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Abstract

Traditional recommendation systems using collabora-

tive filtering (CF) approaches work relatively well when

the candidate videos are sufficiently popular. With the in-

crease of user-created videos, however, recommending fresh

videos gets more and more important, but pure CF-based

systems may not perform well in such cold-start situation.

In this paper, we model recommendation as a video content-

based similarity learning problem, and learn deep video

embeddings trained to predict video relationships identi-

fied by a co-watch-based system but using only visual and

audial content. The system does not depend on availabil-

ity on video meta-data, and can generalize to both popular

and tail content, including new video uploads. We demon-

strate performance of the proposed method in large-scale

datasets, both quantitatively and qualitatively.

1. Introduction

Recommendation systems play more and more crucial

role in information filtering, as the amount of data we col-

lect gets explosively larger, in a variety of areas including

movies, music, videos, books, news, or scholarly articles. In

many cases, recommendation problem comes with a given

context, and proper items to retrieve are usually highly de-

pendent on the context. The target user is often such an

important context, especially when relevance is dependent

highly on taste. Another popular context is given by another

item(s). In online shopping mall, for example, we would

like to recommend products given a set of other items that

the user recently purchased.

Video recommendation problem is also usually defined

with those two context variables. The target user is an

important context in many video recommendation systems

(user-to-video recommendation), as different persons usu-

ally have different taste on videos. Some user may prefer to

watch lots of soccer videos, while some other user may want

to watch more music videos. Other video(s) may be given

as a context as well. Continuous play, for example, recom-

mends a good video to play next, once the current video the

user is watching is done (video-to-video recommendation).

If a user is watching an episode of TV series, for instance,

it is natural to infer that the user may want to watch the next

episode of the same series next.

A concrete example of video recommendation systems

above is online video sharing service. On YouTube Home-

page, for example, you may observe a section “Recom-

mended”, which is personalized. This is a good example

of user-to-video recommendation, as this section is filled

based on the user’s profile, watch history, and site-wide be-

haviors. While you are watching a video, YouTube shows

a set of related videos on the right side. This recommenda-

tion may depend not only on the inferred user taste, but also

on the video currently being watched. These examples are

shown in Figure 1.

One way to solve personalized video recommendation

problems is using collaborative filtering (CF) approaches,

which suggest related items for a user based on other users

with similar taste. They may work well for video rec-

ommendation problems if enough user preference data are

available. However, CF-based models also have limitations.

Most importantly, CF methods seriously suffer from the

cold-start problem. When a new user joins and gets rec-

ommendations, the system does not have ratings or watch

history to utilize for her, so is unable to infer her taste. It

is same for a new item (video); when a new video is up-

loaded, no one has watched or rated it, so it is impossible

to find users who may like it. This cold-start problem gets

alleviated until the system collects enough feedback from

users. In the mean time, recommendations generated for

the new user or for the new item can be still poor as it has

little information to utilize. This problem can be even more

severer in a system where new items are produced and con-

sumed in fast pace. In YouTube, for example, 300 hours

of new videos are uploaded every minute.1 As it has more

and more new videos, it becomes more crucial to search and

recommend from the fresh videos, but pure CF methods are

unable to perform this.

1As of Mar 23, 2017. https://fortunelords.com/youtube-statistics/
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Figure 1. Examples of YouTube video recommendations. (Top):

Homepage recommendations (user-to-video) for a user who re-

cently has watched movie trailers of “Spider-Man: Homecoming

(2017)” and “Wonder Woman (2017)”. (Bottom): Autoplay rec-

ommendations (video-to-video) for a user who is currently watch-

ing a trailer for “House of Cards Season 5 (2017)”.

Another limitation of pure CF approaches is that the sys-

tem is completely ignorant of content. As CF does not uti-

lize who is the user or what is the item, it makes hard for us

to see the reason for recommendation. In other words, it is

hard to explain in a human-interpretable way.

To overcome these limitations of CF-based recommen-

dations, content-based approaches have been proposed. In

general, they recommend items with similar content to what

the user liked or purchased before. For instance, movies

with the same genres, main actor/actress, or director may be

considered as similar. Given this kind of content informa-

tion about the items (and some background about the users)

available from the beginning, content-based methods can

compute similarity and recommend items even without any

user feedback or interaction with those. In some domains

like movies or music, items are usually released with rich

meta-data, which are proved to be useful for recommenda-

tions. [3]

Nevertheless, meta-data-driven content-based recom-

mendation is not always a feasible solution, as such meta-

data may not be available or not precise for some appli-

cations. In video recommendation problems, most user-

created videos do not come with well-structured meta-data.

We might be able to take advantage of the title and descrip-

tion of the video, but in general there is no guarantee that

they are accurate or in high quality. Relying on those meta-

data may lead to inaccurate or poor recommendations.

In this paper, we propose a content-based video recom-

mendation relying on raw video and audio content, to

resolve these issues. Specifically, we model video recom-

mendation problem as a video similarity learning problem,

and learn a compact representation of a video preserving

its semantics from its visual and audial signals using deep

neural networks. We embed all videos into an embedding

space, where similar (recommendable) videos are located

close to each other. We show that the learned video embed-

dings generalize beyond simple visual and audial similarity

and are able to capture complex semantic relationships. We

summarize main advantages of our proposed methods:

• As visual and audial information is available right after

the video has created and uploaded, our model is able

to extract features and embed it right away. This solves

the cold-start problem, where we had to wait days to

months with CF-based methods to collect user feed-

back for new videos to be recommended to the right

person in a right context.

• Our proposed method is more robust to spamming, as it

relies on raw video and audio data which are not easily

alterable, contrast to meta-data like title or description.

Recommendations based on video content itself fun-

damentally block spamming videos with an irrelevant,

but sometimes provocative title.

• We build a highly scalable video recommendation

framework based on the compact video representa-

tion. We demonstrate performance of our system with

YouTube 8M [1], the largest public video dataset as of

this writing.

We start by reviewing related work in literature in Sec-

tion 2. Then, we introduce our proposed system with details

in Section 3. In Section 4, we demonstrate performance of

our system both with public data and with real system. We

conclude with our contributions and propose future work in

Section 5.

2. Related Work

Recent development of deep learning has led notable

progress on video understanding. Content-based video clas-

sification (or video annotation) takes advantage of convo-

lutional neural networks (CNN) for image (frame) under-

standing [12] as well as recurrent neural networks (RNN)

for temporal aspect of videos. [30, 27, 21, 24, 28] Deep
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learning also has been applied to action recognition [14, 16,

2, 10, 4], as well as video search [29, 11].

Content-based recommendations also have previously

appeared in literature. Han et al. [7] proposed a dance-

style recommendation method based on action represen-

tation. Van den Oord et al. [26] explored deep content-

based music recommendations, learning CNNs fitting mel-

frequency cepstral coefficients from songs to the ratings.

Rothe et al. [19] used computer vision features to “regu-

larize” matrix factorization (MF). They included an additive

term to the MF model, which penalizes if the dot-product of

two latent vectors from the MF model is far from the cosine

similarity of their visual features.

While the previously mentioned works extract features

from the actual content, there is a larger wealth of works

that employ editorial content-based information, such as

movie genres, description and user-generated tags, tradi-

tionally known as content-based filtering (CBF). [17, 31,

18, 15, 23, 22, 5] We do not use editorial information, with

the exception of movie titles, which we only use to collect

YouTube trailers for movies.

3. Method

In this section, we detail our video feature learning

model and scalable recommendation system based on it. We

start by describing how we extract video and audio features,

followed by our neural network model fine-tuning for rec-

ommendation task. Then, we introduce techniques we ap-

plied to make the system more scalable.

3.1. Video and Audio Features

It is impractical to process videos as their raw form, as

the size of dataset may be terabytes to petabytes. To start

with more compact representation of videos, we pre-process

them and extract frame-level features using a state-of-the-

art deep model: the Inception-v3 network [25] trained on

ImageNet [6]. Concretely, we decode each video at 1 frame-

per-second up to the first 3,600 seconds, feed the decoded

frames into the Inception network, and fetch the ReLu ac-

tivation of the last hidden layer, before the classification

layer. Afterwards, we apply PCA (and whitening) to reduce

feature dimensions to 1,500 for storage and computational

reasons. These frame-level features are aggregated into a

video-level feature by average pooling. There may be more

sophisticated methods to combine frame-level features, but

we leave it as a future work.

We extract audio features using a VGG-inspired acoustic

model with a modified version of ResNet-50 [9]. Specif-

ically, the audio is divided into non-overlapping 960 ms

frames, and then decomposed with a short-time Fourier

transform with 25 ms windows for every 10 ms, producing

64 mel-spaced frequency spectrogram. We feed 100 feature

frames (corresponding to 1 second) into the ResNet [8], fol-

lowed by average pooling to aggregate them into the video

level.

3.2. Fine­Tuning for Recommendation

Although the visual and audial features we extract above

somewhat represent the video content, it may not be optimal

for recommendation task, as they are not trained for this

purpose. Thus, we train a feedforward network on top of

the input features to fine-tune for recommendation.

Suppose a user is continuously watching videos

{v1, v2, v3...} on YouTube. If a video vk+1 has been

watched after vk, we call vk and vk+1 are co-watched. This

notion can be extended to aggregate statistics with many

users. That is, we may call video va and vb are co-watched

in general, not just by a user. Especially for video-to-

video recommendations, this aggregated co-watch relation-

ship may be more robust to deliver content similarity.

We may want to locate the embeddings of two co-

watched videos close to each other. To achieve this, we

directly optimize a ranking loss, called the triplet loss [20].

A training data point is defined as a triplet of three videos:

anchor, positive, and negative. While training, we update

the feature vectors of these three videos so that the anchor

video is closer to positive than to negative. We put two co-

watched videos as the anchor and positive respectively, and

randomly assign a negative video to create a triplet. The

objective function is given as

min

n
∑

i=1

L(f(xa
i ), f(x

p
i ), f(x

n
i )) (1)

where x
a
i , x

p
i , and x

n
i correspond to the vector of anchor,

positive, and negative video of i-th training data point, re-

spectively, f is the feed-forward network, and L is a loss

function penalizing if f(xa
i ) is closer to f(xn

i ) than to

f(xp
i ). Some widely-used loss functions include hinge loss

Lhinge(x,y, z) = [‖x − y‖22 − ‖x − z‖22 + α]+, log loss

Llog(x,y, z) = log(1 + exp{‖x− y‖22 − ‖x− z‖22 + α}),
and exponential loss Lexp(x,y, z) = exp{‖x−y‖22−‖x−
z‖22 + α}, where α is a margin parameter.

As we normalize the final embedding, we can compute

distance (or similarity) between two video vectors more ef-

ficiently; taking dot-product gives relative similarity, not

necessarily computing exact cosine similarity. Henceforth,

we take dot-product and cosine similarity inter-changeably.

With this network, features are trained to locate in a sim-

ilar place with other videos watched together. As we initial-

ize with visual and audial features extracted from content,

the output features represent not only visual and audial con-

tent, but also watching behavior patterns of users. Also,

as the output feature is usually in much smaller dimension

than combined input features, the produced feature repre-

sents semantics of the video in a more compact way.
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Figure 2. Neural network models for fine-tuning video features optimized for recommendation. (Left): Early fusion, combining the visual

and audial features from the beginning. (Right): Late fusion, learning two separate towers for visual and audial signals, and combining

them by element-wise multiplication in the end.

Network Architecture

We propose two different types of networks as shown in

Figure 2. The left one concatenates two input features from

the beginning (after L2 normalization individually), and we

stack a feed-forward network on top of it. We call this Early

Fusion network. On the other hand, the right one in Fig-

ure 2 trains each input signal in separate towers, and the

output is combined by element-wise multiplications. We

call this Late Fusion model. (We tried addition instead of

element-wise multiplication as well, but it performed less

well.) Other than these two extremes, there can be more op-

tions such as training separate towers at the beginning but

concatenated at some level and train additional layers be-

fore output.

3.3. Scalable Recommendation System

With the feature learning described previously, each

video is now represented as a compact vector representing

content semantics. With this representation, video-to-video

recommendation problem can be formulated as a similar

video search problem in the embedding space. Formally,

we solve the following optimization problem:

min
v∈V−{q}

dist(xq,xv) (2)

where q is the query (seed) video, V is the set of all videos,

and dist(·, ·) is a distance metric between two vectors. In

practice, we may output top k > 1 items to recommend.

User-to-video recommendation can be formulated simi-

larly, if we represent each user as a sequence of videos that

she has watched recently. Unlike the video-to-video prob-

lems above, however, we may have more than one query

video. Computing similarity with a candidate video now

gives a sequence of scores, so we need to aggregate those

into one for easy comparison. An intuitive way is average

aggregation, where we take average of similarity scores be-

tween the candidate video and previously watched videos.

Intuitively, a candidate video will be high-scored if it fits

with most of previous videos overall. Formally,

min
v∈V−Q

1

|Q|

∑

q∈Q

dist(xq,xv) (3)

where Q is the set of videos the user has watched. An-

other intuitive approach is max aggregation, where we take

the maximum score among all videos in watch history. For

instance, suppose the user has watched many animation

videos and one “House of Cards” episode. Another episode

of “House of Cards” may get high score, since it is very

similar to one video in watch history. Formally,

min
v∈V−Q

max
q∈Q

dist(xq,xv) (4)

In real services like YouTube, |V | can be millions or bil-

lions, but these recommendations need to be computed at

the level of micro-seconds. They may cache features for

quick retrieval, so it is important to reduce the feature size

to save storage. We quantize feature values to have only

a limited number of representative values. Specifically, we

choose 2k representative values to minimize the expected

squared distance between original and quantized features,

representing each dimension with k bits. For faster compu-

tation of similarity, we may pre-compute and cache all pos-

sible combinations of multiplications. Instead of actually

taking float multiplication in serving time, we may lookup

the cached values to quickly dot-product.

Another possible bottle neck of this system is solving

Eq. (3) - (4). A naive implementation of this may iterate

all possible pairs of q and v, leading to quadratic time com-

plexcity O(|Q||V |). For the case of dot-product similarity

(dist(xq,xv) = x
⊤
q xv), average aggregation in Eq. (3) can
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be done in linear time by taking advantage of distributive

property of inner-product:

min
v∈V−Q

1

|Q|

∑

q∈Q

x
⊤
q xv = min

v∈V−Q





1

|Q|

∑

q∈Q

xq





⊤

xv

As the averaging part of vectors in Q does not rely on v,

this can be pre-computed once and reused. This way of

implementation achieves time complexity of O(|V |+ |Q|).

4. Experiment

We extracted video and audio features from 278M

YouTube videos. We randomly split the videos into train-

ing and eval partition with 7:3 ratio, and created the training

triplets based on in-house related video graph, with videos

in the training partition only. Assuming video-to-video

recommendation scenario, we evaluate with two different

cold-start cases: 1) where we recommend from eval (fresh)

videos for a query from train partition (train-to-eval, T2E),

and 2) where we recommend established videos for a query

with fresh video (eval-to-train, E2T). We evalute end-to-

end recommendation performance in two widely-used rank-

ing metrics:

1) Normalized Discounted Cumulative Gain (NDCG)

considers the order of recommended items in the list. For-

mally, DCG@k is defined as

DCG@k =
1

|U |

∑

u∈U

k
∑

i=1

2reli − 1

log2(i+ 1)
, (5)

where i is the position in the recommendation list and

reli ∈ {0, 1} indicates whether the i-th item is relevant to

the user or not. NDCG is the ratio of DCG to the maximum

possible DCG for that user. This maximum occurs when

the recommended items are presented in decreasing order

of user preference. We used k = 10 for our experiment.

2) Mean Average Precision (MAP) is the area under

precision-recall curve, given by

MAP =
1

|U |

∑

u∈U

∫ 1

0

P (r)dr, (6)

where r ranges over all possible recall levels and P (r) is

the precision at recall level r. In practice, the integral is

replaced with a finite sum over every position in the ranked

sequence of recommendations.

4.1. Model Parameters

We first show empirical results with several training op-

tions and parameters for our video-to-video model.

At first, we compared performance of the video-only

model and video + audio model. Video-only model is equiv-

alent to the left tower of late fusion model in Figure 2. Ta-

ble 1 shows NDCG and MAP scores for both models. In

Input Features
NDCG MAP

T2E E2T T2E E2T

Video Only 7.22% 10.38% 2.27% 2.68%

Video + Audio 8.48% 12.04% 2.70% 3.20%

Table 1. Recommendation performance in NDCG and MAP with

video features only vs. video + audio features. This clearly shows

having both visual and audial signals helps.
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Figure 3. Recommendation performance in NDCG and MAP with

various output feature size.

both types of cold-start scenarios, we see that the audio

signal clearly helps to improve end-to-end recommendation

performance over the video-only model.

Another interesting parameter is the size of output fea-

ture vector. There is general trade-off between capacity and

cost; the larger the size, the more expressive the feature can

be, potentially leading to better performance. For this, how-

ever, we pay the cost like longer training time and computa-

tional resources. If we are about to serve the features online,

the storage size may be also an important concern, prevent-

ing large feature size despite its better performance. In Fig-

ure 3, we see that increasing the feature size above 512 gives

little gain. On the other hand, the performance dramatically

drops when the size is smaller than 128. We chose 256 di-

mensions as a good compromise between performance and

computational cost.

We also tried several different neural network architec-

tures, with shallower vs. deeper models, different number

of nodes in hidden layers, and early vs. late fusion. Ta-

ble 2 summarizes end-to-end performance with different ar-

chitectures we tried. Interestingly, we see little advantage

with deeper models. It is probably because the input fea-

tures have already gone through deep models (Inception and

ResNet), and this fine-tuning may not be that complex to

take advantage of deeper models. Instead, deeper models

take longer time to train. Another observation is that in-

creased capacity of the first hidden layer actually helped to

improve the performance. Lastly, late fusion tends to al-

ways perform better than early fusion. This might be be-

cause one signal is almost ignored with early fusion if it is

not strong enough to survive against the other. From this

empirical evidence, we chose 4000-256 architecture with
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Architecture (Fusion)
NDCG MAP

T2E E2T T2E E2T

2560-256 (Early) 8.48% 12.04% 2.70% 3.20%

4000-256 (Early) 9.51% 13.13% 3.01% 3.49%

4000-256 (Late) 9.91% 13.46% 3.13% 3.58%

4000-512-256 (Early) 9.29% 12.64% 2.90% 3.33%

4000-1024-256 (Early) 9.46% 12.80% 2.95% 3.38%

4000-1024-256 (Late) 9.82% 13.05% 3.07% 3.44%

Table 2. Recommendation performance in NDCG and MAP with

several different neural network architectures.

Output Dim Quantization Size (byte) T2E E2T

512 original 2048 2.99% 5.68%

256 original 1024 2.96% 5.61%

32 original 128 2.19% 4.20%

128 8 bit/dim 128 2.87% 5.47%

256 4 bit/dim 128 2.94% 5.58%

512 2 bit/dim 128 2.87% 5.47%

128 4 bit/dim 64 2.84% 5.40%

256 2 bit/dim 64 2.75% 5.23%

128 2 bit/dim 32 2.48% 4.74%

Table 3. Comparison in NDCG for various feature size with quan-

tization. With quantization, we can have larger dimensionality

with same size, achieving better end-to-end performance. Bold-

faced figures mean the best performance within the same size.

late fusion.

Lastly, we compare how much performance we can re-

tain with different levels of quantization. We quantize each

dimension into 2, 4, and 8 bits (from 4 bytes float), by hav-

ing 4, 16, and 256 representative values. Table 3 compares

end-to-end performance with various quantization options.

The top two rows show the best performance we achieved

with largest output size. When we reduce the output size to

128 bytes (16x from the best), we compare 4 options: {32

floats, 128 * 8 bits, 256 * 4 bits, 512 * 2 bits}. We observe

that 4 bits per dimension are enough to preserve the origi-

nal performance, as NDCGs dropped just 0.02% and 0.03%

for each scenario, respectively. 2 bits per dimension seem

not enough to preserve information, when we compare it

against performance with original 512 dimensions. When

we reduce further to 64 bytes, we still achieve reasonable

performance with 4 bits/dim quantization with 128 dimen-

sions. From this comparison, we choose 256 dimensions

with 4 bits each as our model for experiment.

4.2. MovieLens Trailers

We compare against previous models on MovieLens, one

of the most widely-used public dataset for recommenda-

tions. As it does not come with video and audio data of

movies, we collected movie trailers available on YouTube

as a proxy. To obtain the trailer YouTube video IDs for the

MovieLens movies, we queried Google with the canonical

Figure 4. Search results for query “Toy Story (1995)”. Usually, the

YouTube result is the third result, after IMDB and Wikipedia.

“Title (year)” for all movies in MovieLens 20M2, and took

the first YouTube result with ‘Trailer’ in its title, limiting

to the top 20 results. Figures 4 and 5, respectively, show

the search results of a title query and random frames from

a few trailers. In this way, we collected 1,489 trailers (out

of 1,682 movies, 88.5%) in MovieLens 100K dataset, and

22,798 trailers (out of 27,279 movies, 83.6%) in MovieLens

20M dataset. Movies without trailers were excluded from

experiments.

For each user, we split ratings into training and test par-

titions by 5:5 ratio. Users with less than 10 test ratings were

excluded from the experiment. For each user, we define the

set of preferred movies as movies in training partition with

a rating higher than some threshold: 1) fixed threshold with

5 stars only, 4 stars or higher, and 3 stars or higher; 2) the

user’s own mean rating; and 3) no threshold (simulating ap-

plications with watch history given without explicit ratings).

We then rank candidate videos in the test partition by sim-

ilarity to the preferred movie set, computed as dot-product

in our embedding space. We aggregated the scores by max

and average aggregation proposed in Eq. (3) - (4). For this

experiment, we used reli ∈ {1, 2, 3, 4, 5} for DCG (Eq. (5))

to make the setting comparable to [13].

Table 4 summarizes performance on MovieLens dataset

in NDCG@10 and MAP. Below is our observations and dis-

cussions:

1. The higher threshold we have, the performance gets

better in general. This makes sense, since with higher

threshold we only take videos that we are sure the user

liked, as long as we have enough ratings from the user.

2https://grouplens.org/datasets/movielens/
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Figure 5. Frames from four MovieLens movies. Each row shows

frames from one YouTube trailer. Top-to-bottom: “Toy Story

(1995)”, “Race the Sun (1996)”, “S.W.A.T.: Firefight (2011)” and

“The Journey of August King (1995)”.

We see some performance drop when we do not filter

out videos with low ratings, but in applications only

with implicit feedback (e.g, clicks, views) this filtering

may not be possible.

2. Max aggregation performs generally better than aver-

age aggregations. This means recommending the most

similar item to one of the user’s favorite performs bet-

ter, probably because many users have more than one

preferred types of movies. We also tried some vari-

ations of these aggregations, such as average of top

k = 2, 3, 5, and variance, but these did not outperform

max and average aggregations.

3. Another purpose of this comparison is to see how

much video-content-only recommendation models can

perform compared to CF-based models. We com-

pared against Local Collaborative Filtering [13], using

the same experimental setting. Their models achieve

NDCG@10 of 0.71 - 0.72, and MAP of 0.76 - 0.77

(See Figure 1 - 3 in [13].) As it is known that CF-based

models are powerful than content-based with sufficient

ratings, it is not surprising that the proposed method

does not outperform it. This result shows that we still

have some headroom to improve, especially if we learn

on the target dataset directly.

4.3. YouTube8M Demonstration

Lastly, we demonstrate qualitative performance of our

proposed method on YouTube8M dataset [1], which is the

largest multi-label video classification dataset as of this

writing. It is composed of about 8 million videos of 500K

hours of videoannotated with a vocabulary of 4,800 visual

entities.

Aggregation Watch History Threshold NDCG MAP

Max Higher than user mean 0.6242 0.7186

Max 5 stars only 0.6282 0.7155

Max 4 stars or higher 0.6251 0.7196

Max 3 stars or higher 0.6149 0.7141

Max All rated movies 0.6071 0.7078

Average Higher than user mean 0.6022 0.7073

Average 5 stars only 0.6133 0.7120

Average 4 stars or higher 0.6018 0.7065

Average 3 stars or higher 0.5954 0.7013

Average All rated movies 0.5900 0.6966

Table 4. Recommendation performance in NDCG and MAP with

several different neural network architectures.

We aim to the video-to-video recommendation problem

since this dataset does not contain any individual user data.

We are given a query video, and our task is retrieving the

most relevant top-k videos to the seed. To illustrate cold-

start situation, we choose all query videos from the eval

partition (approximately 30%), thus no seed videos in this

example has been shown to the model during training. All

videos in the dataset other than the chosen query are con-

sidered as candidates. As described in the previous section,

we did not use any meta-data other than video and audio

signals.

Figure 6 illustrates some examples of the result. From

the top, 1) the query video is about Sergio Busquets, a

Spanish soccer player. All recommended videos are ob-

viously about soccer, and in the last two thumbnails we

see the same uniform from F.C. Barcelona. This shows

our proposed method effectively finds out similarity even in

fine details. 2) The second example is about a video game

with fixed screen. As expected, all recommended videos

are other videos playing the same game. 3) Next query is

about a hamster. All recommended videos show hamsters

in them, but each hamster is in different color and shape.

Nevertheless, our proposed method still outputs these as rel-

evant videos. 4) In the next seed video, a girl demonstrates

how to make her hair braided (‘tresse’ in Spanish, seen

in the title). The recommended videos look semantically

very relevant, as they are also showing how to braid hair.

Interestingly, the title of the first and third recommended

videos are in Russian and Korean, respectively. This ex-

ample shows that our proposed method can retrieve visu-

ally relevant videos across languages, which usually are not

supported in most systems. (Recommending videos in dif-

ferent languages may not maximize user satisfaction in real

system though. For practical use, some heuristics may be

applied to filter videos in other languages out.) 5) The last

example is similar; the seed and recommended videos share

the same theme (live music) and similar stage setting. How-

ever, these might not be the best recommendations, since

singers and even languages are different, so some of these
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Figure 6. Demonstration of video-to-video recommendation with YouTube8M Dataset. The left-most column is the query video, and other

videos in the same row are top 4 recommended videos by our proposed system. We show YouTube thumbnail, title, and relevance score

we computed (in red italic).

may not be the ones users are looking for. Overall, visual

and audial features are powerful to retrieve relevant videos

from the corpus, but need to be used in conjunction with

other sources like meta-data or collaborative filtering sig-

nals to compensate its blind spots.

5. Summary and Future Work

In this paper, we proposed a video recommendation sys-

tem based on raw visual and audial content. The proposed

model learns a compact representation of videos optimized

not only for video and audio content, but also for semantics

extracted from watch patterns. We also develop a scalable

system based on the content features, evaluated quantita-

tively as well as qualitatively on two large-scale benchmark

datasets.

There are some areas we may be able to improve this

work further. First of all, it is obvious that averaging frame

features to get the video-level feature may not be the opti-

mal way to do. We may apply advanced deep learning mod-

els such as LSTM for this part to improve the performance.

Second, we may also apply more advanced quantization

methods such as product quantization. With more compact

and effective quantization, we may learn even larger con-

tent features with smaller size, potentially achieving higher

precision. Lastly, we may also try different loss functions to

learn video embeddings. We leave them as potential future

work.
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