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Abstract

In this paper, we propose a Handcrafted Normalized-

Convolution Network (NmzNet) for efficient texture classifi-

cation. NmzNet is implemented by a three-layer normalized

convolution network, which computes successive normal-

ized convolution with a predefined filter bank (Gabor filter

bank) and modulus non-linearities. Coefficients from differ-

ent layers are aggregated by Fisher Vector aggregation to

form the final discriminative features. The results of exper-

imental evaluation on three texture datasets UIUC, KTH-

TIPS-2a, and KTH-TIPS-2b indicate that our proposed ap-

proach achieves the good classification rate compared with

other handcrafted methods. The results additionally indi-

cate that only a marginal difference exists between the best

classification rate of recent frontiers CNN and that of the

proposed method on the experimented datasets.

1. Introduction

Texture provides important clues for identifying materi-

als and objects, especially when their shapes are not avail-

able. A wide range of applications such as industrial in-

spection, image retrieval, medical imaging, remote sensing,

object and facial recognition can be developed depend upon

analyzing the textures of their surfaces. Hence, texture anal-

ysis includes segmentation, shape extraction, synthesis, and

classification is an active field.

There are variety texture analysis approaches have been

proposed. They can be ranged from a simple to sophisti-

cated computation strategy methods. Simple yet efficient

feature extraction approaches can be a long list. They can

be: 1) local binary pattern (LBP) method [32] and its vari-

ants; 2) the representation based on co-occurrence matrix

[16]; 3) the filter-based approaches such as works in [2, 30];

4) the wavelet transform method as works in [28, 20, 4]; 5)

the texton dictionary-based [22, 43, 44]; 6) the use of bidi-

rectional features [8, 9]; and so on. In addition, many so-

phisticated computation strategy methods have been intro-

duced to improve the feature robustness and performance.

Scattering Network (ScatNet) [41], and Convolutional neu-

ral network (CNNs) with Fisher vector CNN (FV+CNN)

delegation [6] belong to this category.

Among those approaches, the LBP-family can be con-

sidered as a popular feature method which extracts well lo-

cal micro-structure information from images. Ojala et al.

[31] first introduced the LBP method in 1996, then a multi-

resolution version [32] in 2002. After that, several exten-

sions on LBP have been conducted. In 2007, Tan et al.

extended LBP to three-valued codes to become the local

ternary pattern (LTP) [42]. Liao et al. proposed dominant

LBP (DLBP) [23] which combines the most frequently oc-

curred patterns with the Gabor filter responses for features.

Later Guo et al. introduced completed LBP (CLBP) [12],

which merges three components the sign (CLBP S), mag-

nitude (CLBP M), and center pixel intensity (CLBP C) to-

gether to form features. This enhances discriminative power

compared to the original version. Variance in LBP (LBPV)

[13] is utilized to encode local contrast information without

requiring a quantization process, and rotation invariance is

implemented by estimating principal orientations and align-

ing LBP histograms. By constructing a cascading spatial

pyramid of LBP, Qian et al. [37] introduced pyramid trans-

formed LBP (PLBP), the robustness of PLBP was compared

with those of other LBP variants in this works. Further, Liu

et al. suggested extended LBP [26] by a combination of

pixel intensities and local differences. In this way, the pixel

intensity part is divided into a central pixel’s component

and neighbor’s component. Likewise, the local difference

consists of two components: radial differences and an an-
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gular difference. At the end, those four were combined to

form features. In addition, Zhao et al. in [51] presented lo-

cal binary pattern histograms of Fourier features (LBP-HF)

which implement rotation invariance by computing discrete

Fourier transforms of LBP histograms. In [11], moreover,

Guo et al. presented a three-layered learning framework in

which LTP and CLBP were used as raw features to train and

select the discriminative features.

Contrary to the micro-structure descriptors of LBP fam-

ily, several broader range feature methods have been devel-

oped. Bovik et al. applied the Gabor filters to compute

the average filter responses for features [2]. Mallat pro-

posed the multi-resolution wavelet decomposition method

[29], which generates coefficients from the high-low (HL),

low-high (LH), and low-low (LL) channels for subsequent

classification tasks. Porter et al. [34] removed the high-

high (HH) wavelet channels and combined the LH and HL

wavelet channels to obtain rotation invariance wavelet fea-

tures. Haley et al. [15] calculated isotropic rotation invari-

ance features from Gabor filter responses. More recent,

scattering transform is considered as a high-performance

approach based on cascading wavelet transform layers [41]

compared to previous wavelet-based methods.

The paper is organized as follows: we start with a review

of the normalized convolution in Section 2.1, Fisher vector

aggregation presented in Section 2.2, followed by details of

the derivation of the proposed approach (Section 2.3). Sec-

tion 2.4 presents the proposed method. In Section 3, we

verify the our approach with experiments on popular tex-

ture datasets and comparisons with various state-of-the-art

texture classification techniques. Section 4 provides con-

cluding remarks and possible extensions of the proposed

method.

2. Proposed Handcrafted Network

In this section, we propose a handcrafted Normalized-

Convolution Network with its derivation described in 2.1,

2.1, and 2.2 for efficient texture classification.

2.1. Normalized Convolution

Normalized convolution was introduced by Knutsson

and Westin in [19]. It is a method for performing gen-

eral convolution operations on data of signal/certainty type.

More specifically, it takes into account the uncertainties in

signal values and allows spatial localization of possibly un-

limited analysis functions. The conceptual basis for the

method is the signal/certainty philosophy, i.e. separating

the values of a signal from the certainty of the measure-

ments. The separation of both data and operator into a sig-

nal part and a certainty part. Missing data is simply handled

by setting the certainty to zero. In the case of uncertain

data, an estimate of the certainty must accompany the data.

Localization or windowing of operators is done using an

applicability function, the operator equivalent to certainty,

not by changing the actual operator coefficients. Spatially

or temporally limited operators are handled by setting the

applicability function to zero outside the window.

Formally, Knutsson et al. define normalized convolution

in form of standard convolution as follows,

U(ξ) =
∑

a(x)B(x)⊙ c(ξ − x)T (ξ − x) (1)

where

ξ is the global spatial coordinate.

x is the local spatial coordinate.

T (ξ) is a tensor corresponding to the input signal.

c(ξ) is a function which represents the certainty of T (ξ).
B(x) is a tensor corresponding to the operator filter basis.

a(x) is the operator equivalent to certainty, a function which

represents the applicability of B(x).
⊙ denotes multi-linear operations (in standard convolu-

tion this operation is scalar multiplication). When the ba-

sic operation is understood explicitly indicating the depen-

dence on the global spatial coordinates ξ, the local spatial

coordinate x plays no role. Then, the expression (1) can be

written as

U = {aB⊙̂cT} (2)

where the “hat“ over the multilinear operation symbol acts

as a marker of the operation involved in the convolution

(it is useful when more than one operation symbol appears

within the brackets).

Knutsson et al. also draw another definition of normal-

ized convolution by the means of general convolution oper-

ations on data of signal/certainty type. Normalized convo-

lution of aB and cT can be defined and denoted by:

UN = {aB⊙̂cT}N = N−1D (3)

where: D = {aB⊙̂cT}
N = aB ⊙B∗ .̂c

The star, ∗, is the complex conjugate operator.

The concept of normalized convolution has a theory be-

hind, the least squares problem.

To see this, express a given neighbourhood, t, in a set of

basis functions given by a matrix B and the coefficients u.

(standard matrix and vector notation are used.)

t′ = Bu (4)

It is proved that for a given set of basis functions, B , the

least square error, ‖t′ − t‖, is minimized by choosing u to

be:

u =
[
BTB

]−1
BT t (5)

With the introduction of a diagonal matrix, W, a weighted

least square problem can be solved by

Wt′ =WBu (6)
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Then the minimum of ‖W (t′ − t)‖ is obtained by choosing

coefficients u to be:

u =
[
(WB)

T
WB

]
−1

(WB)
T
Wt (7)

which can be rewritten and split into two parts,N−1 andD.

u =
[
BTW 2B

]−1

︸ ︷︷ ︸
N

BTW 2t︸ ︷︷ ︸
D

(8)

It can be shown that N and D are identical to the corre-

sponding quantities used in normalized convolution, equa-

tion (3). In normalized convolution, the diagonal weight

matrix is, for a neighbourhood centered on ξ0, given by:

W 2
ii (ξ0) = a (xi) c (ξ0 − xi) (9)

Therefore, normalized convolution can be considered as a

method used to obtain a local weighted least square er-

ror representation of the input signal. The input signal is

described in terms of the basis function set, B, while the

weights are adaptive and given by the data certainties and

the operator applicability.

One of the most striking applications of normalized con-

volution might be the interpolation of Lena image (Figure

2) using applicability function illustrated in Figure 1.
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Figure 1. An applicability function.

2.2. Fisher Vectors

This section describes the Fisher Vector (FV) of [33] .

The FV is an image representation obtained by pooling lo-

cal image features. It is frequently used as a global image

descriptor in visual classification. Given an input image I ,

the Fisher Vector (FV) formulation of [33] starts by extract-

ing local descriptors X = {xt, t = 1 · · ·T}, they can be

densely and at multiple scales. It is assumed that X can be

modeled by a probability density function uλ, with λ is the

set of parameters of u as well as the estimation of those.

Then, X can be described by the gradient vector as

Gλ
X =

1

T
▽λ log uλ(X) (10)

Since Fisher information matrix (Fλ) of probability den-

sity function (uλ) is symmetric and positive, it has the
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Figure 2. Top left: The famous Lena-image, top right the image

has been degraded to a grey-level test image only containing 20%

of the original information. Bottom left: Interpolation using stan-

dard convolution with a normalized smoothing filter (see Figure

1). Bottom right: Interpolation using normalized convolution with

the same filter as applicability function.

Cholesky decomposition Fλ = L′

λLλ. Therefore, the

Fisher kernel can be written as a dot-product between nor-

malized gradient vectors Γλ, with ΓX
λ = LλG

X
λ , and ΓX

λ is

referred to as the Fisher vector of X .

The probability density function uλ is chosen to

be a Gaussian Mixture Model (GMM): uλ (x) =∑K
i=1

wiui (x), and λ = {wi, µi,Σi, i = 1 · · ·K} where

wi, µi, and Σi are mixture weight, mean vector and covari-

ance matrix of Gaussian ui respectively. Covariance matri-

ces are assumed to be diagonal, and σ2
i denotes the variance

vector. The local descriptors xt are assumed to be generated

independently from uλ, and therefore:

GX
λ =

1

T

T∑

t=1

▽λ log uλ (xt) . (11)

Soft assignment (γt) of descriptor xt to Gaussian i is com-

puted as

γt (i) =
wiui (xt)∑K

j=1
wjuj (xt)

. (12)

Let ΓX
µ,i be the gradient vector computed on the mean µi,

and ΓX
σ,i be the gradient vector computed on the standard

deviation σi of Gaussian i, then derivative of those will lead

to formulations for computing the first and second order
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statistics of the local descriptors.

ΓX
µ,i =

1

T
√
wi

T∑

t=1

γt (i)

(
xt − µi

σi

)
. (13)

ΓX
σ,i =

1

T
√
2wi

T∑

t=1

γt (i)

[
(xt − µi)

2

σ2
i

− 1

]
. (14)

The final Fisher vector is the concatenation of the ΓX
σ,i and

ΓX
σ,i vectors for i = 1...K, with the dimensionality is 2KD,

D is the dimension of a descriptor xt.

2.3. Scattering Network

Scattering Network (ScatNet) [27] is a handcrafted deep

convolution network, in which cascade of wavelet trans-

form and modulus non-linearities operators are consecu-

tively computed to form the network layers. As illustrated

in Figure 3, each |Wm| outputs invariant scattering coeffi-

cients Smx and the next layer of covariant wavelet modu-

lus coefficients Um+1x, which is further transformed by the

subsequent wavelet-modulus operators.

|W1 |

S0x

U1x |W2 |

S1x

U2x |W3 |

S2x

...

Figure 3. Scattering network formed by wavelet-modulus cascad-

ing

The average Smx carries only the low frequencies

of Umx while the high frequencies are captured by

roto-translation convolutions with wavelets. |Wm| trans-

forms Umx into the average Smx and a new layer

Um+1x of wavelet amplitude coefficients: |Wm|(Umx) =
(Smx, Um+1x). Repetitively computing this wavelet mod-

ulus transform would generate multiple layers of scattering

invariant coefficients. For m = 0 U0x = x, in case the

network has three layers, the scattering feature vector (Sx)

would be a concatenation of three Six coefficients such that

Sx = (S0x, S1x, S2x). A filter bank of low-pass and high-

pass filters for implementing Morlet wavelet (Wm operator)

is illustrated in Figure 4.

2.4. Normalized­Convolution Network

This section introduces a handcrafted network which in-

herits ScatNet [41] for texture classification. In this novel

handcrafted network, so called Normalized-Convolution

Network (NmzNet), we propose two important changes to

the ScatNet (section 2.3) to enhance its robustness.

i) We modify the wavelet modulus operator, the funda-

mental operator of ScatNet, by a substitution of the normal-

Figure 4. Complex Morlet wavelets with Gaussian kernel (top

left corner), different scales (along rows) and orientations (along

columns). The real and imaginary parts are shown on the left and

on the right, respectively.

ized convolution presented in section 2.1 for the standard

convolution used in ScatNet as flows

The operator of the first network layer:

W1x =
(
x⊛ φJ , {|x⊛ ψθ,j |}θ,j

)
= (S0x, U1x) (15)

where ⊛ is the normalized convolution operator.

|.| is the modulus operator.

j = 1...J is the scaling parameter.

φJ and ψθ,j are respectively the low and high pass filter ker-

nels with J scales and θ angles. These kernels used as ap-

plicability functions for the normalized convolution in our

proposed method.

The wavelet-modulus operator for layers m ≥ 2 com-

puted on Um−1x the same way as the one on the first layer.

However, there is a normalized convolution computed along

the angle parameters taken into account.

ii) The average pooling of ScatNet replaced by the Fish

Vector feature aggregation in the NmzNet.

Given an image I , local descriptors {d1, ..., dn} are ex-

tracted from three different layers of NmzNet. These fea-

tures are then soft-quantized using a Gaussian Mixture

Model (GMM). Subsequently, the dimensionality is re-

duced by PCA before concatenating their first and second

order statistics to form the final Fisher Vector features. We

have discovered that our proposed method improves clas-

sification accuracy on the tested texture benchmarks (see

Section 3).

3. Experimental Results

This section evaluates the proposed method for classi-

fying texture data. First, parameter settings and datasets

are presented. Second, we evaluate the results and com-

pare with the state-of-the-art. Finally, we analyze the pro-

posed method and its complexity. In our experiments, we

used source code of ScatNet, VLFeat library shared by Mal-

lat’s team [41], and Vedaldi et al. [45, 46] respectively to

generate texture classification results on three benchmarks:

UIUC, KTH-TIPS-2a, and KTH-TIPS-2b.
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Figure 5. Images in the same class from the 3 experimented

datasets: Rows 1) UIUC, 2) KTH-TIPS-2a, 3) KTH-TIPS-2b.

3.1. Experimental Settings

We analyze the effectiveness of our method by doing ex-

periments on three popular texture databases, and their test-

ing protocols are strictly followed. The SVM classifier is

used to produce texture classification results.

Arguments of NmzNet are selected such that scaling

number is J = 4 for image size 300 × 300 or smaller, and

J = 5 otherwise. Here, the principle is that the smaller

image size, the smaller scaling number chosen as recom-

mended in [41]. Orientations of the filter bank are set to 8

(L = 8), the number of NmzNet layers is set to 3 (M = 3).

Since if the layer number exceeds this threshold, both fea-

ture dimension and feature extraction time increase with mi-

nor improvement in classification accuracy.

Experiments were conducted on datasets, with samples

of those represented in Figure. 5, and the summary is in

Table 1.

Table 1. Summary of datasets for the experiments.

Dataset Images Image size Classes Splits

UIUC 1000 640× 480 25 100

KTH-TIPS2a 4608 200× 200 11 pre-defined

KTH-TIPS2b 4752 200× 200 11 pre-defined

UIUC [21] has 25 classes of texture, each class contains

40 different images which has the resolution of 640 × 480
include changes of viewing angle, scale, and illumination

conditions. The mean classification accuracy, 100 random

splits between training and testing with, a half of samples

(20 images) per class chosen for training and the rest for

testing, is reported.

The material databases KTHTIPS2a, KTH-TIPS-2b

[3], with three viewing angles, four illuminants, and nine

different scales, produce 432 images per class, with the im-

age size of 200 × 200 and 11 classes in total. Regarding

these databases, we follow the common testing and training

protocols. Only unseen data is used for testing, with three

out of four samples used for training and the remaining for

testing.

3.2. Experimental Analysis

This section discusses how the proposed method en-

hances texture representation when normalized convolution

used. As illustrated in (Figure 6), the first row presents

(from left to right) a Gaussian window used as applicabil-

ity function, the real and imaginary part of one Gabor filter,

windowed filters respectively which can be used for com-

puting normalized convolution. The second row is a let-

tuce leaf image and its corresponding convolution results. It

is obvious that normalized convolution results (right) retain

more details from the image than those of standard convo-

lution. This clue inspires us to build a convolution hand-

crafted network based on ScatNet with normalized convo-

lution used instead of standard convolution.

We built a convolution network based on ScatNet model

with normalized convolution substituted for standard con-

volution, so called normalized-convolution-ScatNet, then

extracted feature vectors of images (Figure 7), taken from

the KTH-TIPS-2b dataset which has the same class (cork).

We next computed χ2 distance between those, it is 0.45.

The same procedures are done with ScatNet, and the χ2 dis-

tance is 14.89. It is obvious that our approach has a better

discriminative representation compared with its derivation

(ScatNet).

Finally, We use off-the-shelf method Fisher vector as

an aggregation method for our approach. Classification re-

sults are presented in the next section with SVM classifier

is used.

3.3. Classification Results

Experiments were conducted on three texture datasets,

the results are compared with well-known and state-of-the-

art of those, we chose the highest results reported by rele-

vant articles for the comparison.

Results in Table 2 shows that our accurate rate on UIUC

dataset is similar to that of works in [49], roundly 1% lower

than the recent frontier FV-SIFT+ FC+FV-VD [6] of this

dataset while beating all others

KTH-TIPS-2a [3] is a very challenging dataset for the

texture classification task. State-of-the-art performance on

this dataset was reported approximately 78%. KTH-TIPS-

2a is challenging because it has very intense intra-class vari-

ations, as evident in Figure 5. Table 3 shows the experimen-

tal results obtained on KTH-TIPS-2a. NmzScat achieved a

82.37% classification rate, which was superior to the results

obtained by handcrafted conventional methods with a wide

margin.

Results on KTH-TIPS-2b: As can be seen from Table

4, our proposed method gets a significant improvement over

the original features it inherits from, the enhancement in

classification accuracy is approximate 10% compared with
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Figure 6. Normalized Convolution compared with Standard Convolution, lettuce leaf image from KTH-TIPS-2b dataset

Figure 7. Images in the same class (cork) from KTH-TIPS-2b

dataset whose NmzNet descriptors have smaller χ2 distances com-

pared with those of ScatNet.

Table 2. Classification accuracy comparisions with state-of-the-art

on the UIUC database.
Method Accuracy(%)

MDLBPriu2 [40] 88.05

LBPHF [1] 89.58

Hayman et al.[17] 92.00

CLBPHF [52] 92.55

MFS[48] 92.74

BRINT [25] 93.30

MRELBP (SVM) [24] 96.88

ScatNet(PCA) [41] 96.15

VZ-joint[44] 97.83

OTF[47] 97.40

scLBP [39] 98.45

FV-AlexNet (SVM) [6] 99.1

FV-VGGM (SVM) [6] 99.7

FV-VGGVD (SVM) [6] 99.8

NmzNet (ours) 96.97

Table 3. Classification accuracy comparisons with state-of-the-art

on the KTH-TIPS-2a database.
Method Accuracy(%)

LBP [32] 58.10

CLBP [53] 66.58

VZ-MR8 [43] 62.35

VZ-joint[44] 61.93

Multi-Scale-BIF [7] 71.56

ScatNet [41] 72.57

COV-LBPD [18] 74.86

MLEP [50] 75.57

scLBP [39] 78.39

NmzNet (ours) 82.37

ScatNet. Although our classification result on this database

is inferior to FV-SIFT+ FC+FV-VD [6], it is on the high

ranking.

4. Conclusions

In this paper, we have proposed NmzNet, a handcrafted

convolution network which leverages off-the-shelf meth-

ods such as Normalized Convolution, ScatNet, Fisher Vec-

tor aggregation for efficient texture classification. Our ap-

proach extracts features which are invariant to scale, rota-

tion, and illumination changes.

Future works can be drawn on other categories of texture

data such as noise and occlusion data with other types of

feature aggregation.
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Table 4. Classification accuracy comparisons with state-of-the-art

on the KTH-TIPS-2b database.
Method Accuracy(%)

VZ-MR8[43] 55.70

NRLBP[38] 57.00

NTLBP[10] 58.78

MBP[14] 60.29

LBP [32] 60.35

VZ-Path [44] 60.70

LTP[42] 62.12

PRICoLBP[36] 61.17

COV-LBPD[18] 63.47

MWLD[5] 64.70

ELBP[26] 64.84

MSJLBP[35] 65.51

MDLBPriu2[40] 66.52

BRINT[25] 66.67

LBPHF[1] 67.51

CLBPHF[52] 68.10

ScatNet(PCA)[41] 68.92

MRELBP[24] 68.98

MRELBP (SVM)[24] 77.91

FV-AlexNet (SVM) [6] 77.9

FV-VGGM (SVM) [6] 77.9

FV-VGGVD [6] 88.2

NmzNet (ours) 78.10
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and W. Gao. WLD: A robust local image descriptor. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

32(9):1705–1720, 2010. 7

[6] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep fil-

ter banks for texture recognition, description, and segmenta-

tion. International Journal of Computer Vision, 118(1):65–

94, 2016. 1, 5, 6, 7

[7] M. Crosier and L. D. Griffin. Using basic image features

for texture classification. International Journal of Computer

Vision, 88(3):447–460, 2010. 6

[8] O. G. Cula and K. J. Dana. Compact representation of bidi-

rectional texture functions. In 2001 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR 2001), 2001. 1

[9] O. G. Cula and K. J. Dana. 3d texture recognition using bidi-

rectional feature histograms. International Journal of Com-

puter Vision, 59(1):33–60, 2004. 1

[10] A. Fathi and A. R. Naghsh-Nilchi. Noise tolerant local bi-

nary pattern operator for efficient texture analysis. Pattern

Recognition Letters, 33(9):1093–1100, 2012. 7

[11] Y. Guo, G. Zhao, and M. PietikäInen. Discrimina-
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