigh−up is supposed to be large when the di-

mension d is large. As already assumed that if G1 and

G2 are well learned, Dshigh can be a good approximation

of I(Y, Yo) when two generators G1 and G2 are trained

separately. Therefore, compared to the common method

that two generators G1(z1) = y1 and G2(z2) = y2 are

trained separately, we can conclude that the generality of

the expected generator is boosted when G(Z1) = Y1 and

G(Z2) = Y2 are trained jointly and simultaneously.

5. Objective and Algorithm in Practice

In order to implement the proposed joint generation in

the GANs framework, both the objective functions and

training algorithm are proposed as below.

LD = D(G(x)) + [max (D(G(z1)), D(G(z2)))−m]+.

LG = max (D(G(z1), D(G(z2))) .

Here m is a positive margin, x is the real data sample, G is

the generator and G(z1) and G(z2) are the generated sam-

ples. As mentioned before, since z1 and z2 are i.i.d., the
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dimensions of z1 and z2 are the same. Moreover, each ele-

ment of z1 and z2 follows the same probability distribution

in different domains.

The objective function of the generator L(G) can be

represented as L(G) = min(D(G(z1)), D(G(z2))) +
‖D(G(z1)) − D(G(z2))‖. The minimizing operation of

L(G) is to ensure that the differences of the generation be-

tween G(z1) and G(z2) are minimized via the optimized

discriminator during each epoch of the training.

Furthermore, the objective function of the discriminator

LD can be represented as following.

LD =



















D(G(x1)) + [D (G(z1))−m]+, ∀x1 ∈ X1,

D (G(z1)) > D(G(z2)) .

D(G(x2)) + [D (G(z2))−m]+, ∀x2 ∈ X2,

D (G(z2)) > D(G(z1)) .

The only update is to separateX into two subsetsX1 and

X2. The max(D(G(z1)), D(G(z2))) is proposed. For each

subset X1 and X2, the proof of convergence is the same as

Theorem 1 and 2 in the Energy-based GAN [30].

The generator G is hard to train when G is required

for estimating two mapping function G(z1) = y1 and

G(z2) = y2 at the same time. To overcome the difficulties,

several techniques including adding the noise layer [23], in-

creasing the training frequency of the generator [23] and the

repelling regularizer [30] can be used .

6. Experiments

In order to evaluate the generativity of Max-Boost-GAN,

two generation tasks are conducted. First, we evaluate the

quality of generated samples from two subsets of the la-

tent variables. Second, we evaluate the quality of generated

samples from the whole set of the latent variables. Both bi-

nary image generation and RGB image generation are used.

For comparison, we compare the quality of generated sam-

ples with the base model [30]. All the training conditions

are the same for the Max-Boost-GAN and the base model.

6.1. Binary Image Generation

6.1.1 MNIST-DataSet [10]

The MNIST database of handwritten digits, available from

this page, has a training set of 60,000 examples, and a

test set of 10,000 examples. The digits have been size-

normalized and centered in a fixed-size image. It is a good

database for people who want to try learning techniques

and pattern recognition methods on real-world data while

spending minimal efforts on preprocessing and formatting.

The database is also widely used for training and testing in

the field of deep learning. Half of the training set and half

of the test set were taken from MNIST’s training dataset,

Figure 1. Basemodel: Generation of Binary Digits

while the other half of the training set and the other half of

the test set were taken from MNIST’s testing dataset. The

set of images in the MNIST database is a combination of

two of MNIST’s databases: Special Database 1 and Special

Database 3. Special Database 1 and Special Database 3 con-

sist of digits written by high school students and employees

of the United States Census Bureau, respectively.

6.1.2 Results

Both the training and testing subsets of the MNIST dataset

are used for training the Max-Boost-GAN. Commonly, it’s

unsupervised without labels. As already introduced, Z1 ⊂
Z,Z2 ⊂ Z,Z1 ∪Z2 = ∅, Z1 ∩Z2 = Z. In the experiment,

each z1 is sampled from Z1, z1 is i.i.d and each element of

z1 follows the distribution U(−1, 0). Similarly, every z2 is

sampled from Z2, z2 is i.i.d and each element of z2 follows

the distribution U(0, 1). z is sampled from Z and each el-

ement of z follows the distribution U(−1, 1). The training

details are: epoch = 10, learning rate = 0.01, repelling pa-

rameter = 1 and m = 10. For comparison, the network

architecture of Max-Boost-GAN and the base model are the

same, and the training parameters remain the same.

Figure 2 represents the generated digits of Max-Boost-

GAN from Z1 (left) and Z2 (right). As represented, the left

figure shows generated digits with a single writing style,

and the right figure shows generated digits under a differ-

ent writing style. Both images show 10 digits with vari-

eties. However, figure 1 represents the generated digits of

Energy-GAN (Basemodel) from Z1 (left) and Z2 (right). It

can be observed that the left figures shows only three digits

are generated without obvious varieties.

In addition, Figure 2 represents the generated digits of
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Figure 2. Max-Boost-GAN: Generation of Binary Digits

Max-Boost-GAN from Z (bottom). The variety of gener-

ated digits is high. Specifically, a large number of different

written styles are generated for each of the ten digits. Be-

sides, all generated samples look like a real digit. However,

Figure 1 represents the generated digits of Basemodel from

Z (bottom). Some generated digits have large shape defor-

mation. Therefore, they do not look like any digit from 0
to 9. From the comparison between Figure 1 and Figure

2, the variety of generated digits are boosted through the

Max-Boost-GAN from Z1, Z2 and Z.

6.2. RGB Image (Human faces) Generation

6.2.1 Celeba-DataSet [13]

CelebFaces Attributes Dataset (CelebA) is a large-scale face

attributes dataset with more than 200K celebrity images,

each with 40 attribute annotations. The images in this

dataset cover large pose variations and background clutter.

CelebA has large diversities, large quantities, and rich an-

notations, including 10, 177 number of identities, 202, 599
number of face images, and 5 landmark locations, 40 binary

attributes annotations per image.

6.2.2 Results

Figure 4 represents the generated human faces of Max-

Boost-GAN from Z1 (left) and Z2 (right). As represented,

both the left and the right figures show human faces with

a variety of face outlines and different poses. However, as

shown in Figure 3, the generated human faces of Energy-

GAN from Z1 (left) and Z2 (right) are from very similar

face outlines, and the poses of the generated faces are al-

most identical.

Figure 4 represents the generated human faces from Z

Figure 3. Basemodel: Generation of CelebA RGB Images

(bottom). The quality of the generated human faces are

high. Particularly, the generated faces have a high resolu-

tion. Small regions such as the nose, the eyes, the mouth

and the eyebrow are distinct. Moreover, the emotions of the

generated faces such as smile, laugh and calmness are very

real. However, Figure 3 represents the generated human

faces from Z (bottom) with lower visual quality. For ex-

ample, a large region of some generated faces are wrapped.

Emotions of the generated faces are unreal. Some emotions

even effect the normal outlines of faces. Furthermore, small

regions of generated faces such as eyes, noses and mouths

are fuzzy. The positions of these key parts are translated

from normal positions. The recognition of these warped

human faces is very hard for human detectors. Finally, the

outlines of the generated faces sometimes warp too much.

From the comparison between Figure 3 and Figure 4, the

visual variety and quality of the generated human faces are

boosted through Max-Boost-GAN for all generated samples

from Z1, Z2 and Z.

7. Discussion

A novel GAN called Max-Boost-GAN is proposed in

this paper. The proposed GAN is applied to boost the ability

of generation without a large amount of training data. An

upper bound is provided to show that the Max-Boost-GAN
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Figure 4. Max-Boost-GAN: Generation of CelebA RGB Images

is capable of generating a variety of semantic samples with-

out a large training dataset/extra regularization. Besides,

new objective functions for both generator and discrimi-

nator are proposed. The goal is to implement the Max-

Boost-GAN without extra regularization. The proposed ob-

jective functions are updated on the basis of Energy-GAN

[30]. The goal is to obtain a good quality of gradients when

the generated samples are from convergence. Moreover, the

two updated functions can be shown to obtain optimal solu-

tions in the framework of Energy-based GAN [30].

The proposed method is shown to boost the ability of

generation compared with the base model. Two experi-

ments including binary digits generation and RGB human

faces generation are conducted. It can be seen that the Max-

Boost-GAN boosts the ability of generation for binary digits

images and RGB human face images. In addition, it can be

shown that the generator is capable of boosting the capabil-

ity of generating visual samples. The generator is demon-

strated to generate different semantic visual samples from

two different probability distributions under mild assump-

tion. Besides, the Max-Boost-GAN is capable of boosting

the variety and quality of visual samples generated from a

probability distribution that is not learned in the training.

This probability distribution has an enlarged domain com-

pared with the trained distribution, and it contains much

more information than the smaller distribution.

This work is an initial attempt to boost the ability of the

generator under GANs framework, and further research is

on going. For example, the proposed method achieved from

two different probability distributions, and more number of

probability distributions can be further incorporated. Be-

sides, the current assumption for distributions with small

domains may be alleviated. Furthermore, regularization of

the domain of each probability distribution is expected to be

used to produce real visual samples with different seman-

tics. Finally, Max-Boost-GAN provides a promising direc-

tion that the generation from several marginal probability

distributions could be combined to produce generation from

joint probability distribution.
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