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Abstract

Feature pooling is a method that summarizes local de-
scriptors in an image using spatial information. Spatial
pyramid matching uses the statistics of local features in
an image subregion as a global feature. However, the dis-
advantages of this method are that there is no theoretical
guideline for selecting the pooling region, robustness to
small image translation is lost around the edges of the pool-
ing region, the information encoded in the different feature
pyramids overlaps, and thus recognition performance stag-
nates as a greater pyramid size is selected. In this research,
we propose a novel interpretation that regards feature pool-
ing as an orthogonal projection in the space of functions
that maps the image space to the local feature space. More-
over, we propose a novel feature-pooling method that or-
thogonally projects the function form of local descriptors
into the space of low-degree polynomials. We also evalu-
ate the robustness of the proposed method. Experimental
results demonstrate the effectiveness of the proposed meth-
ods.

1. Introduction

In this paper, we consider feature pooling, which sum-
marizes local features in one image into one global fea-
ture. When designing feature pooling, it is important for
the global feature to contain rich information and be ro-
bust to small image translations. Spatial pyramid match-
ing is the feature-pooling method that is most commonly
used. It divides an image into subregions according to var-
ious resolutions and uses statistics of local features in each
subregion, e.g., the mean and maximum values, as global
features. However, there is no theoretical guideline for de-
termining the pooling region. In addition, the global fea-
ture value changes discontinuously when the local feature
strides over the edge of subregions. Also, the spatial pyra-
mid matching representation is verbose because the differ-

ent spatial pooling regions overlap. Moreover, we cannot
obtain useful features when the resolution is too high be-
cause robustness to small translations is lost. Thus, we need
a large pyramid size to extract spatial information.

To overcome these problems, we propose a novel
feature-pooling method that uses the weighted averages of
local features based on the position of the local features in
an image. To determine the weights, we propose a novel
viewpoint that regards local features in one image as a func-
tion. Local features have their own feature values associ-
ated with positions in the image. Thus, we can see a set
of local features as a function from the image space to the
local feature space whose output is the value of the local
feature at the input position. With this interpretation, we
can regard spatial pyramid matching as a projection into the
space of piecewise constant functions based on the standard
inner product. From this viewpoint, we derive novel pool-
ing weights as orthogonal projections of this function form
into the spaces of low-degree polynomials with certain inner
products. We obtain this pooling weight by first calculating
orthonormal basis of the spaces of low-degree polynomials
with the inner products and then calculating the inner prod-
uct of the delta functions with the basis. Since the pooling
weights are polynomials of the position and thus smooth,
the proposed global feature is robust to small image trans-
lations. Also, since spatial pooling weights are orthogonal
with respect to the given metric, it is expected that we can
extract spatial information effectively. The feature dimen-
sion and the amount of spatial information can be controlled
by the degree of the polynomial space.

From the proposed framework, we first derive the spa-
tial pooling weights of the spaces of low-degree polynomi-
als with the standard inner product, which consist of the
products of Legendre polynomials. To derive the pool-
ing weights more robust to local translations than Legendre
polynomials, we then propose a weighted pooling method
that considers the function space with weighted inner prod-
ucts, which are more robust to local translations than the
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standard inner product.

Experimental results using image recognition datasets
and action recognition datasets show that the proposed
methods demonstrate higher accuracy than spatial pyramid
matching even when the pyramid size is small and are less
saturated when the pyramid size increases.

The contributions of this paper are as follows:

e We demonstrate that spatial pyramid matching can be
regarded as an orthogonal projection in the function
space.

e We propose Spatial-Temporal Weighted Pyramid,
which uses weighted averages as a global feature. The
weight can be calculated as an orthogonal projection
in the function space.

— We propose a novel pooling method that uses
Legendre polynomials, which can be regarded as
an orthogonal projection into a low-degree func-
tion space.

— We also propose a pooling method that uses or-
thogonal polynomials for weighted inner prod-
ucts, which are more robust to local translations
than the standard inner product.

2. Related Works

Feature pooling is a method that combines local descrip-
tors in an image into one global feature. The simplest
strategy is average pooling, which uses the means of lo-
cal descriptors as a global feature. Max pooling [23] is a
method that is inspired by the human visual cortex and is
used for coding methods using histograms such as Bag of
Visual Words [5] and Locality-constrained Linear Coding
[32]. Max pooling uses element-wise maximum values in-
stead of the average of local descriptors as a global feature
and has been shown to be more robust to noise. A theoreti-
cal analysis of these pooling methods was conducted in [3].
In [3], the method that uses the L, norm of each dimension
is proposed as a method that bridges between average pool-
ing and max pooling. These pooling methods are compared
exhaustively via experiments in [15].

Lazebnik et al. [19] highlighted the importance of using
spatial information of local features in image recognition.
As an approximation for the pyramid match kernel, Lazeb-
nik et al. proposed spatial pyramid matching, which divides
the input image into subregions with various resolutions
and concatenates Bag of Visual Words [3] in each subre-
gion to obtain the global feature. Spatial pyramid matching
is also applied to global features with richer information,
such as the Fisher vector (FV) [25], the vector of locally
aggregated descriptors (VLAD) [12]. Though other meth-
ods can be combined with spatial pyramid matching, spa-
tial pyramid matching using average pooling is standard in

feature pooling. Thus, we consider average pooling in the
next section. In addition, spatial pyramid matching is com-
bined with convolutional neural networks (CNNs) [[17] and
demonstrates good performance [[11].

As extentions of original spatial pyramid matching, Per-
ronnin et al. [22] proposed the non-regular spatial pyramid
matching that uses different spatial resolutions for x-axis
and y-axis. Shahiduzzoman et al. [26] proposed to apply
Gaussian blur to the input image before extracting local
features. Koniusz & Mikolajczyk [[14]], Sanchez et al. [24]]
proposed a method that simply concatenates the normalized
two-dimensional (2D) position of local features to the fea-
ture value and then applies feature coding methods to ob-
tain accuracy comparable to spatial pyramid matching with
a smaller global feature dimension. Boureau et al. [2] apply
pooling based on both image space and local feature space.
Krapac et al. [16] derived a global feature that models both
the local descriptor space and image space using the Gaus-
sian mixture model. Similarly, Cinbis et al. [4] assumed
a hierarchical probabilistic model that includes the feature
position and uses the differential of log-probability with re-
spect to hyper-parameters as the global feature.

Some researchers have considered pooling methods that
use the weighted average. In [6], a weight based on saliency
is proposed. Generalized Max Pooling [21]] calculates the
weight using the feature value to suppress the effect of fre-
quent but meaningless local features. Some works [[1} [20]
adopted Gaussian Weighted average instead of original av-
erage pooling. We can regard our method as some exten-
sions of these works because the proposed methods can de-
rive similar weight as the pooling weight that corresponds
to 0-th degree polynomial, and also derive the weight with
higher order information as higher degree polynomials. Ge-
ometric L, norm Feature Pooling (GLFP) [8] also consid-
ers the weighted average with respect to the local feature
position. However, while we can apply our method even
when the image sizes differ because our method considers
the normalized position of the local features, we cannot ap-
ply GLFP directly for this situation becuase GLFP consid-
ers the adjacent relation between local descriptors. Also,
our method is faster than GLFP because GLFP requires the
calculation of cubic order of the number of local descriptors
to calculate the weight, while our methods requires linear
order.

Though our method computes the weight in an unsuper-
vised manner, we can calculate the discriminative weight
by combining our method with the methods that learn the
weight of spatial pyramid discriminatively [10, [27].

In this paper, we focus on an extension of spatial pyra-
mid matching with average pooling because this method is
general and can be easily combined with coding methods.
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Local descriptors in one image can be regarded as
f = L fubp, (see Eq. (3)).
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Figure 1. Overview of spatial pyramid matching and the proposed pooling method.

3. Spatial Pooling as a Projection

In Section [3|and ] we propose an interpretation that re-
gards local descriptors in one image as a function and pool-
ing as a projection in the function space. Figure[T|shows an
overview.

We assume that local features {(fx,px)}i_, in one im-
age are densely extracted, where [N denotes the number of
local features from an image, f;, € R denotes the local
features of each point after feature coding, such as the FV,
and pr, = (x,yr) € (—1,1)% is the normalized 2D posi-
tion of each local feature with the image center (0,0). The
goal of feature pooling is to construct one global feature
F € RP from {(fx,pr)}i_,. Since feature pooling is ap-
plied element-wise, we also assume that d = 1 for simplic-
ity. In the general case, we concatenate the output of feature
pooling for each dimension to obtain the global feature.

Average pooling is a method that simply ignores the fea-
ture position and uses the mean as the global feature as fol-
lows:

1 N
F:N;fk. (1)

Notice from this equation that average pooling completely
disregards spatial information, which significantly affects
recognition performance.

To include spatial information, spatial pyramid match-
ing divides the image space using various resolutions and
uses the feature mean in each subregion A!  as the global

feature as follows:

1
Fon =51 >, [o )

mn
Pr€AL,,

where N/, is the number of local features in A, . We
select the image subregion A! =~ such as (71, 7) x
(27, %), (=l <m,n <,1), where [ corresponds to the
resolution.

In the following, we propose the interpretation of feature
pooling as a projection in the function space to analyze the
property of spatial pyramid matching and the proposed spa-
tial weighted pyramid uniformly using the property of the
projected function space. Thus, we provide a function rep-
resentation for both the input local features and the output
of feature pooling.

First, as a function representation of local features that
includes both feature values and spatial information, we
consider a hyper-function in the image space that connects
the feature position to the feature value as follows:

N
=" fibp 3)
k=1
where 0,, denotes the delta function that satisfies

(0p, 9) E/_l/_ldfcdy%(w,y)g(w,y) =g(), @

for a function g that is smooth and bounded near p.
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Figure 2. Values of Weights for Spatial Pyramid Matching

Next, we consider a function space that consists of func-
tions that are constant in each Al : F! = {f|f =
> n Cnlal s Chyy € R}, where 140 s a function that
outputs 1in A’ and 0 otherwise and ¢!, is a coefficient.
When [ is fixed, the set {14: }un is a base for this space;

hence, the orthogonal projection is

F=o>(fda Na )

m,n

where each coefficient (f,14 ) = F!, N! . When we

sample local features densely, we assume that N} is ap-
proximately equal for each m and n. This implies that the
coefficients have almost equal information to F', . Thus,
spatial pyramid matching is an orthogonal projection of the
function representation of local features finto a space of
piecewise constant functions Fopst-

4. Spatial Orthogonal Pooling

In the previous section, we showed that spatial pyramid
matching can be regarded as an orthogonal projection into
a space of piecewise constant functions. The limitations
of spatial pyramid matching that we stated in the introduc-
tion originate from the properties of the projected function
space. Thus, we attempt to consider a different function
space with better properties so that it generalizes average
pooling, the basis is smooth and has rich information, and
the orthogonal projection can easily be calculated. Now, we
consider the space of o-degree polynomialsNFgoly and pro-

pose a novel pooling method that projects f into F°

poly US-
ing the bases of F7 . We call the proposed method spatial

orthogonal pooling (SOP).
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Figure 3. Values of (6p, Q5 )a With small m and n for o = 0.25.

4.1. Spatial Orthogonal Pooling Using the Standard
Inner Product

First, we consider the standard inner product of
Lo(—1,1)2,

<g7h> :/_1 /_1 dwdyg(x,y)h(%y) (6)

The orthogonal polynomials for this inner product are
the products of the orthogonal polynomials for the one-
dimensional (1D) inner product

/_1 dxg(x)h(x), @)

for each element z and y, which is the definition of Leg-
endre polynomials. m-th Legendre polynomial P,,, which
can be written as

+1 1 Jd™m
Pul@) =\ "= @ = D™, ®)

is a m-degree polynomial and satisfies the following prop-
erty:

1
/ dx P, ()P (x) = 6. )

-1

1044



Thus, P,,s for 0 < m < o compose a basis of ]—'goly.
Thus, when we denote Qun (2, y) as Py, (x) P, (y), then
the proposed method concatenates the weighted average

N
> fe P (k) Pa(yk), (11)
k=1

for 0 < m,n and m + n < o to obtain the global feature.
The pyramid size is w Note that the computational
cost of calculating these weights is negligible compared to
the computational cost of calculating the feature value.

4.2. Spatial Orthogonal Pooling Using a Weighted
Inner Product

Next, we consider the inner product

2
_ llp1—pall

(g h)a = /( e
—1,1)4

This inner product also summarizes the product of func-

tion values for a different position with the Gaussian weight

_ lip1 =pol? . . .
Za and is thus more robust to image translations

than the standard inner product. We can balance the robust-
ness and spatial information by adjusting a. When a — +0,
this method converges to average pooling. When a — oo,
this method converges to the pooling method proposed in
Section[4.1] Note that we do not use gaussian as a pooling
weight directly. Instead, we calculate smooth weight func-
tion including both 0-th order information similar to gaus-
sian and high frequency information so as to approximate
the gaussian-weighted inner product.

Similar to the previous subsection, orthogonal polynomi-
als for this inner product are products of orthogonal polyno-
mials in the 1D case P?. Let Q%,,,(z,y) = P%(z)P%(y).
We concatenate the weighted average

Fly = (f,Q%)a (13)

N
S Fe (s Qanda (14)
k=1

for 0 < m,n and m + n < o as a global feature.
The pyramid size is &2(04-2) When the Gaussian

. _llpi—p2ll? . .
weight e zo~ is used, we can calculate inner products

(xd x92), analytically using the error function by apply-
ing a variable transformation. Thus, Py} can be calculated
using Gram-Schmidt orthonormalization. Furthermore, the
inner products of orthogonal polynomials and delta func-
tions

_lp—p112

(B Q) = / Qe (e " 1)
(7111)2

can be written as functions of p and a. Thus, the complex-
ity of calculating the weight is approximately the same as
when the standard inner product is used and can be ignored.
Figure[3|shows an example of the weights used in the exper-
iment. This figure shows that the weights have similar in-
formation to those of original spatial pyramid matching. For
example, Figure3](a) is a smoother version of the weight of
layer O of spatial pyramid matching. Figure [3|(b), (c), and
(d) construct the weights of layer 1. Since the weight is
smooth, the proposed weights are both robust to local trans-
lation and have the sptial information comparable to spatial
pyramid matching.

4.3. Analysis of the Robustness of the Proposed
Methods

In this subsection, we analyze how the global feature
changes when the positions of local features are slightly
changed. We denote the position change as 7 = (7, 7,,) and
assume that f has a nonzero value only in (—1 + ||7||,1 —
||7|N? for simplicity. In this case, the change of the global
feature F)% ., dF2 . can be bounded by

mn? mn?

N
6F5. =1 fi (6, Qun) = (ptrs Quan)) | (16)

B
—

<

] =

|fk |mka“x|<6pk 7an >_<6:Dk +7 7an >| (17)

b
Il

1

Thus, we evaluate the bound for

|<5pvan> - <5p+'ermn>|' (18)
When the standard inner product is used, by applying the
mean value theorem, this value can be written as

= P, (@ +072) Py +07,)+7, P (x+072) P, (y+67,) |,

for some 0 < 6 < 1. Because P,, are polynomials, the P’ P
terms on the right-hand side are bounded. Thus, for some
constant ¢, the right-hand side is bounded by c¢||7||. Finally,
the change of the global feature | F'%,,| can be bounded us-

. N
ing >y [ fxl, 7.

Similarly, by applying the mean value theorem to

— Eq. (13), a bound can be derived for the case

when the weighted inner product is used. This analysis is
based on the smoothness of the basis function, so robust-
ness is not necessarily ensured for spatial pyramid match-
ing, which uses non-smooth piecewise constant functions
as a basis.
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Figure 4. Comparison of classification performance using SIFT + FV in (a) CUB-200 dataset, (b) Stanford Dogs dataset, and (c) Caltech256

dataset.

5. Experiments

We tested our pooling methods on standard object recog-
nition datasets and an action recognition dataset. In Sec-
tion [5.1] we applied our methods on the image recognition
datasets. In Section[5.2] we applied our methods on the ac-
tion recognition dataset.

5.1. Image Recognition

First, we evaluated our methods with SIFT + FV on the
image recognition datasets. We tested our methods on three
object recognition datasets, including fine-grained datasets
(Caltech UCSD Birds 200 (CUB-200), Stanford Dogs, and
Caltech256 dataset (Caltech256)).

CUB-200 [34] is a standard fine-grained object recogni-
tion dataset that consists of 200 bird species with 60 images
per class. The Stanford Dogs dataset [[13] consists of ap-
proximately 20,000 images of 120 dog classes. The Cal-
tech256 dataset [9] consists of approximately 30,600 im-
ages of 256 object classes. We used given train/test split for
the CUB-200 dataset and Stanford Dogs dataset and evalu-
ated the accuracy. For the Caltech256 dataset, we randomly
sampled 25 images per class as training data and 30 images
per class as test data 10 times and evaluated the average of
the accuracy.

For all datasets, we extracted 128-dimensional SIFT fea-
tures densely with a step size of two and scales 4, 6, §, and
10. We used ’vl_phow’ implemented in VLFeat [30] for
extraction. We used PCA to reduce the dimensionality of
the features to 80. Then, each local descriptor was encoded
using the FV with 128 clusters. We used 250,000 local fea-
tures to learn the codebooks. For each dataset, we applied
spatial pyramid matching with scales [1 x 1], [1 x 1,2 x 2],
[1x1,2x2,1x3],[1x1,2x2,3x3],[1x1,2x2,4x4],
which had pyramid sizes of 1, 5, 8, 14, and 21, respectively.

We also compared the method that applied gaussian weight
on the local feature according to the position in each pyra-
mid as a baseline. We evaluated the proposed weighted av-
erage pooling using Legendre polynomials of degree 0, 1,
2, 3, 4, and 5 had pyramid sizes of 1, 3, 6, 10, 15, and
21, respectively and the proposed weighted average pool-
ing using a weighted inner product with kernel parameter a
=0.25, 0.5, 1.0 and degree 0, 1, 2, 3, 4, 5 and had pyramid
sizes that were the same as those using Legendre polynomi-
als. We did not compare max pooling because this pooling
does not work well on Fisher Vector. For post-processing,
we applied power normalization plus Lo normalization on
each pyramid for spatial pyramid matching and power nor-
malization plus Lo normalization on the entire vector for
the proposed methods.

For the linear classifier, we used a one-vs-rest SVM. We
used the SVM implemented in LIBLINEAR [7] with C' =
100 for training and plotted the accuracy.

Figure {4| shows the results for the original methods,
where SOP indicates the results for Spatial Orthogonal
Pooling using standard inner product, SOP with numbers
indicate the results for Spatial Orthogonal Pooling using
weighted inner product with the number meaning kernel pa-
rameter. The figures show that the performance is ranked
as follows: spatial orthogonal pooling with the standard
inner product < spatial pyramid matching < gaussian-
weighted spatial pyramid matching < spatial orthogonal
pooling with an appropriately weighted inner product. The
poor performance of the standard inner product may be be-
cause Legendre polynomials are not sufficiently robust to
small translations. The appropriate choice of the kernel pa-
rameter contributes to the performance. In each dataset,
the case for the kernel parameter a = 0.25,0.5 demon-
strates good performance. This is close to 1/3, which is
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Figure 5. Comparison of classification performance using TDD + FV in (a) HMDBS51 dataset and (b) UCF101 dataset.

the variance of the uniform distribution in (—1,1). In ad-
dition, the performance of spatial pyramid matching satu-
rates around [1 x 1,2 x 2,1 x 3], but the performance of
the proposed methods rapidly improves until the degree is
two, and the performance gradually increases until the de-
gree is five. Thus, the proposed methods demonstrate good
performance, even when the pyramid size is small; more-
over, better accuracy can be achieved using higher degree
polynomials.

5.2. Action Recognition

Next, we applied our method to the action recognition
task on two movie datasets, HMDBS51 dataset [[18]] that con-
sists of about 7,000 movie clips with 51 action categories,
and UCF101 dataset [29]] that consists of 13,320 movie clips
with 101 action categories.

As a local descriptor, we extracted TDD features [33]]
that are the mean of output of convolutional layer around
each improved dense trajectory [31]. As a CNN, we used
VGGI16 [28] network pretrained with spatial (RGB) and
temporal (opticalflow) images and extracted the output of
conv3, 4, and 5 layer as local features. Then we coded TDD
feature using FV with dimension of the local descriptor re-
duced to 64 and the number of clusters 256 and then applied
the linear SVM with C' = 100.

In this case, since the feature dimension is larger than
that used in the image recognition dataset and time-axis is
finer compared to image-space with respect to the position
of TDD features, we only considers spatal pyramid with re-
spect to time-axis.

For each dataset, we compared spatial pyramid matching
withscales [I x 1 x 1], [1 x1x1,1x1x2],[I1x1x1;1x
1 x 2;1 x 1 x 4], which had pyramid sizes of 1, 5, and 7,
respectively and proposed methods with degree O, 1, 2, 3,

and 4 with pyramid sizes 1, 2, 3, 4 and 5 respectively. Each
dataset gives 3 train/test splits and we evaluated the average
accuracy using these 3 splits.

Figure 5| shows the results. The proposed methods show
much better accuracy than spatial pyramid matching on
HMDB51 dataset even when the pyramid size is small.
Also, the proposed methods with weighted inner products
show comparable performance on UCF101 dataset.

Next, we plotted the score of each layer in UCF101
dataset in Figure [6] to evaluate the effect of using the pro-
posed temporal pooling in detail. We can gain performance
by considering temporal information on RGB input, while
temporal information does not work well on flow image.
This is because while we can determine the time position
of each RGB image exactly, flow image used the optical
flow information of 10 frames around the time position.
Since the length of each video clip is of the order of sec-
onds, this time width of the frame is not negligible and time
information is noisy in the case of flow images. In such
situation, although the proposed method with standard in-
ner product shows poor performance, the proposed method
with weighted inner product is as robust as spatial pyramid
matching and shows a slightly better score. These results
showed that our methods can extract time-domain informa-
tion better than spatial pyramid matching. Thus our meth-
ods are also effective for action recognition.

6. Conclusion

In this paper, we provided an interpretation of spatial
pyramid matching as an orthogonal projection into the func-
tion space by considering local features in an image as a
function on the image space. We also proposed a novel fea-
ture pooling methods called Spatial Orthogonal Pooling that
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Figure 6. Comparison of classification performance of each layer using TDD + FV in UCF101 dataset. The name ’Spatial’ indicates the
score for the features extracted from RGB images and *Temporal’ indicates the score for the features extracted from flow images. The

number in the name indicates the number of the layer.

used the weighted average as orthogonal projections into a
space of low-degree polynomials and evaluated robustness
to image translations of the proposed methods. Experimen-
tal evaluations using image recognition datasets and action
recognition datasets demonstrated that the proposed pool-
ing methods resulted in higher accuracy than spatial pyra-
mid matching in both cases in which the pyramid size was
small and large. These results showed that proposed meth-
ods exploit spatial information more effectively.

In the paper, We used the basic function space and in-
ner products, but this can be modified to correspond to the
problem, e.g., inner products that also consider inverting the
x-axis to include mirror invariance can be used. Moreover,
it is possible to generalize pooling using the L, norm by
considering the function space with a different metric.
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