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Abstract

Additive Gaussian noise is widely used in generative

adversarial networks (GANs). It is shown that the con-

vergence speed is increased through the application of

the additive Gaussian noise. However, the performance

such as the visual quality of generated samples and semi-

classification accuracy is not improved. This is partially

due to the high uncertainty introduced by the additive

noise. In this paper, we introduce multiplicative noise which

has lower uncertainty under technical conditions, and it

improves the performance of GANs. To demonstrate its

practical use, two experiments including unsupervised hu-

man face generation and semi-classification tasks are con-

ducted. The results show that it improves the state-of-art

semi-classification accuracy on three benchmarks including

CIFAR-10, SVHN and MNIST, as well as the visual quality

and variety of generated samples on GANs with the additive

Gaussian noise.

1. Introduction

Deep generative networks, especially the generative ad-

versarial networks (GANs) [8], demonstrate the ability of

generating real visual samples from a latent probabilistic

space. A family of GAN architectures have been devel-

oped including DCGAN [17], ImprovedGAN [20], WGAN

[1] and etc. The GANs networks are applied widely into a

range of different tasks including supervised-classification

[19], 3D reconstruction [29], representation of video [24],

cross-domain transformation [14], sequence learning [16],

image quality boosting [22] and other tasks.

Improvement for better convergence, achievement for

higher quality of generated samples and a larger variety of

visual patterns are the main research topics of GANs. For

example, the inverse mapping function of the generator is

estimated in an auto-encoder architecture and a two-way

mapping of the generation is then calculated [13, 18]. The

visual quality is shown to be improved. Different formula-

tion of the distance are applied such as Wasserstein distance

[1], least squares loss distance [15] and the adaptive hinge

distance [26] are applied in the generator/discriminator.

Both the visual quality and visual variety are shown to be

improved. Multiple number of generators/discriminators

are also applied to improve the visual quality of generated

samples, including an array of discriminators applied in the

GANs [6], message-sharing mechanism developed for mul-

tiple generators [7], triple-GAN designed for three-player

formulation under GANs framework [12].

The introduction of noise in deep neural networks has

been widely investigated. In particular, the additive noise

is added to the input [30], the output [3], the latent vectors

[20] and the gradient of deep neural networks [27]. Addi-

tive noise is shown to excite the speed of the convergence

of training [3]. Moreover, among many techniques that are

already developed for the improvement of GANs, additive

noise such as additive Gaussian noise is widely used to im-

prove the convergence the GANs [19]. However, to our best

knowledge, additive noise is not helpful for the improve-

ment of visual quality and variety through unsupervised

learning of features. In this paper, instead of applying ad-

ditive noise, a different form of noise called multiplicative

noise is proposed and studied for the unsupervised learning

of features.

In this work, we show that the introduction of multiplica-

tive noise enjoys lower uncertainty than the additive noise

under mild assumptions. Moreover, it is further analyzed

that the multiplicative noise has lighter effects of mixing

data than the additive noise under the GANs framework. We

further introduce simple multiplicative noise to improve the

accuracy of semi-classification, visual quality and visual va-

riety of generated samples in comparison with the additive

noise. We believe our current work is only an initial study

of noise (rather than additive noise) in unsupervised deep

neural networks. As is well known, the cortex is found to

propagate noisy code [21]. Specifically, noise substantially

increases the information capacity of the neuronal popula-

tion [4]. We demonstrate that the multiplicative noise, even

in a very simple formulation, obtains advantages than the

additive noise which is widely used in deep learning net-

works. Moreover, we further study applicable formulations

of noise which are very likely to improve the performance
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of deep neural networks.

The contribution of our current work is listed as follows.

First, we introduce multiplicative noise that has a very sim-

ple form and demonstrate its use in unsupervised deep neu-

ral networks. The noise can be shown to have with less

uncertainty than the additive noise under mild conditions.

Second, we show its practical use in deep neural networks.

Particularly, we use extensive numerical experiments for

semi-supervised classification. In comparison with the ad-

ditive noise in the GANs, the multiplicative noise is shown

to improve the semi-classification accuracy by about 2.16%,

1.85% and 0.11% for three benchmark datasets including

SVHN,CIFAR-10 and MNIST, respectively when the base

model is Improve-GAN [19] with additive noise. It achieves

the state-of-art of semi-classification 4.19% and 11.91% for

SVHN and CIFAR-10 respectively when the based model is

π-model with additive Gaussian noise. Furthermore, both

visual quality and visual variety of generated samples are

improved when the based models are GAN+AN (additive

noise) [17] and WGAN+AN (additive noise) [1], respec-

tively.

1.1. Related Work

The insertion of noise in deep neural networks has been

widely investigated. In particular, the additive noise is

added to the input [30], the output [3], the latent vectors

[20] and the gradient of deep neural networks [27]. For ex-

ample, weights decay [9] is added as additional constraints

with side-effect that each weight has unexpected magnitude,

and the uncertainty of weights is measured [5]. Its practi-

cality is limited since the weight is assumed to follow a di-

agonal Gaussian distribution. Slow convergence and even

oscillation may occur with any unsuitable noise injection.

Special additive noise is shown to excite the speed of

the convergence of training [3]. Since the injected noise in

the output speeds up convergence of the EM algorithm on

average [2], noisy convolutional neural network algorithm

is developed [3, 25]. However, extra loss function is used

for the additive noise. Therefore, there is a trade-off be-

tween the final accuracy and the extra loss [28]. Although

the proposed multiplicative noise has a simple formulation,

it is demonstrated to introduce less uncertainty into the deep

neural network system than the additive noise. In practice,

it is shown to improve the performance of GANs such as

the improvement of semi-classification accuracy and visual

quality without the extra regularization term.

Deep generative networks, especially the GANs [8],

demonstrate the ability of generating real visual samples

from a latent probabilistic space. A family of GAN architec-

tures have been developed including DCGAN [17], WGAN

[1] and ImprovedGAN [20]. One common technique used

for these GANs is the additive Gaussian noise. This noise

is applied for fast convergence of training the GANs. How-

ever, no strong evidence is provided that the additive Gaus-

sian noise is capable of improving the visual quality and

variety of generated samples. In this paper, the application

of the proposed multiplicative noise is shown to improve

both the visual quality and variety of the generated samples

through unsupervised learning of the features.

2. Preliminaries

The introduction of noise into the deep neural network is

considered as the import of uncertainty into the networks.

A large amount of uncertainty is considered as an nega-

tive effect to the performance of the networks. Therefore, a

good measure of the introduced uncertainty is selected. It

is then used to calculate the amount of uncertainty that is

introduced into the network. Finally, a simple formulation

of proposed multiplicative noise is provided.

2.1. Background

A multi-layer generative neural network is given and its

generic function is denoted as F . The additive noisy chan-

nel is widely used in the network [30, 3, 27, 28]. Let

Y = X + Z, where X,Z,Y ∈ R
N . X can be the in-

put/latent/output vectors of the network F . We further de-

fine the ith element of X by Xi.

Additive noise Z is widely applied in the network to

speed up the convergence of training [3], where Z is inde-

pendent with X. The insertion of additive noise brings the

uncertainty, which can be measured via the channel capa-

bility. Let pi(x) be the distribution of Xi and Yi = Xi+Zi,

where Xi and Yi are the input and output of the noisy chan-

nel, respectively. Following [23], the channel capability Ci

can be expressed as

Ci = max
pi(x) s.t. E(X2

i
)≤Pw

I(Xi;Yi), ∀i = {1, . . . , N},

where Pw is the maximum channel power, and I(X,Y ) rep-

resents the mutual information of X and Y.

2.2. Multiplicative Noise

Multiplicative noise is well known as the noise that is

relative with the state of a system rather than non-relative

with the state. In this setting, Zi can be seen as the additive

noise term for the training of deep neural networks, and Xi

can be seen as the state which is determined via the training

data for i = {1, . . . , N}. Let Z
′

i denote a random variable

representing a simple multiplicative noise. Z
′

i is co-related

with Zi and Xi. Moreover, P (Z
′

i) = P (Xi)P (Zi) and

the output of the multiplicative noise channel is changed

to Yi = Xi + Z
′

i.
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3. Lower Uncertainty of the Multiplicative

Noise

In this section, we show that the uncertainty of the addi-

tive noise channel is larger than the uncertainty of the pro-

posed multiplicative noise channel. This result is given via

the calculation of the channel capability of these two chan-

nels under mild conditions. Since low capability holds low

uncertainty, the channel capability can be seen as a measure

of the uncertainty when the noise is introduced.

3.1. Assumptions

First, we make an assumption about the probability dis-

tribution of Xi.

Assumption 1 Xi ∼ pi(x) where E(X2
i ) ≤ Pw ≤ 1 and

E(Xi) ∈ [−1, 1], ∀i = {1, . . . , N}.

This assumption is widely satisfied in the generative ad-

versarial neural networks. In the training of the generative

adversarial neural networks, the generated outputs are nor-

malized and the value of each elements of the outputs are

between −1 and 1. For example, the value of pixels of the

generated 2D images is between 0 and 1. In addition, the

value of the output of the discriminator is expected to range

from 0 to 1. Therefore, the Xi, i = {1, . . . , N}, can be the

generated outputs or the value of the discriminator, and the

preceding assumption can be satisfied.

Second, another assumption about Zi is given below.

Assumption 2 E(Zi) ≥ 0, ∀i = {1, . . . , N}.

The above assumption is easy to satisfy. Specifically,

Gaussian noise and uniform noise with non-negative expec-

tation are examples, which are two popular distributions ap-

plied in neural networks [10, 8].

3.2. Lower Uncertainty

Under the above two assumptions, we state our main

result, which shows that the uncertainty that the proposed

multiplicative noise introduces into the system is less than

the additive noise. In other words, under the Assumption

1 and 2, the channel capability of Xi + Zi is higher than

Xi + Z
′

i. Here, Zi is the additive noise and Z
′

i is the multi-

plicative noise. P (Z
′

i) = P (Zi)P (Xi), and Xi and Zi are

independent for all i = {1, . . . , N}.

3.2.1 Uncertainty of Additive Noise Channel

Given Xi and Zi whose probability distribution satisfies As-

sumption 1 and 2. First, the channel capability of Xi + Zi

is given by

Ci1 = max
pi(x) s.t. E(X2

i
)≤Pw

I(Xi + Zi;Zi)

= max
pi(x) s.t. E(X2

i
)≤Pw

h(Xi + Zi)− h(Xi + Zi|Xi)

where h represents the Shannon entropy. Since Zi is inde-

pendent with Xi, we have

Ci1 = max
pi(x) s.t. E(X2

i
)≤Pw

h(Xi + Zi)− h(Zi).

Note that E((Xi + Zi)
2)=E(X2

i ) + 2E(Xi)E(Zi) +E(Z2
i ).

Under Assumption 2, E((Xi + Zi)
2) has a upper bound of

B(Pw,Zi) , Pw+2
√
PwE(Zi)+E(Z2

i ) given Zi. Here,

the bound is attained when E(Xi) =
√
Pw.

Recall the property of differential entropy [23]

h(Xi) ≤
1

2
log 2πeK

where the equality is attained if and only if Xi is Gaussian

distributed and K is the co-variance matrix. Ci1 can be

expressed as

Ci1 =
1

2
log 2πeB(Pw,Zi)− h(Zi)

where Zi is a given noise.

3.2.2 Uncertainty of Multiplicative Noise Channel

We further compute the channel capability of Xi+Z
′

i, where

Z
′

i = XiZi.

Ci2 = max
pi(x) s.t. E(X2

i
)≤Pw

I(Xi + Z
′

i;Z
′

i)

= max
pi(x) s.t. E(X2

i
)≤Pw

h(Xi + Z
′

)− h(X + Z
′ |X)

= max
pi(x) s.t. E(X2

i
)≤Pw

h(Xi + XiZi)− h(XiZi|X)

= max
pi(x) s.t. E(X2

i
)≤Pw

h(Xi + XiZi)− h(Zi)

Note that E((Xi + Z
′

i)
2)=E(X2

i ) + E(X2
i )E(Z

2
i ) +

2E(X2
i )E(Zi). Under Assumption 2, E((Xi + Z

′

i)
2) has a

upper bound of B(Pw,Z
′

i) , Pw+2PwE(Zi)+PwE(Z2
i )

given Zi. Here, the bound is attained when E(Xi) =
√
Pw.

According to the property of differential entropy, Ci2 can

be further written as

Ci2 =
1

2
log 2πeB(Pw,Z

′

i)− h(Zi).

3.2.3 Analysis of Lower Uncertainty

Finally, we can show the channel capability of Xi + Z
′

i is

lower than the channel capability of Xi + Zi since

Ci2 − Ci1 =
1

2
log 2πe

(

B(Pw,Z
′

i)−B(Pw,Zi)
)

= 2E(Zi)(Pw −
√
Pw) + E(Z2

i )(Pw − 1)

≤ 0.
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Under Assumption 1 and 2, the equality of the above

formulation holds when Pw = 1 or E(Xi) = E(X2
i ) = 0.

Since each element of X is independent, the output of the

multiplicative noisy vector is of the form Y = X + X ⊙ Z

where each element of Z is i.i.d. distributed. Here ⊙ repre-

sents element-wise multiplication. In the following section,

we investigate one element of the vector X + X ⊙ Z, i.e.,

x+ xz.

4. Lower Effects of Mixing

Let Xi and Xj be two different training data i 6= j. We

denote Zi and Zj as the latent vectors of Xi and Xj , respec-

tively. Both Zi and Zj are high dimensional vectors. With-

out loss of generality, let xi and xj be any element of Zi and

Zj . A positive value d is defined as following. Generally,

the inserted noise mixes xi and xj as xi + zi = xj + zj ,

where |xi−xj | ≤ d, and zi and zj are the noise terms sam-

pled from the same probabilistic distribution p(z). More-

over, xi and xj can not be mixed when | xi−xj |> d. Here,

the value of d is inversely proportional to the goodness of

the inserted noise. Obviously, Gaussian noise N (µ, σ) is

not a good choice since it dose not have a bounded support.

However, the noise B(−a, b) can be used where the range

of noise is [−a, b], a > 0, b > 0. An analysis is given that

x + xz has a smaller d than x + z when z satisfies a range

assumption shown below.

A practical assumption is proposed for z, and it imposes

restrictions on the noise that is inserted into the deep neural

network.

Assumption 3 z has a support in [−a, b], where 1 > a > 0
and 1 > b > 0.

4.1. Analysis of Mixing

Under Assumption 1 to 3, we can show that x+xz has a

smaller expectation of d than x+ z. In other words, it gives

the fact that x+ xz has lower effects of mixing than x+ z.

That is, x+ xz has a smaller E(d) than that of x+ z.

4.1.1 Effects of Additive Noise

Without loss of generality, let E(xi) < E(xj). The expec-

tation of d for additive noisy input x + z is computed as

following. Under Assumption 3, E(xi + z) ∈ [E(xi) −
a,E(xi) + b], and E(xj + z) ∈ [E(xj)− a,E(xj) + b]. Let

E(xi)+b = E(xj)−a. We have E(d1) =| E(xj)−E(xi) |=
a+ b.

4.1.2 Effects of Proposed Multiplicative Noise

The value of d for x + xz is computed as following. First,

under Assumption 1, let 0 ≤ E(xi) < E(xj) ≤ 1, then

E(xi+xiz) ∈ [E(xi)−aE(xi),E(xi)+bE(xi)], and E(xj+

xjz) ∈ [E(xj) − aE(xj),E(xj) + bE(xj)]. Let E(xj) −
aE(xj) = E(xi) + bE(xi). We have E(d2) =| E(xj) −
E(xi) |= aE(xi) + bE(xj)

Second, under Assumption 1, let −1 < E(xi) < 0 <

E(xj) < 1, E(xi + xiz) and E(xj + xjz) are in [E(xi) +
bE(xi),E(xi) − aE(xi)] and [E(xj) − aE(xj),E(xj) +
bE(xj)], respectively. Under Assumption 3, a ≤ 1, for

all d ≤ 0, we have E(xj) − aE(xj) ≤ E(xi) − aE(xj).
Therefore, E(d3) = 0.

Third, under Assumption 1, let −1 ≤ E(xi) <

E(xj) ≤ 0, E(xi + xiz) and E(xj + xjz) are in [E(xi) +
bE(xi),E(xi) − aE(xi)] and [E(xj) + bE(xj),E(xj) −
aE(xj)], respectively. We thus have E(d4) =| E(xi) −
E(xj) |= −aE(xi)− bE(xj).

4.1.3 Lighter Effects of Mixing

To summarize, under Assumption 1 to 3, we have











if 0 ≤ E(xi) < E(xj) ≤ 1, then E(d1) > E(d2);

if − 1 ≤ E(xi) < 0 ≤ E(xj) ≤ 1, then E(d1) > E(d3);

if − 1 ≤ E(xi) < E(xj) ≤ 0, then E(d1) > E(d4).

Similarly, a similar conclusion can be made when E(xi) >
E(xj).

Following the above analysis, one implementation is X+
αX ⊙ Z, where Z is a multi-dimensional vector with each

element of Z i.i.d distributed. The multiplicative noise term

is αX⊙Z. In the following experiments, the hype-parameter

α is set to 0.01, and the probability distribution for each

element of Z is U(−1, 1).

5. Experiments

In this section, two experiments are conducted. In the

first experiment, the multiplicative noise term is inserted in

the GAN architectures under Assumption 1 and 2. In par-

ticular, the proposed noise term is inserted before the output

layer of the discriminator and before the output layer of the

generator. Normally, the value of pixels of output images

are in the range of [0, 1] and the value of the discriminator

is in the range of [0, 1]. Assumption 1 and 2 are satisfied at

these two positions. In the second experiment, the proposed

noise term is inserted after the input layer of the discrimina-

tor (temporal network [11]) and before the output layer of

the generator.

5.1. Two­level Unsupervised Generation from Two­
level Latent Space

Current GAN architectures are able to generate real vi-

sual images from a latent probabilistic space. This unsu-

pervised generation is formulated as Y = G(Z), where

Y represents a set of real images and Z represents a set

of multi-dimensional samples from a latent probabilistic
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space. However, to our best knowledge, a simple hierar-

chical generation of real images is not presented through

GANs. In this experiment, it is shown that the application

of simple multiplicative noise into GANs enables GANs to

generate a two-lever unsupervised generation to some ex-

tend. Furthermore, it is shown that the visual quality and

visual variety of the generated samples are improved com-

pared with two base models, including GAN+AN (additive

Noise) and WGAN+AN (additive Noise).

5.1.1 Definition of The Two-lever Unsupervised Gen-

eration

The two-lever unsupervised generation in this experiment

can be expressed as following.











Y = G(Z);

Y1 = G(Z1);

Y2 = G(Z2),

where Z1 ∩ Z2 = ∅, Z1 ⊂ Z, Z2 ⊂ Z, Y1 ∩ Y2 = ∅,

Y1 ⊂ Y and Y2 ⊂ Y. Z1 and Z2 are two sub-trees of Z,

and Y1 and Y2 are two sub-trees of Y.

5.1.2 Unsupervised Generation of Human Faces

In this experiment, CelebFaces Attribute Dataset (CelebA)

is used for unsupervised generation of human faces. As

presented in unsupervised generation via GAN+AN [8] and

WGAN+AN [1], Z contains the latent vector Z which is a

100-dimensional random vector drawn from U(−1, 1), and

Y contains the generated images Y which is a real human

face. The multiplicative noise term is added after the output

layer of the discriminator of each GAN architecture, and the

new architectures are named as GAN+dc and WGAN+dc.

Similarly, the new GAN architecture is named as GAN+gc

and WGAN+gc where the multiplicative noise channel is

used before the output layer of the generator. A generation

structure is obtained via the same unsupervised training pro-

cess with GAN+AN [8] and WGAN+AN [1], respectively.

The batch size, epochs of training and learning rate remain

the same.

Figure 1, Figure 2 and Figure 3 represent unsupervised

human faces generation through GAN+AN, GAN+dc and

GAN+gc, respectively. As shown, the top-lever generated

human faces through GAN+dc and GAN+gc obtain higher

visual quality and variety than GAN+AN. For example,

some of the generated faces at the top-lever are wrapped

in Figure 1. However, GAN+dc and GAN+gc generate top-

lever faces without distortion. Moreover, the visual variety

is also improved since GAN+dc and GAN+gc are capable

of generating faces with hats, glasses, different face outlines

and different poses more likely, while GAN+AN generates

human faces with similar face outlines. Furthermore, only

Figure 1. Human face generation. The architecture is GAN+AGN.

The left sub-tree Y1 = G(Z1) and the right sub-tree Y2 = G(Z2)
are a mess. The central tree Y = G(Z) shows the generated hu-

man face, and some of the generated faces are wrapped.

Figure 2. Two-level hierarchical human face generation via gender.

The architecture is GAN+dc. The left sub-tree Y1 = G(Z1) and

the right sub-tree Y2 = G(Z2) show the generated human faces

of different face outlines respectively. The central tree Y = G(Z)
shows the generated human faces are of much more variety and

have much higher visual quality.

fixed human faces features are generated through GAN+AN

at the bottom lever, while human faces of a sizable variety

are generated at the bottom lever.

Similarly, in the comparison among Figure 4, Figure 5

and Figure 6, WGAN+dc and WGAN+gc also improve the

visual quality and visual variety of generated faces than

WGAN+AN. Furthermore, the generated faces at the bot-

tom lever are shown to obtain discrimination of gender

through WGAN+dc and WGAN+gc. In particular, as Fig-

ure 6 shows, the left bottom represents generated female

faces and the right bottom represents generated male faces.

While in Figure 4, features of male faces are generated at

the bottom lever. It is worth noted that the experiment

setup for GAN+dc and GAN+gc is the same as the one

in GAN [8], and the experiment setup for WGAN+dc and

WGAN+gc is the same as the one in WGAN [1].
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Figure 3. Two-level hierarchical human face generation via gender.

The architecture is GAN+gc. The left sub-tree Y1 = G(Z1) and

the right sub-tree Y2 = G(Z2) show the generated human faces of

different genders respectively. The central tree Y = G(Z) shows

the generated human faces of much more variety and much higher

visual quality.

Figure 4. Human face generation. The center architecture is the

generation via WGAN+AGN. The left sub-tree Y1 = G(Z1)
shows the generated high-lever features of male human faces. The

right sub-tree Y2 = G(Z2) shows the generated female faces. The

central tree Y = G(Z) shows the generated human faces with a

much more variety.

5.2. Semi­supervised Classification

The GANs architectures can be applied to semi-

supervised classification of images. In this experiment,

the baseline1 is the Improve-GAN architecture with addi-

tive noise [20]. The multiplicative noise term is added af-

ter the input layer of the discriminator and before the out-

put layer of the generator. These architectures are named

as baseline1+dc and baseline1+gc, respectively. Besides,

the proposed noise term is added after the input layer of

the π-model with additive noise (baseline2) [11], and it is

named as baseline2+dc. Moreover, the proposed noise term

is added after the input layer of the temporal model with

additive noise (baseline3) [11], and it is named as base-

line3+dc. The data augmentation is termed as Au if the

same standard augmentation is used in [11] including ZCA

whiten, random crops and flips. Experiments on MNIST,

Figure 5. Two-level hierarchical human face generation via gender.

The architecture is the generation via WGAN+dc. The left sub-

tree Y1 = G(Z1) shows the generated female faces. The right

sub-tree Y2 = G(Z2) shows the generated male faces (some faces

are wrapped). The central tree Y = G(Z) shows the generated

human faces with a much more variety.

Figure 6. Two-level hierarchical human face generation via gender.

The center architecture is the generation via WGAN+gc. The left

sub-tree Y1 = G(Z1) shows generated male faces. The right sub-

tree Y2 = G(Z2) shows the generated female faces. The center

Y = G(Z) tree shows the generated human faces with a much

more variety and much higher visual quality.

SVHN and CIFAR-10 are conducted.

5.2.1 Results on CIFAR-10, SVHN and MNIST

The CIFAR-10 dataset contains 50, 000 training images and

10, 000 test images. These images are on ten image cate-

gories. The SVHN dataset is the street view house number

dataset, and this dataset contains 32 × 32 color images of

numbers. The training set has 73, 257 house numbers while

the test set has 26, 032 house numbers. The MNIST dataset

contains 60, 000 images of digits. There are 50, 000 images

of digits in the training set and 10, 000 images of digits in

the testing set. The images are binary images, and the size

of each image is 28× 28.

In the semi-supervised classification experiments, labels

of a small number of images are used. Experiments are con-

ducted with 400 labeled examples per category for CIFAR-
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Table 1. Semi-supervised classification results on MNIST

MNIST

Methods Error (10 per class)

CatGAN 1.39%± 0.28%
ALI −
IGAN (Baseline1) 0.93%± 0.06%
π-model (Baseline2) −
π-model (Baseline2)[Au] −
Temporal-model (Baseline3)[Au] −
Baseline1+gc 0.99%± 0.02%
Baseline1+dc 0.88%± 0.02%
Baseline2+dc −
Baseline2+dc[Au] −
Baseline3+dc[Au] −

Table 2. Semi-supervised classification results SVHN

SVHN

Methods Error (100 per class)

CatGAN −
ALI 7.3%
IGAN (Baseline1) 8.11%± 1.3%
π-model (Baseline2) 5.43%± 0.25%
π-model (Baseline2)[Au] 4.82%± 0.17%
Temporal-model (Baseline3)[Au] 4.42%± 0.16%

Baseline1+gc 6.35%± 0.02%
Baseline1+dc 5.95%± 0.02%
Baseline2+dc 5.10%± 0.12%
Baseline2+dc[Au] 4.60%± 0.09%
Baseline3+dc[Au] 4.19%± 0.06%

10, 100 labeled examples per category for SVHN and 10 la-

beled examples per category for MNIST. In the experiments

for comparison, all of the proposed models are trained in the

same experiment configuration with baseline1 [20], base-

line2 [11] and baseline3 [11], respectively. The parameters

for the training are also the same as the baselines.

Table 1 compares the results on MNIST. Compared with

baseline1 (Improve-GAN), semi-classification accuracy im-

provement is achieved through using the simple multiplica-

tive noise. Particularly, it’s improved from 0.99% to 0.88%.

The experiments are run 10 times, and the average value

and the standard deviation are calculated.

Table 2 compares the results on SVHN. Compared

with the baseline1 (Improve-GAN), baseline2 (π-model)

and baseline3 (Temporal-model), accuracy improvement

is achieved through using the simple multiplicative noise

term. Particularly, it is improved from 8.11% to 6.35% and

5.95% for Baseline1, from 5.43% to 5.10% for Baseline2,

from 4.82% to 4.60% for Baseline2 [Au], from 4.42% to

4.19% for Baseline3 [Au]. All the experiments are run 10

times, and the average value and the standard deviation are

calculated.

Table 3. Semi-supervised classification results CIFAR-10

CIFAR-10

Methods Error (400 per class)

CatGAN 19.60%± 0.40%
ALI 18.30%
IGAN (Baseline1) 18.60%± 2.30%
π-model (Baseline2) 16.55%± 0.29%
π-model (Baseline2)[Au] 12.36%± 0.31%
Temporal-model (Baseline3)[Au] 12.16%± 0.24%

Baseline1+gc 16.95%± 0.05%
Baseline1+dc 16.75%± 0.06%
Baseline2+dc 16.24%± 0.09%
Baseline2+dc[Au] 12.05%± 0.07%
Baseline3+dc[Au] 11.91%± 0.04%

Table 3 compares the results on CIFAR-10. Compared

with the baseline1 (Improve-GAN), baseline2 (π-model)

and baseline3 (Temporal-model), accuracy improvement

is achieved through using the simple multiplicative noise

term. Particularly, it is improved from 18.60% to 16.95%
and 16.75% for Baseline1, from 16.55% to 16.24% for

Baseline2, from 12.36% to 12.05% for Baseline2 [Au],

from 12.16% to 11.91% for Baseline3 [Au]. All the ex-

periments are run 10 times, and the average value and the

standard deviation are calculated.

In addition, new records for semi-classification accuracy

on CIFAR (4000), SVHN (1000) and MNIST (100) are

achieved. They are 11.91%, 4.19% and 0.88%, respectively.

6. Discussion

In this paper, multiplicative noise is introduced and ap-

plied to generative adversarial networks (GANs). It is

demonstrated to obtain two advantages including lower in-

troduction of uncertainty and less effects of mixing in com-

parison with the additive noise under mild assumptions ap-

plicable for GANs. Moreover, a simple term of multiplica-

tive noise is applied without extra regularization for unsu-

pervised face generation and semi-classification. Extensive

experiments are conducted to show that the visual quality

and variety, and the semi-classification accuracy are im-

proved in the comparison with the additive noise.

This work an initial attempt to explore the role of noise

in deep neural networks. The proposed formulation of the

multiplicative noise is simple. We apply this simple noise

to show that multiplicative noise obtain several advantages

than the additive noise in the framework of GAN. It is

shown that different forms of noise rather than the additive

noise may be beneficial to the performance of deep neural

network. However, the proposed method works under mild

assumptions, and it is only proposed for unsupervised deep

neural networks. In the near future, different and effective

formulations of multiplicative noise may be used in a larger
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range of deep neural networks and relative tasks.
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