This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural
Networks

Rahul Duggal

rahulduggal2608@gmail.com

Anubha Gupta

anubha@iiitd.ac.in

SBILab (http://sbilab.iiitd.edu.in/)
Deptt. of Electronics and Communication Engineering
Indraprastha Institute of Information Technology - Delhi (III'T-D), India

Abstract

This paper proposes a new activation function, namely,
Parametric Tan Hyperbolic Linear Unit (P-TELU) for deep
neural networks. The work is inspired from two recently
proposed functions: Parametric RELU (P-RELU) and Ex-
ponential Linear Unit (ELU). The specific design of P-
TELU allows it to leverage two advantages: (1) the flexi-
bility of tuning parameters from the data distribution sim-
ilar to P-RELU and (2) better noise robustness similar to
ELU. Owing to larger gradient and early saturation of tan
hyperbolic compared to exponential function, the proposed
activation allows a neuron to reach/exit from the noise ro-
bust deactivation state earlier and faster. The performance
of the proposed function is evaluated on CIFARIO and CI-
FARI00 image dataset using two convolutional neural net-
work (CNN) architectures : KerasNet, a small 6 layer CNN
model, and on 76 layer deep ResNet architecture. Results
demonstrate enhanced performance of the proposed activa-
tion function in comparison to the existing activation func-
tions.

1. Introduction

Deep neural networks, particularly, deep convolutional
neural networks (CNN) have set new benchmarks for many
computer vision problems [8, [3]. This is attributed to the
hierarchical learning representation that allows learning of
abstract concepts [18]. Generally, deeper networks are
observed to learn better representations [8, [13] [15]. The
increase in depth has been aided by several advances in
the field including better regularization strategies such as
Dropout [[14] and Batch Normalization [4], better optimiz-
ers such as Adam [[6] and RMSProp [16] and, better initial-
izations including [12, 2] among others. Newer constructs
with inception modules [15] and identity connections [3]
have also significantly increased the upper bound of stack-

able layers. Recently, a great amount of attention has also
been paid to the activation functions used in these networks.

Activation functions are a critical component of a CNN.
They introduce non-linearity in the model that allows it to
learn complex decision boundaries. Several activation func-
tions have been proposed in the past including RELU, P-
RELU, ELU, etc. [8} 1} 2, [11} 7, 5]. These functions are
designed to overcome the problem of exploding/vanishing
gradients that is commonly encountered with traditional
functions such as the sigmoid. Further, it has been shown
that a mean closer to zero speeds up the convergence of
the network while training [9, [1]. Accordingly, recent ac-
tivation functions have tried to incorporate this fact through
specific design choices. For example, Leaky-Relu [10] im-
plements a small, constant, positive sloped straight line for
negative inputs. Similarly, the Exponential Linear Unit [[1]]
implements the exponential function for negative inputs.
Recently, it has been shown [2] that the constant slope in
the case of Leaky-Relu can be parametrized in terms of
learnable weights, with little additional computational cost
while adding considerable flexibility to the activation func-
tion. Inspired by the above works on parametrization and
design choices of activation functions, we propose a new
activation function, Parametric Tan Hyperbolic Linear Unit
(P-TELU), for deep neural networks.

The organization of the paper is as follows: Section 2
briefly reviews some of the popular activation functions.
Section 3 presents the proposed P-TELU activation func-
tion. In Section 4, the proposed activation function is
benchmarked against some of the recent activation func-
tions on two standard CNN architectures. Section 5 presents
some conclusions and suggestions for future improvements.

2. Background

A lot can be learned by reviewing the evolution of ac-
tivation functions. Traditionally, sigmoid function defined

as o: R — [0,1],z = {5t=, has been the most widely

974



used activation function. A contributing factor in its pop-
ularity is the direct probabilistic interpretation of its output
range [0, 1]. However, as discussed previously, the non zero
output mean negatively impacts the convergence of neural
networks. This fact led to the shift from sigmoid to the tan
hyperbolic for use as an activation function because the tanh
function has range [—1, 1], in contrast to the sigmoid which
has a range [0, 1]. Recently, other functions have been pro-
posed that provide better performance in terms of speedy
convergence of deep neural networks. Some of the signifi-
cant ones are reviewed below.

RELU [8]: The rectified linear exponential unit activa-
tion is defined as:

z z2>0
f(z)—{o e m

RELU has been shown to speed up the training process
over tanh by 6 times. This function uses the identity func-
tion for positive inputs and hence, has a gradient of 1 for
z > 0. This feature allows it to address the problem of van-
ishing/exploding gradient in deep neural networks. How-
ever, a major disadvantage of RELU is the zero gradient for
negative inputs. Thus, if a neuron encounters a negative in-
put, it enters a de-activated state from where it can never
exit. This can lead to many de-activated neurons in the net-
work which is a computation and memory expensive waste
of model capacity.

L-RELU [10] : The leaky RELU addresses the problem
of de-activated neurons by introducing a linear function for
negative inputs. This affords a small gradient for negative
inputs and thus allows some of the de-activated neurons to
re-activate. L-RELU is defined as below:

f(z){z z>0 @)

az z<0,

where « is a small fixed positive constant.

P-RELU [2]: In L-RELU, « was a fixed constant. P-
RELU proposed to learn the optimal value of « through
back propagation, from the data distribution itself. This af-
fords a more general rectifier function at negligible addi-
tional computational cost. The number of additional learn-
able parameters are further reduced by sharing the a’s
across a channel.

ELU [1]: The exponential linear unit modifies @) for
negative inputs as below:

z z2>0
f(z) = 3)
(2) z <0.
where « is a constant that is generally set to 1. The ex-
ponential function in ELU provides a noise robust deacti-
vation state for large negative inputs. It was shown empir-
ically that this resulted in significant gains over activation

functions such as RELU and L-RELU which implement a
straight line in the negative half of the input plane.

3. Proposed P-TELU Activation Function

Motivated with the designs presented above that show
improved performance in image processing tasks such as
image classification, we propose a new activation function
for deep neural networks. We build upon ideas inspired
from the choices of activation functions described in the
previous section. Firstly, similar to RELU, Leaky-RELU,
P-RELU and ELU, we use identity mapping for positive in-
puts. This ensures that the gradient for positive inputs is ‘1’
and hence, takes care of the problem of exploding/vanishing
gradients. Secondly, for the negative inputs, we use tan hy-
perbolic function that is somewhat similar to exponential
function of ELU. This provides a noise robust de-activation
state. The proposed activation function is defined as:

z z>0

- @

axtanh(fxz) z2<0,aa>0,8>0

where the parameters « and 3 are learned along with the
filter weights from the training data. We have constrained
these parameters to remain non-negative. This ensures that
P-TELU performs atleast as good as RELU and in the worst
case will degenerate to RELU. Similar to P-RELU [2], we
have not used any regularization on « and S since that may
degenerate P-TELU to RELU.

Geometrically, « controls the saturation value and 3 con-
trols the convergence rate. The choice of using the tanh
function for the negative inputs instead of the exponential
function as in ELU is guided by the intuition that tanh has
1) a higher gradient for small negative inputs and 2) satu-
rates earlier than e” — 1 as is evident from fig [T} Thus it
reaches the noise robust deactivation state earlier and faster.
The larger gradients also allow it to exit from saturation at
a faster rate.

Y= tanh(X), X < 0, o, A= 1,
P-TELU (proposed)
¥ = ¢, X < 0, ELU 115
m— = 001K, X < 0 L-RELU
¥ = X, X>0, Commaon to all above |

Figure 1: Plots of various activation functions

On the computational front, the number of additional

975



learnable parameters in P-TELU are twice compared to P-
RELU. This number is still insignificant compared to the to-
tal number of weights learned in the Convolutional Neural
Network model. For example, in the 76 layer ResNet con-
sidered in this paper, 3968 additional parameters have been
introduced by P-TELU over and above 4,53,002 parame-
ters required to be learned in ResNet with RELU activation
function. This shows that there is no significant increase
in the number of parameters required to be learned with
the proposed P-TELU. Thus, the gain in accuracy of the
network, as shown in the next section, is not due to the en-
hanced model capacity, but because of the better representa-
tion afforded by the flexibility of the learnt parametrization.

To find the optimal « and 3 through backpropagation, we
require to compute the derivative of the output loss function
L with respect to a and .This is computed as below.

aL  dL  dfi,

= 5
dOéZ"j dfi,j x dozm- ( )

dL  dL  dfi,
= X : (6)

dBi; dfiy;  dBiy
df@j . 0 Zi5 > 0 %

dam- - tanh(ﬁw- X Zi,j) Zij § 0

df@j . 0 Zi5 > 0
dﬁ@j B a Xz X (1 — tCLTth(ﬁiJ‘ X Zi,j)) Zij < 0
3)

where subscripts (4,7) denote the j** neuron in layer i,
z; ; refers to the net input of the neuron at position (4, j),
and f; ; refers to the output of the neuron after applying the
activation.

4. Experiments using P-TELU

In this section, we benchmark our activation function
with RELU, P-RELU and ELU using two networks: a rela-
tively shallow (6 layer KerasNet) and a deep residual net-
work (76 layers). The performance has been evaluated
on two standard image datasets described below. Simula-
tions of this work were carried using Keras configured with
Theano backend on a Ubuntu 14.04 system with 2 x P5000
GPUs with 32GB total GPU memory.

4.1. Dataset

We report performance on CIFAR10 and CIFAR100
datasets. These datasets consist of 60,000 RGB images of
size 32 x 32 belonging to 10 and 100 classes, respectively.
As standard procedure, we train the networks on the training
set consisting of 50,000 images and evaluate performance
on the test set consisting of 10,000 images. For data aug-
mentation, we performed random horizontal shifting by 3
pixels as well as horizontal flipping. Mean subtraction and

F

Conv (128@3x3)
stride 2x2

BatchNorm

Conv-4 (64@3x3)
‘ Fully Connected (512) ‘

‘ SoftMax ‘
l | SoftMax |
1

(b) ResNet

sawn 57

Conv (128@1x1)

BatchNorm

(a) KerasNet

Figure 2: Architectures of the networks used in this paper

Scaling by 255 is carried out to bring the image intensities
in the range [—0.5, 0.5].

4.2. Experiment 1: Benchmarking on KerasNet

We evaluate performance of various activation functions
on a standard architecture provided in Keras Python Li-
brary. This network is also referred as KerasNet [[17]] and
consists of 6 layers. The architecture is described in Fig-
ure 2l The red coloured F boxes refer to the activation
functions. For every activation function, we train the cor-
responding model using stochastic gradient descent (SGD)
algorithm with a learning rate of 0.01 and momentum of
0.9. Both the parameters « and S of P-TELU required to
be learned are initialized at 1. The o parameter of ELU is
fixed to 1, while the parameters of P-RELU are initialized
to zero. Best accuracies are obtained over 300 epochs on
both CIFAR10 and CIFAR100 dataset and are summarized
in Table[I] From Figure[3] it is observed that P-TELU leads
to both faster gain in accuracy and higher accuracy at con-
vergence.

4.3. Experiment 2: Benchmarking on ResNet

In this subsection, we present the performance evalua-
tion of various activation functions on 76 layer deep ResNet
architecture. The network is trained using Adam optimizer

976



0.55

P-TELU
m— P-RELU
RELU

p—

o
tn

=
s
tn

o
s

=
w
tn

Test Accuracy

o
w

0.25

0.2

0.15 L 1 1 1 1 1
] 50 100 150 200 250 300
Epochs

Figure 3: Accuracy v/s epochs curve for KerasNet on CIFAR100
dataset

Table 1: KerasNet: Best accuracy observed over 300 epochs

CIFAR-10 CIFAR-100

Activation Function

RELU 85.45 56.56

ELU 85.84 57.97
P-RELU 86.26 58.75
P-TELU (Proposed) 86.5 59.76

with default parameters of 31 = 0.9, B2 = 0.999, ¢ = 108
[6]. The learning rate is set at epochs 1, 20, 40, 60 and 80
as 1073,5 x 107*,107%,5 x 10~* and 1077, respectively.
We imposed L? regularization of 10~* on all learnable pa-
rameters excluding o and 5. Two experiments have been
conducted: one with non-negative constraints on « and 3
and second with a constraint that «, 5 > 0.01. In the worst
case, the first set of constraints will degenerate P-TELU to
RELU, while the second set of constraints will degenerate
P-TELU to Leaky-RELU because tanh(z) ~ x for small x.
The best accuracy are obtained over 100 epochs on both CI-
FAR10 and CIFAR100 dataset and are summarized in Table
2

Table 2: ResNet: Best accuracy observed over 100 epochs

Activation Function CIFAR10 CIFAR100
RELU 90.77 70.06
ELU 91.26 69.05
P-RELU 90.99 69.05
P-TELU with o, 8 > 0 91.52 70.13

P-TELU with o, 8 > 0.01 91.16 70.63

5. Discussion

In order to observe the optimally learned values of « and
[ through backpropagation, we plot the layer-wise average
for ResNet in figure ] The layer-wise averaging is calcu-

lated as below :

L)
2]

gavo _ 2 Pid.
2]

where «; j and j3; ; refer to the value of a and 3 for the ;"
neuron in layer :.

®)

(10)

1.8 T T T T T
— g lpha
1.6 beta | {
1.4
U1z
]
C
2o
=T
1]
A
z 08
]
=
o
- 0.6
0.4
0.2
0 L L L L H
o 10 20 30 40 50 60

Layers

Figure 4: Layerwise averaged values of o and 3 (o, 8 > 0),
calculated using (I0), on the 76 layer ResNet model fitted with
P-TELU activation trained on the CIFAR10 dataset.

Figure [] offers an interesting observation wherein aver-
age values of a and [ decrease as we progress deeper into
the CNN. This finding is consistent with [2], where a simi-
lar decrease was observed for the P-RELU activation. It is
a known fact that filters in the earlier layers of a CNN cap-
ture lower level information such as color blobs and edges
[8L18L12]]. In order to maximize this information capture, the
activation function allows even the negative inputs to flow
to the output with less attenuation and hence, these layers
learn higher as. With the earlier layers capturing increased
coarser level information, the model capacity of the deeper
layers becomes available for learning discriminative fea-
tures that may increase the accuracy of the model by better
adapting to the non-linear decision boundaries. Hence, ap-
propriate lower or moderate values of as are learned in the
deeper layers as apparent from Figured] that impart more
non-linearity to the activation function, add discriminative-
ness to the model, and enable the model to learn complex
decision boundaries. In summary, the adaptable parameters
alpha and beta serve different purposes for different layers
of the CNN. Optimally learning them from the data leads to
early rise in accuracy as well as a higher overall accuracy
of CNN in comparison to CNN’s trained with previously
proposed activation functions. (Figure-3).

977



6. Conclusion

In this paper, we have presented a new activation func-
tion, namely, P-TELU for deep neural networks and have
evaluated its performance over two standard convolutional
neural networks: the 6 layer KerasNet CNN model and the
76 layer CNN with ResNet architecture. The performance
has been evaluated in terms of classification accuracy over
two standard image classification datasets: CIFAR 10 and
CIFAR 100. The proposed function performs better com-
pared to existing activation functions RELU, ELU, and P-
RELU. Moreover, P-TELU achieves faster convergence. In
future, we will evaluate its performance on other type of
deep networks such as AutoEncoders, DenseNets and with
other type of problems such as segmentation and localiza-
tion.

7. Acknowledgments

Authors gratefully acknowledge the research funding
support (Grant Number: 1(7)/2014-ME&HI) from the Min-
istry of Communication and IT, Govt. of India for this re-
search work.

References

[1] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international con-
ference on computer vision, pages 1026-1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770-778, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan. Deep
learning with s-shaped rectified linear activation units. arXiv
preprint arXiv:1512.07030, 2015.

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

K. Konda, R. Memisevic, and D. Krueger. Zero-bias au-
toencoders and the benefits of co-adapting features. arXiv
preprint arXiv:1402.3337, 2014.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller. Ef-
ficient backprop. In Neural networks: Tricks of the trade,
pages 9-48. Springer, 2012.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In Proc.
ICML, volume 30, 2013.

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

978

J. M. McFarland, Y. Cui, and D. A. Butts. Inferring nonlin-
ear neuronal computation based on physiologically plausible
inputs. PLoS Comput Biol, 9(7):e1003143, 2013.

D. Mishkin and J. Matas. All you need is a good init. arXiv
preprint arXiv:1511.06422, 2015.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1-9, 2015.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2),
2012.

P. Velickovi¢, D. Wang, N. D. Lane, and P. Lio. X-
cnn: Cross-modal convolutional neural networks for sparse
datasets. arXiv preprint arXiv:1610.00163, 2016.

M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In European conference on com-
puter vision, pages 818-833. Springer, 2014.



