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Abstract

The computational complexity of deep neural networks

for extracting deep features is a significant barrier to

widespread adoption, particularly for use in embedded de-

vices. One strategy to addressing the complexity issue is

the evolutionary deep intelligence framework, which has

been demonstrated to enable the synthesis of highly effi-

cient deep neural networks that retain modeling perfor-

mance. Here, we introduce the notion of trans-generational

genetic transmission into the evolutionary deep intelli-

gence framework, where the intra-generational environ-

mental traumatic stresses are imposed to synapses during

training to favor the synthesis of more efficient deep neu-

ral networks over successive generations. Results demon-

strate the efficacy of the proposed framework for synthesiz-

ing networks with significant decreases in synapses (e.g., for

SVHN dataset, a 230-fold increase in architectural effi-

ciency) while maintaining modeling accuracy and a signif-

icantly more efficient feature representation.

1. Introduction

Deep neural networks [7, 14, 15] have demonstrated

tremendous success for learning powerful feature represen-

tations from data, leading to state-of-the-art performance

in a variety of different applications over the past decade

such as object detection [11, 19], semantic image segmen-

tation [2, 17], image classification [14, 23], speech recogni-

tion [7, 8], and gene sequencing [1].

There are two contributing factors to the immense suc-

cess of deep neural networks experienced in recent years

for learning feature representations. First, the learning pro-

cess of deep neural networks can be considered as an end-

to-end approach where feature extraction and inference are

trained simultaneously based on training data. As such, the

different layers of a deep neural network learn the best pos-

sible feature representation jointly, for not only fitting the

training data but also for optimizing inference performance.

In convolutional neural networks [14], the convolution lay-

ers and the fully connected layers are designed for feature

extraction and inference, respectively, and can compensate

for the modeling deficiencies of each other when trained

together, thus leading to feature representations that are op-

timized for inference performance. Given the rise in big

data, deep neural networks can learn highly powerful fea-

ture representations around such data for very high infer-

ence performance.

The second contributing factor is the significant growth

of computational power in recent years. The rise in par-

allel computing devices such as graphics processing units

(GPUs) and distributed computing systems has greatly ac-

celerated the training and inference of deep neural net-

works [14]. The achievements in high-performance com-

puting devices enable researchers to design and build larger

and deeper neural networks [23] that can produce more and

more powerful feature representations.

Many applications require efficient algorithms that are

suitable for embedded systems and consider runtime and

memory limits. High-performance deep neural networks

are both computationally expensive and require large mem-

ories to store an enormous number of network parameters.

Fast data transmission is required additionally to support

the expensive computation and to load the large network

parametrization. These issues associated with computa-

tional complexity, memory complexity and bandwith can

be considered as the main barriers to widespread adoption

of deep neural networks for feature extraction in a variety of

operational scenarios and applications. This includes self-

driving cars, smart-phone applications, and surveillance

cameras where the computational resources are limited due

to embedded GPUs or even CPUs, and where very limited

memory is available. Due to this fact, there has been a very
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strong recent interest towards obtaining efficient deep neu-

ral networks capable of producing efficient deep features.

The majority of methods in previous literature on achiev-

ing efficient deep neural networks can be grouped into two

main categories: I) methods addressing memory complex-

ity associated with deep neural networks, and II) methods

focusing on computational and memory complexity issues

together.

In the area of methods tackling memory complexity, Le-

cun et al. [16] addressed this issue in their seminal pa-

per by proposing the optimal brain damage method where

synapses were pruned based on their strengths. They uti-

lized the second-derivative information to specify the neu-

ron to be pruned and made a trade-off between the number

of parameters and training error. Gong et al. [5] took advan-

tage of information-theoretical vector-quantization methods

to compress the parameters of the network. They used k-

means clustering on the weights to quantize the parameters

of the dense connected layers. To further reduce the net-

work structure, Han et al. [6] proposed the combination of

pruning, quantization and Huffman coding.

In the area of methods addressing computational and

memory complexity issues simultaneously, low-rank ma-

trix factorization [9, 10] was proposed to approximate the

filter structures and convolutional kernels in convolutional

layers. For example, Ioannou et al. [9] proposed a new

training approach such that the network learns a set of small

basis filters from scratch via low-rank matrix factorization

and by using smaller kernel size addresses the running-time

issue. Although Jaderberg et al. [10] took advantage of low-

rank matrix factorization to learn separable smaller kernels

like [9], the separable kernels are optimized after training

the network. Wen et al. [25] suggested applying regular-

ization techniques to learn the kernel structures and account

for structured sparsity, and introduced a new regularization

approach to learning the filter shapes and layer depth during

training.

Another promising approach to tackling both the com-

putational and memory complexity issues simultaneously

is the evolutionary deep intelligence (EvoNet) framework

proposed by Shafiee et al. [21], where inspirations from

evolutionary biology such as random mutation, natural se-

lection, and heredity were leveraged within a probabilistic

framework to synthesize increasingly efficient deep neural

networks over successive generations, resulting in the learn-

ing of highly efficient yet powerful feature representations.

While previous works have explored the use of evolutionary

computing methods for training and generating deep neural

networks [24, 26], they have not only largely focused on ac-

curacy and not on progressively more efficient deep neural

networks, but also have leveraged classical methods such

as genetic algorithms and evolutionary programming which

differs greatly from the probabilistic generative framework

proposed in [21].

One of the key aspects of the evolutionary deep intel-

ligence framework greatly influencing the efficiency and

quality of the synthesized offspring deep neural networks is

the genetic encoding scheme, which acts as a probabilistic

‘DNA’ to mimic the heredity aspect of biological evolution.

For instance, Shafiee & Wong [22] extended the genetic en-

coding scheme to synthesize deep neural networks with ar-

chitectures that enable more efficient inference on parallel

computing devices such as GPUs. More specifically, they

proposed a new genetic encoding scheme to promote the

formation of highly sparse sets of synaptic clusters, thus tai-

loring them to the hardware architecture of GPUs that can

execute a set of kernel computing instructions in a highly

parallel manner.

To explore the optimization of the genetic encoding

scheme even further for learning more efficient feature

representations, we take inspiration from a very inter-

esting observation in biological evolution: transgenera-

tional genetic transmission of environmental information.

Dias & Ressler [4] studied the inheritance of parental trau-

matic exposure to their offsprings and found that environ-

mental stimuli imposed on the exposed parents – here, an

olfactory traumatic exposure on mice– had a strong genetic

influence on their offsprings that were not conceived at the

time. Similarly, Klosin et al. [12] showed that environmen-

tal information, induced by environmental stresses experi-

enced during the lifetime of C. elegans, was transmitted ge-

netically to subsequent generations.

This biological observation brings up an interesting

idea: Evolutionary deep intelligence generates several

generations of offspring networks, and raises the question:

Would it be possible to mimic the imposition of environ-

mental stresses on an ancestor network during training, so

that it results in a genetic encoding favoring the synthesis

of more efficient offspring networks?

To explore this idea as shown in Figure 1, we propose

the notion of learning efficient deep feature representations

via transgenerational genetic transmission of environmental

information using genetic encoding during the evolutionary

synthesis of deep neural networks, which we will refer to

here as tEvoNet. More specifically, the training of a deep

neural network is formulated as a maximum a posteriori

(MAP) framework, where intra-generational environmental

traumatic stresses to synapses are encoded within the prior

model such that the distribution of synaptic strength in an

exposed parent deep neural network is tailored to exhibit in-

herent genetic encodings to favor offspring neural networks

with greater efficiency during the synthesis process, thus

transmitting the environmental information experienced by

a deep neural network from generation to generation.
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Figure 1. Overview of the proposed tEvoNet evolutionary deep intelligence framework with (i.e., for one generation). The architectural

traits of ancestor networks are encoded via probabilistic ‘DNA’ sequences. The environmental factors are applied at intra-generational

and during each epoch of training which enables synapses to be prepared for a traumatic exposure between generation. A new offspring

network is synthesized in each generation based on the probabilistic ‘DNA’ sequences (heredity), inter-generation environmental factors

(natural selection), and random mutation.

2. Methodology

We propose tEvoNet, an extended evolutionary deep in-

telligence framework for learning efficient deep feature rep-

resentations by using transgenerational genetic transmis-

sion of environmental information. In this section, we first

explain the concept of evolutionary deep intelligence and

the notion of genetic encoding within that framework. We

then describe in detail the proposed transgenerational ge-

netic transmission scheme.

2.1. Evolutionary Deep Intelligence

The approach to evolutionary deep intelligence was pro-

posed by Shafiee et al. [21], where progressively more ef-

ficient deep neural networks are synthesized within a prob-

abilistic framework over multiple generations by leverag-

ing processes that mimic heredity, natural selection and ran-

dom mutation. More specifically, the architectural traits of

a deep neural network are modeled by synaptic probability

models that can be considered as the probabilistic ‘DNA’,

and that are used to mimic heredity to pass genetic informa-

tion to subsequent generations. Offspring deep neural net-

works with diverse network architectures are synthesized

stochastically based on this probabilistic ‘DNA’ together

with probabilistic computational environmental factor mod-

els for encouraging progressively increasing network archi-

tecture efficiency over generations.

The network architecture of a deep neural network

at generation g can be characterized by Sg , where

Sg =
{

sl,ig

}i=1:Il

l=1:L
is the set of binary states defining the

existence of all possible synapses in the network having L

possible layers, and Il possible synapses at each layer l. An

offspring deep neural network is synthesized stochastically

by a synthesis probability P (Sg), which is expressed by

P (Sg) = P (Sg|Wg−1) · F, (1)

with P (Sg|Wg−1) the synaptic probability model, and F

the imposed environmental factors. The offspring networks

are then trained at each generation to achieve modeling ac-

curacy while preserving the efficiency and architectural di-

versity.

2.2. Genetic Encoding

We wish to focus on modeling the architectural traits by

an effective genetic encoding scheme in this work. Fol-

lowing [21], the genetic encoding of offspring networks is

modeled by P (Sg|Wg−1) where Wg−1 represents the set

of trained synaptic strengths of the network at generation

g− 1 based on the notion, that the desired traits to be inher-

ited by the offspring networks are related to strong synaptic

strengths in the ancestor networks. The synaptic strength

of s
l,i
g−1 is represented by w

l,i
g−1 ∈ Wg−1, and the non-

existence of a synapse is encoded as w
l,i
g−1 = 0 and equals

s
l,i
g−1 = 0.

Shafiee et al. [20, 22] further decomposed P (Sg|Wg−1)
into a multi-factor probability distribution to promote the

formation of synaptic clusters, resulting in the synthesis of

offspring deep neural networks that are tailored to be more

efficient for computation on parallel computing systems:

P (Sg|Wg−1) =
∏

c∈C

[

P (Sc
g|Wg−1) ·

∏

(i,l)∈c

P (sl,ig |wl,i
g−1)

]

(2)
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where Sc
g ⊂ Sg is a cluster of synapses at generation g.

A cluster c can be encoded as a subset of synapses of the

network, with a filter or a kernel inside a filter as examples

of synaptic clusters in the genetic encoding scheme (2).

The creation of the genetic encoding P (Sg|Wg−1) is

very important as it has a significant influence over the net-

work architectures of offspring deep neural networks. As

mentioned before, the genetic encoding scheme previously

proposed is highly dependent on the synaptic strengths of

the ancestor deep neural network, i.e., Wg−1; therefore, op-

timizing the distribution of synaptic strengths in Wg−1 in a

way that promotes optimal genetic encoding P (Sg|Wg−1)
favoring the synthesis of offspring neural networks with

greater architectural efficiency is highly desired.

2.3. Transgenerational Genetic Transmission of En
vironmental Information

Inspired by [4, 12], the incorporation of transgenera-

tional genetic transmission of environmental information

within the deep evolutionary intelligence framework for im-

proving the architectural efficiency of offspring deep neural

networks can be described as follows. The general idea

is the imposition of epoch-level traumatic environmental

stresses to weaken the strengths of a subset of synapses.

Here, the intra-generational environmental stresses imposed

on the exposed parent deep neural network influence the

distribution of synaptic strengths in a deep neural network

to favor offspring network architectural efficiency. This ef-

fect is transmitted genetically to the next generation, i.e., by

intergenerational transmission using probabilistic genetic

encoding. More specifically, the intra-generational environ-

mental stresses encourage configurations of Wg−1 that en-

able more effective genetic encodings P (Sg|Wg−1) linked

to synthesized offspring networks with greater architectural

efficiencies.

Let us model a neural network as a probabilistic

model [3] P (y|x;W) where x ∈ R
d is the d-dimensional

input to the network, and the network assigns a probability

to each possible output y ∈ Y regarding the set of trained

synaptic strengths W . The learning process of synaptic

strengths W within a deep neural network can be formu-

lated as a maximum likelihood estimation (MLE) given a

set of training data D = (xi, yi):

Ŵ = arg max
W

logP (D|W)

= arg max
W

∑

i

logP (yi|xi;W). (3)

This optimization is usually performed by a gradient de-

scent approach with the assumption that logP (D|W) is dif-

ferentiable in W .

We now wish to impose prior knowledge to the synaptic

strengths W , and re-formulate the problem as a maximum

a posteriori (MAP) problem:

Ŵ = arg max
W

logP (W|D)

= arg max
W

logP (D|W) + logP (W) (4)

where P (W) is the prior model imposed during the training

stage. Here, we use the prior model to encode the intra-

generational environmental traumatic stresses imposed to

synapses during the training at each generation. As shown

in Figure 1, we encode the intra-generational environmental

traumatic stresses to synapses within the prior model during

the training of the deep neural network at each generation.

Given the goal that P (Sg|Wg−1) better promotes the

synthesis of offspring networks with more effective and ef-

ficient network architectures:

P (Sg|Wg−1) ≈ P
(

Sg|Ŵg−1

)

, (5)

we take advantage of (4) and benefit from

P (W) := P (Ŵg−1) to provide a more effective

genetic encoding scheme.

Here, the prior model, P (Wg−1), is realized as a Bino-

mial probability distribution such that the strengths of a sub-

set of synapses are weakened at each epoch level during the

training, and is formulated as follows:

Ŵt+1,g−1 =
[

Qt,g−1 ≥ Ū
]

· Ŵt,g−1

+ β ·
[

Qt,g−1 < Ū
]

· Ŵt,g−1 (6)

where Qt,g−1 is the Binomial distribution formulating such

that P (Ŵt,g−1), Ū is a set of uniformly distributed random

numbers based on uniform distribution U(0, 1),
[

·
]

is the

Iverson bracket determining whether a synapse is selected

in (6) at epoch t for generation g − 1, and Ŵt,g−1 encodes

the set of trained synaptic strengths of epoch t at generation

g. The Binomial distribution Qt,g−1 is formulated based on

the trained synaptic strengths Ŵt,g−1 at epoch t:

Qt,g−1 = q1t,g−1 · q
2
t,g−1 · . . . · q

n
t,g−1 (7)

qit,g−1 = exp(
ŵi

t,g−1

zi
− 1) 1 ≤ i ≤ n (8)

where qit,g−1 is a Bernoulli distribution for the ith synapse

in a network containing n synapses computed based on

ŵi
t,g−1 ∈ Ŵt,g−1, and zi a normalization factor.

The factor 0 < β ≤ 1 is the intra-generational environ-

mental factor applied at each epoch of training to weaken

the strength of stochastically selected synapses. The fac-

tor β imposes minor environmental traumatic stress to the

deep neural network at the epoch level. These stochasti-

cally selected synapses at each epoch are meant to be less
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important to the modeling power of the deep neural network

than other synapses, and weakening them has a minimal ef-

fect on the modeling accuracy. However, the cumulation

of tiny changes shapes the distribution of synaptic strengths

to promote the formation of a synaptic probability model

P
(

Sg|Ŵg−1

)

favoring the synthesis of offspring deep neu-

ral networks with more efficient yet effective network archi-

tectures.

3. Experimental Results

To evaluate the efficacy of the proposed tEvoNet frame-

work for learning efficient yet powerful feature representa-

tions, we investigated and tested the framework on the CI-

FAR10 [13] and SVHN [18] benchmark datasets, built for

the purpose of image classification.

3.1. Experimental Setup

The CIFAR10 image dataset [13] consists of 50, 000
training, and 10, 000 test images with a size of 32×32 pix-

els, and 10 different object classes. The SVHN image

dataset [18] consists of 604, 388 training and 26, 032 test

images captured of of digits in natural scenes. Each image

is an RGB image with a size of 32×32 pixels. Examples

from the CIFAR10 and SVHN datasets are shown in Fig-

ure 2.

For the experiments performed on these two datasets,

an AlexNet architecture [14] is selected as the network ar-

chitecture of the original, first-generation ancestor network,

with the first layer modified to utilize 5 × 5 × 3 kernels

instead of 11 × 11 × 3 kernels given the smaller images

in the two datasets.

For the environmental factor model being imposed at dif-

ferent generations, F is formulated here such that an off-

spring deep neural network should not have more than 80%
of the total number of synapses in its direct ancestor net-

work. The intra-generational factor β applied at each epoch

of training to weaken the stochastically selected synapses is

set to β = 0.7 in this study, and the environmental stress

was imposed for 30 epochs at each generation. Finally, for

this study, successive offspring deep neural networks were

synthesized one generation after another generation until

the modeling accuracy of the offspring deep neural network

at the last generation exceeds a performance drop of 3%
when compared to the first-generation ancestor network.

3.2. Discussion

Our approach tEvoNet is compared against the

cluster-driven evolutionary deep intelligence framework

EvoNet [22] to demonstrate the efficacy of the transgener-

ational genetic transmission of environmental information

during the evolutionary synthesis of deep neural networks.

Figure 2. Example images from the CIFAR10 and SVHN datasets.
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Figure 3. Architectural efficiency vs. generation for CIFAR10,

with a stopping criteria of a performance drop of 3% in modeling

accuracy. The proposed tEvoNet framework is compared against

EvoNet [22]. tEvoNet can synthesize offspring deep neural net-

works with a 40-fold increase of architectural efficiency with a

performance drop of ∼3% in modeling accuracy after 7 genera-

tions, while EvoNet can synthesize a network with 27-fold archi-

tectural efficiency at similar accuracy after 11 generations only.

3.3. Experiment 1: CIFAR10

Figure 3 shows a comparison of the architectural effi-

ciency over generations on the CIFAR10 dataset for the

tEvoNet framework and the EvoNet framework [22]. We

wish to define the architectural efficiency as the total num-

ber of synapses of the first-generation ancestor network di-

vided by the total number of synapses of the current gen-

eration. Figure 3 shows that the proposed tEvoNet frame-

work can synthesize an offspring deep neural network with

a 40-fold increase of architectural efficiency after 7 genera-

tions for the CIFAR10 dataset, while the EvoNet framework
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Figure 4. The modeling accuracy over the network generation us-

ing the CIFAR10 dataset, with a stopping criteria of a performance

drop of 3% in modeling accuracy. It can be observed that off-

spring deep neural networks synthesized by tEvoNet and EvoNet

can largely preserve modeling accuracy over multiple generations,

although tEvoNet synthesizes offspring deep neural networks with

significantly greater architectural efficiency and achieves higher

architectural efficiency at earlier generations.

can synthesize an offspring deep neural network with a 27-

fold increase of architectural efficiency after 11 generations

only.

Figure 4 shows the modeling accuracy of offspring deep

neural network over generations on the CIFAR10 dataset for

the tEvoNet and EvoNet frameworks. It can be observed

that the offspring deep neural networks synthesized by

both the proposed tEvoNet framework and EvoNet frame-

work can largely preserve modeling accuracy over multiple

generations. These results demonstrate that the proposed

tEvoNet framework synthesizes offspring deep neural net-

works with significantly greater architectural efficiency than

the EvoNet framework and achieves a higher architectural

efficiency at earlier generations.

3.4. Experiment 2: SVHN

For the second experiment, the proposed tEvoNet frame-

work is evaluated against the EvoNet framework on the

SVHN dataset. Figure 3 shows a comparison of the archi-

tectural efficiency over generations on the SVHN dataset

for both the proposed tEvoNet framework and the EvoNet

framework. It can be observed that tEvoNet synthesizes

an offspring deep neural network with a 230-fold increase

of architectural efficiency after 11 generations, while the

EvoNet synthesizes an offspring deep neural network with a

100-fold increase in architectural efficiency after 16 genera-

tions only. In addition, Figure 6 illustrates the modeling ac-

curacy of offspring deep neural network over generations on

the SVHN dataset for the tEvoNet and EvoNet frameworks.

The offspring deep neural networks synthesized by both the

proposed tEvoNet and EvoNet framework can largely pre-

serve modeling accuracy over multiple generations. These

results further reinforce the fact that tEvoNet synthesizes
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Figure 5. Architectural efficiency over the generation for the

SVHN dataset, with a stopping criteria of a performance drop

of 3% in modeling accuracy. tEvoNet is compared against

EvoNet [22], and the comparison shows that tEvoNet synthesizes

offspring deep neural networks with a 230-fold increase in archi-

tectural efficiency with a ∼3% drop in accuracy after 11 genera-

tions, while EvoNet synthesizes a network with 100-fold architec-

tural efficiency at similar accuracy after 16 generations.

offspring deep neural networks with significantly greater ar-

chitectural efficiency than the EvoNet and achieves a higher

architectural efficiency at an earlier generation.

The experimental results showed the efficacy of the intra-

generational evolution in the evolutionary deep intelligence

framework which optimizes the genetic encoding scheme to

synthesize more efficient network architecture in fewer gen-

erations. This approach can have a significant effect to form

a new deep neural network architectures which are very ef-

ficient yet preserve the modeling accuracy. As mentioned

before, the deep neural network architectures can be con-

sidered as effective feature extraction framework which are

trained end-to-end. By using the proposed tEvoNet frame-

work, it is possible to generate very compact feature extrac-

tors that are very efficient yet effective in modeling frame-

works.

4. Conclusion

The design of efficient deep neural network architec-

tures for the purpose of learning efficient deep feature rep-

resentations is a vital factor when dealing with low-cost,

low-energy computing devices such as embedded CPUs or

even embedded GPUs. In this paper, we extended upon

the evolutionary deep intelligence framework by incorpo-

rating the notion of learning efficient deep feature repre-

sentations via the transgenerational genetic transmission of

environmental information during the evolutionary synthe-

sis of deep neural networks, which we refer to as tEvoNet.

Intra-generational environmental traumatic stresses were

imposed to synapses during training in a way that results in

more optimized genetical encodings that favor the synthe-

sis of more efficient deep neural networks, thus transmit-

ting the environmental information experienced by a deep
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Figure 6. The modeling accuracy over the generation for SVHN,

with a stopping criteria of a 3% drop in modeling accuracy. It can

be observed that the offspring deep neural networks synthesized by

both the proposed tEvoNet and EvoNet can largely preserve mod-

eling accuracy over multiple generations, although tEvoNet syn-

thesizes offspring deep neural networks with significantly greater

architectural efficiency than the EvoNet and achieves a larger ar-

chitectural efficiency at an earlier generation.

neural network from generation to generation. Experimen-

tal results performed on the CIFAR10 and SVHN datasets

demonstrated the efficacy of the proposed tEvoNet frame-

work, as it was shown that it was capable of synthesiz-

ing new network architectures with significant decreases

in synapses compared to the original deep neural net-

work architectures (e.g., for SVHN, a ∼230-fold increase

in synapse efficiency was achieved with tEvoNet, com-

pared to a 100-fold in synapse efficiency using the original

EvoNet) while maintaining modeling accuracy, thus result-

ing in a significantly more efficient deep feature representa-

tion. Future work includes investigating alternative intra-

generational environmental stresses, as well as dynamic

strategies for adapting the degree of intra-generational envi-

ronmental stress based on the intrinsic characteristics of the

deep neural network.
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