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Abstract

We propose a convolutional neural network (ConvNet)

based approach for learning local image descriptors which

can be used for significantly improved patch matching and

3D reconstructions. A multi-resolution ConvNet is used

for learning keypoint descriptors. We also propose a new

dataset consisting of an order of magnitude more num-

ber of scenes, images, and positive and negative corre-

spondences compared to the currently available Multi-View

Stereo (MVS) [18] dataset. The new dataset also has bet-

ter coverage of the overall viewpoint, scale, and lighting

changes in comparison to the MVS dataset. We evalu-

ate our approach on publicly available datasets, such as

Oxford Affine Covariant Regions Dataset (ACRD) [12],

MVS [18], Synthetic [6] and Strecha [15] datasets to quan-

tify the image descriptor performance. Scenes from the Ox-

ford ACRD, MVS and Synthetic datasets are used for evalu-

ating the patch matching performance of the learnt descrip-

tors while the Strecha dataset is used to evaluate the 3D

reconstruction task. Experiments show that the proposed

descriptor outperforms the current state-of-the-art descrip-

tors in both the evaluation tasks.

1. Introduction

Designing high quality descriptors for finding correspon-

dences between images is crucial for many computer vi-

sion tasks such as 3D reconstruction, structure from mo-

tion (SFM) [14], wide-baseline matching [15], stitching

image panoramas [5], and tracking [9, 3]. Finding cor-

respondences in-the-wild is challenging due to changes in

viewpoints, scale variations, variations in illumination, oc-

clusion, and shading.

Traditional handcrafted descriptors [11, 3] encode pixel,

super-pixel or sub-pixel level statistics and similarity, but do

not have ability to capture higher structural level informa-

tion. However, there are tasks which are highly dependent

on pixel level statistics. In these kind of tasks handcrafted

features perform better. Resurgence of ConvNets has re-

sulted in many recent works proposing learning based de-

scriptors [13, 21, 8, 2]. ConvNet based descriptors have the

potential to capture higher level structural information and

generalize well, if it is properly trained with a good dataset.

As noted in [2], current benchmark datasets limit the

potential of ConvNet based learning algorithm to evalu-

ate across different datasets. The frequently used datasets

for patch matching are the Multi-View Stereo (MVS)

dataset [18] and Oxford ACRD dataset [12]. The MVS

dataset has only three scenes (each scene consists of approx-

imately 250 images) and does not provide sufficient varia-

tion in terms of scene content, viewpoint, and scale. Further,

most of the non-matching pairs in the dataset are totally dis-

tinct from each other which seldom happens in real-world

scenarios. The Oxford ACRD dataset which was created a

decade ago is very small for today’s computing power and

is prone to over-fitting and in turn cannot generalize any de-

scriptor to be robust in-the-wild. Even a recently published

dataset named Hpatches [1] contains scenes with variations
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only in illumination and viewpoints on flat surfaces such

as walls. Such type of scenes do not suffer from occlu-

sions. However, scenes capturing real world 3D non-planer

objects at various angles will experience partial occlusions.

Hence, a good dataset should include these characteristics

to be more challenging and to efficently describe feature

descriptors for 3D reconstruction of non-planer objects.

For efficient ConvNet based descriptors, it is important

to have a good combination of ConvNet architecture and

dataset on which the ConvNet is trained. Selection of a

good architecture that is robust to geometric and scale vari-

ations is as essential as good datasets. Working on these

lines, in this paper, we propose a multi-resolution ConvNet

architecture based descriptors. The ConvNet is trained on a

new larger dataset which has higher geometric and photo-

metric variations in the scene, number of viewpoints, varia-

tions in scale, and also includes scenes capturing 3D object

that suffer partial occlusions. We have evaluated the pro-

posed descriptor for patch matching and keypoint matching,

and found that it is more than competent when compared to

the state-of-the-art descriptors. Further, we have conducted

3D reconstruction evaluations and found that the proposed

method has produced significantly better results.

1.1. Related Work

Several papers in the literature exist that address the chal-

lenges involved in designing image descriptors that are in

turn used to find the image correspondences using local

patch matching. These include the traditional hand-crafted

descriptors such as SIFT [11] and SURF [3] and the more

recent ConvNet based descriptors such as DeepDesc [13],

DeepCompare [21], Matchnet [8], and Tfeat [2]. Learn-

ing the descriptors for local patches using ConvNets was

attempted early by Jahrer et al. [10] but was not followed

up due to numerous practical issues and limited evaluation.

However, with recent success of ConvNets and deep learn-

ing, Matching local image patches via learned descriptors

became widespread study and many ConvNet based archi-

tectures have been proposed [21, 8, 13, 2]. It has been

shown in the literature that the descriptors learned using

Siamese architecture based ConvNets considerably improve

the matching performance [21, 8, 13].

Few papers in the literature, study patch matching as

a task [21, 8], where the feature layers (Siamese net-

work) and the metric learning layers (fully-connected lay-

ers) are jointly learnt in an end-to-end fashion. These

type of ConvNets cannot be used as general descriptors

for any tasks such as reconstruction except patch matching.

Whereas, [13] uses the features extracted at the output of the

Siamese networks without learning any non-linear decision

network or metric learning layer. These type of descriptors,

are generic in nature and can be used for many tasks as drop-

in replacement of traditional descriptors including keypoint

matching, 3D reconstruction, and tracking. Since, metrics

to compare between patches are not learned, a generic met-

ric such as L2 distance to compare patches and train the net-

work. Learning feature descriptors using triplets of patches

was investigated in [2] using shallow networks in order to

reduce the descriptor extraction time. Similar to [13, 2], the

aim of the proposed approach is to extract descriptors for

local image patches that can be used for 3D reconstruction.

Inspired by the multi-bank architecture used in human-

pose estimation [16], the proposed network uses a three

bank network to encode scale variations of the image

patches. Each bank shares common weights and hence the

scaled patch inputs undergo similar transformation before

being combined together and processed further. This helps

the proposed network in being more robust to scale changes.

Similar multi-resolution architecture has been proposed as

a variant (central-surround two-stream model) in [21]. This

multi-resolution model produces independent output com-

bined by the metric learned layers. In the current literature,

this type of architecture has not been studied for stand alone

descriptors.

2. Multi-Resolution Convolutional Neural Net-

work

The Multi-Resolution Convolutional Neural Network

which has the capability to capture better scale variance,

we adapted it in a Siamese fashion [7] to learn patch de-

scriptors of size 128 dimensions. The proposed multi-bank

network accepts image patches scaled to different resolu-

tions, analogous to approximating the Laplacian pyramid

for the input patch. The network has 3 channels as shown

in Fig. 1 and each channel accepts patches of size 64 × 64
pixels. The first channel takes a patch of size 96×96 pixels

downsampled to 64 × 64 pixels. The second channel takes

a center-cropped 64 × 64 patch and the third channel takes

32×32 center-cropped patch scaled to 64×64. Each chan-

nel has identical structure consisting of three convolution

layers and shares the parameters across the banks as shown

in Fig. 1. The output maps from the 3 channels are then

concatenated to form one bank and passed through 2 con-

volution layers of (128, 64) features respectively. The result

is then flattened to form a 1D tensor (64 ∗ 8 ∗ 8 = 4, 096)
size and passed to a fully connected layer of 128 dimen-

sions. The output of this fully connected layer of trained

network is used as the descriptors for the input image.

The Multi-Resolution architecture along with providing

scale invariance also captures information at different ex-

tent. The top bank has a wider support region due to larger

96 × 96 patch, enabling the network to better distinguish

among locally repeated patterns. In contrast, the bottom

bank which is feed from up-sampling a a central 32 × 32
patch captures subtle changes which helps to discriminate

from close by points. We also adopt a learned combina-
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Figure 1. Illustration of the proposed network

tion of the three outputs rather than leaving it to the point of

mere concatenation as done in DeepCompare [21].

Training of the network is performed in Siamese fash-

ion using the contrastive loss function (Eq. 1) as used in

[7]. Here, DW is the output of the network whose param-

eters are W . Y is a binary indicator function, whose value

is 1 when the pair (A,B) forms a match and 0 otherwise.

The margin m, is the minimum distance by which a non-

matching pair should be apart.

L(W,Y,A,B) =
1

2
[Y (DW )2+(1−Y ){max(0,m−DW )}2]

(1)

3. The PS Dataset

In this paper we propose a new dataset, for learning

generic descriptors, called the PhotoSynth-based dataset

(PS). This dataset consists of two types of scenes, Multi-

image and Single-image scenes.

Multi-image scene: The scenes in this category focus on

3D objects having distinctive edges. Each scene consists of

250 color images on an average, and a corresponding sparse

3D point cloud created using SFM [19, 20]. Unlike the

MVS dataset which has only 3 scenes, the proposed dataset

has 15 scenes with considerable photometric and geometric

variations. The number of patches per scene ranges from

75, 000 to 200, 000. Image patches are created by defining

a square neighborhood around the projections of 3D points

in the images. The SFM process provides correspondences

having wide baselines and large scale variations which can-

not be obtained by stereo matching using handcrafted de-

scriptors. Sample images of this category are illustrated in

Fig. 2.

For a particular multi-image scene, let Pi denote the set

of all the patches belonging to a 3D point i. The scale s,

for a projection is given by the ratio s = f/d and varies in

range (1, 2.0) in Pi. Here, f is the focal length of the cam-

era corresponding to the image the 3D point is projected and

d is the distance between its camera center and the 3D point

projected along the camera’s view direction. Viewpoint dif-

ference between a pair images is measured in terms of an-

gle between their view directions. The viewpoint variation

ranges from 10− 60 degrees. Square patches of size 96 are

cropped from images.

Single-image scene: The scenes in this category con-

tain images focusing a flat surface having varied textures,

e.g., a wall. In such a scene, pairs are formed by taking a

patch from the image and a random affine transform of the

patch. Such transformations can be obtained dynamically

while training the network. This process aids the training in

two ways: (i) provide a wide variety of affine transforms be-

tween patches that are not present in the multi-image scenes

(ii) It avoids over-fitting, since, the network sees the same

patch taken from an image with different affine transform

each time. Totally there are 10 images in this category.

Sample images of this category are illustrated in Fig. 3.

The dataset in total contains 6 indoor scenes and 19

outdoor scenes. The resolution of the images are either

2000 × 1300 pixels or 1000 × 750 pixels. The format of

our PS dataset is similar to that of the MVS dataset. Each

scene contains RGB patches, of size 96 × 96, Each scene

is provided with a patch information list with an entry for

all the patches in that scene and 3D point index to which

the patch is belongs to and the (x, y) co-ordinates of the

0The dataset will be made publicly available
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 Figure 2. Illustration of sample images from different scenes in the proposed PS dataset showing scenes with four view points each. As

can be seen, these images have large variations in terms of baseline and pose.

 

 

    

 

 Figure 3. Reference images of different single-image scenes from

the proposed PS dataset.

center of the patch in the grid image. Additionally, each

scene contains a match-list containing pair of indices from

the information list of all the matching pairs. The number

of matching pairs in a scene varies from 60, 000 to 200, 000.

For training we use 20 scenes with 12 and 8 scenes from the

multi-image and single-image categories respectively. The

remaining 3 multi-image scenes and 2 single-image scenes

form the test scenes. The test scenes have an additional list

containing randomly selected 25, 000 matching and 25, 000
non-matching pairs. Sample patches from our dataset with

comparison to MVS dataset are shown in Fig. 4.

4. Experimental setup

The experimental setup for evaluating the proposed ap-

proach and for comparing with other approaches in litera-

ture is detailed in this section. The evaluation metrics and

training methodology are described in sections 4.1 and 4.2

respectively.
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Figure 4. Comparison between the proposed PS dataset (first row)

and MVS dataset (second row). As can be seen, the patches de-

picting similar scenes in PS dataset have larger variation than that

of MVS dataset.

4.1. Evaluation metrics

Following [13, 2], matching score is used as metrics for

patch matching. Matching score is the ratio of the number

of correct predicted matches to the number of correspon-

dences. Ground truth correspondences are computed using

the homography associated with image pair. For a point in

one image its nearest neighbor in the other image is pre-

dicted as a match.

We used vl covdet from the vl benchmark li-

brary [17] to extract patches and compute SIFT descriptors.

The patches extracted by vl covdet are affine normal-

ized. We have also extracted unnormalized patches which

provides a way to evaluate learnt descriptors without using

scale and rotation information from the keypoint.

To evaluate 3D reconstructions via SFM using putative

matching from different descriptors, DoG keypoints are

computed from vl covdet. False positives are pruned by

only selecting those pairs which form mutual nearest neigh-

bors. VisualSFM [19] is used for reconstruction. Total num-

ber of points triangulated, average re-projection error and

average track length (projections per 3D point) are reported.

4.2. Training methodology

For training the proposed network, mini-batch gradi-

ent descent is used with batch size of 64 pairs and 1000
batches per epoch. Each batch contains 16 matching and

48 non-matching pairs. Further, the matching pairs in a

batch are systematically distributed in 4 ranges such as

[0, 0.4m] , [0.4, 0.8m] , [0.8, 1.2m] , [1.2, 1.6m] in a ratio of

4 : 4 : 6 : 2. Here, m is the margin of contrastive loss

(set to 2). For proper training we have used negative mining

strategy, where few wrongly classified pairs in an epoch is

used for training the subsequent epochs.

Similar to matching pairs, all non-matching pairs were

also divided into four ranges based on margin distance. A

subset S of patches is taken from all the N patches. For ev-

ery patch p in S, we divide N patches into 4 buckets (first

one containing the closest patches and last one containing

the farthest patches from p) and sample 6 patches from the

first two buckets in the ratio 4 : 2 and form non-matching

pairs with p. Care is taken to ensure that none of the match-

ing patches are paired as non-matching. We don’t look be-

yond the first 2 buckets as it has been observed that after

the first epoch the distance of non-matching pairs lying in

the 3rd and 4th bucket are above the margin m and don’t

contribute to the gradients.

To reduce over-fitting and achieve rotation and scaling

invariance, the patches are perturbed randomly during train-

ing. The perturbations include rotating and scaling the patch

with random values within the range [−π/8, +π/8] and

[1.0, 1.1] respectively. Perturbations are also used to cre-

ate matching and non-matching pairs from the single image

scenes. A matching pair is formed by pairing a patch and an

affine transformation of it. For non-matching pairs, a patch

is paired with an affine transformation of some other patch

from the same single image.

5. Results

In this section, we evaluate the performance of the

proposed approach on patch pair classification, keypoint

matching and 3D reconstruction tasks and compare with the

recent approaches in literature. The patch pair classification

task is to classify a given pair of patches as matching or

non-matching. Though in the real-world this type of classi-

fication is not feasible, we report the performance for com-

pleteness. The keypoint matching task is to find matching

patches around keypoints detected in images captured from

different views. The results of pair classification, keypoint

matching and 3D reconstruction are reported below.

5.1. Patch pair classification

The MVS dataset [18] is used to measure the ability of

a descriptor to discriminate positive pairs of patches from

negative pairs. It has 3 scenes, Liberty (Lib), Notredame

(Not) and Yosemite (Yos) with 450, 092, 468, 159 and

633, 587 patches respectively. Each scene is also provided

with a list of pairs with 50% matching and 50% non-

matching pairs. Approaches in [8, 21, 2] use the evaluation

mentioned in [4] where model training is based on single

scene. However, in [13], training is based on two scenes and

tested on remaining one. The evaluation is performed by

thresholding distance scores between patch pairs on ROC

curve. The results are shown in table 1. The numbers

reported in the table is the false positive rate at 95% true

positive rate (FPR95). It is observed that the model trained

on single scenes performs marginally lower than [2] only in

some cases. Since our model capacity is intentionally made

large (in order to achieve descriptor generalization using the

proposed PS dataset) and with the MVS dataset being small,

the problem of over-fitting is observed when training on sin-

gle scenes. However, it should be noted that the pair classi-

fication is not of practical importance when compared to the

keypoint matching and it is only reported for completeness.
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Training Not Lib Not Yos Yos Lib

Testing Yos Lib Not

Descriptor # mean

Sift [11] 128 27.29 29.84 22.53 26.55

DeepCompare siam [21] 256 15.89 19.91 13.24 17.25 8.38 6.01 13.45

DeepCompare siam2stream 512 13.02 13.24 8.79 12.84 5.58 4.54 9.67

DeepDesc [13] 128 16.19 8.82 4.54 9.85

Matchnet [8] 512 11 13.58 8.84 13.02 7.7 4.75 9.82

TFeat margin∗ [2] 128 7.08 7.82 7.22 9.79 3.85 3.12 6.47

Proposed 128 13.8 13.9 7.4 11.4 5.01 3.49 9.16

Table 1. Comparison of the state-of-the-art results on the MVS dataset with the proposed model in terms of FPR95 (lower is better).

Yos:Yosemite, Lib:Liberty, Not:Notredame

5.2. Keypoint matching

The Oxford ACRD [12] and SG dataset [6] are used

for evaluating the keypoint matching performance of dif-

ferent descriptors. The Oxford ACRD contains real im-

ages with different geometric and photometric transforma-

tions for different scene types. We consider four scenes:

boat (zoom, rotation), graffiti (viewpoint), leuven (light)

and wall (viewpoint). As mentioned in section 4 we use

matching score (MScore) and mAP values as metrics. Fig. 5

and Fig. 6 shows the MScore comparison on 4 scenes from

the Oxford ACRD for normalized patches obtained using

Harris-Affine keypoints. As can be observed, the proposed

descriptor outperforms all the other descriptors on all the

scenes.
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Figure 5. Comparison of proposed descriptor against SIFT,

DeepDesc and TFeat on 4 scenes in Oxford ACRD dataset using

normalized patches obtained from Harris-Affine keypoints using

MScore metric

The SG dataset has 16 scenes with each scene repre-

sented by a reference image. For each scene, the reference

image is synthetically warped geometrically and photomet-

rically to generate new images. The transformations include

blur, lighting, rotation, zoom (scaling), perspective (view-

point). Fig. 7 and Fig. 8 show MScore of different descrip-

tors on the SG dataset [6] for normalized patches (using

Harris-Affine keypoints) and unnormalized patches respec-

tively. The plots show comparison for different degrees of

5 transformations in the dataset. For each transformation,

as the degree of variation increases, the performance of the
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Figure 6. Comparison of proposed descriptor against SIFT, Deep-

Desc and TFeat on 4 scenes in Oxford ACRD dataset using nor-

malized patches obtained from Harris-Affine keypoints using mAP

metric.

proposed descriptor is observed to be better than the other

descriptors being compared against. For the unnormalized

patches, even though SIFT is better for large values of zoom

and rotation, proposed descriptor is better for all other trans-

formations and is always better or comparable to DeepDesc

and TFeat. Thus, the proposed descriptor is robust to differ-

ent transformations and can handle large variations better

than all the other descriptors. In Fig. 9, comparison of mAP

for the SG dataset is shown.
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Figure 7. Comparison of proposed descriptor against SIFT, Deep-

Desc and TFeat on Synthetic dataset for normalized patches using

Harris-Affine keypoints. Comparison for 5 different transforma-

tions (b-blur, l-lighting, p-perspective, r-rotation and z-zoom) are

shown. Numbers next to the transformations indicate the degree

of transformation.
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Figure 8. Comparison of proposed descriptor against SIFT, Deep-

Desc and TFeat on Synthetic dataset for unnormalized patches.

Notations similar to those in fig 7

We observe that our descriptor outperforms all the other

descriptor in the Oxford-ACRD for all scenes and major-

ity of the transformations in the SG dataset. We observe

that for low geometric transformation in the SG dataset

e.g.’lighting’, we have inferior mAP values compared to

DeepDesc and Tfeat although having similar Matching

Score (as shown in Fig. 6 in the main paper). One possi-

ble reason is that our PS dataset which is used for training

have much more difficult matching and non-matching pairs

than MVS. This makes distance between matching and non-

matching pair is much more spread out and have lower mAP

which is based on threshold over descriptor distances.
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Figure 9. Comparison of proposed descriptor against SIFT, Deep-

Desc and TFeat on Synthetic dataset for normalized patches us-

ing Harris-Affine keypoints using mean Average Precision (mAP).

Comparison for 5 different transformations (b-blur, l-lighting, p-

perspective, r-rotation and z-zoom) are shown. Numbers next to

the transformations indicate the degree of transformation.

5.3. 3D reconstruction

In this section, we compare reconstructions using puta-

tive matches obtained using our model, DeepDesc, Tfeat

and SIFT. We use the fountain-P11, herz-Jesu-P8 and entry-

P10 datasets from [15] to reconstruct 3D points using SFM.

The metrics used for evaluation are discussed in Sec. 4.1.

Table 2 shows the results of reconstructions obtained using

different descriptors.

From table 2, we observe that our proposed model per-

forms better than DeepDesc [13] and TFeat [2] on all the

four metrics considered. In comparison to SIFT, the pro-

posed descriptor is better on three of the four metrics. Even

though the re-projection error is higher for the proposed

descriptor when compared to SIFT, the number of inlier

matches between different views is higher for our descrip-

tor along with the average track length (measure of number

of projections of a 3D point in different views). 3D recon-

structions for the fountain-P11 and herz-Jesu-P8 scenes of

Strecha are shown in Fig. 10 and Fig. 11 respectively. We

observe that all methods produce visually indistinguishable

results in most parts of the reconstructions. However in

Fig. 10, the bottom part of the fountain reconstruction is

better for the proposed descriptor.

Thus, the proposed descriptor is better than all the other

descriptors for reconstruction task especially among the

learned descriptors.

(a) SIFT (b) DeepDesc

(d) Proposed(c) TFeat

Figure 10. 3D reconstruction comparison of proposed descriptor

against SIFT, DeepDesc and TFeat on fountain-P11 scene. The

bottom part of the fountain is better reconstructed for the proposed

descriptor.

5.4. Efficiency

We have used Nvidia-Titan X for training and testing.

On a batch size of 128 averaged over 1000 batches, the

forward propagation times of Tfeat, DeepDesc and our

network are 3.5, 175 and 14 micro-seconds respectively.

We observe that our network is slightly slower than Tfeat

though having multi-resolution banks and operating on

larger patch sizes.

6. Conclusion

In this paper, we proposed a learning based local image

descriptors for patch matching and 3D reconstruction. For

designing efficient learning based descriptors using Con-
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Dataset SIFT DeepDesc Tfeat Proposed

No. Points F-P11 25.6k 23.5k 25.4k 26.0k

HJ-P8 11.0k 11.0k 11.4k 11.5k

E-P10 14.8k 13.8K 14.2k 16.0k

Reproj. Err F-P11 1.93 3.40 2.99 2.64

HJ-P8 3.76 6.18 5.17 4.46

E-P10 4.02 8.02 4.59 4.29

Tot. Proj. F-P11 98.3k 87.8k 97.2k 101.3k

HJ-P8 36.9k 35.8k 38.7k 40.3k

E-P10 57.6k 50.9k 55.5k 64.9k

Avg. track len. F-P11 3.83 3.73 3.82 3.90

HJ-P8 3.36 3.36 3.39 3.50

E-P10 3.88 3.67 3.90 4.04

Inlier Matches. F-P11 176K 164K 188K 197K

HJ-P8 51K 53K 60K 63K

E-P10 111K 106K 119K 145K

Table 2. Reconstruction results using different descriptors on 3 datasets from Strecha. 4 metrics (detailed in section 4.1) are used. Higher

is better for Number of 3d points, Total projections and Average track length metrics while lower is better for re-projection error

(a) SIFT (b) DeepDesc

(d) Proposed(c) TFeat

Figure 11. 3D reconstruction comparison of proposed descriptor

against SIFT, DeepDesc and TFeat on herz-Jesu-P8 scene.

vNet a good combination of dataset as well as architecture is

important. We propose the use of multi-resolution architec-

ture and we have introduced a new dataset with 25 scenes of

varied content and containing images with high geometric

transformations. With training, ConvNet with our dataset to

obtain descriptors we have found that it is invariant to ge-

ometric changes than other learned descriptors when key-

point information is not used. We have also found that it

generated on average 5% more number of points when com-

pared to other descriptors during reconstructions. The pro-

posed combination has also produced increased image cov-

erage per point on wide baseline scenes. With these results,

we can conclude that the proposed combination of multi-

resolution ConvNet with the new dataset produces descrip-

tor that generalizes across the dataset.
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