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Abstract

A 4D effect video played at cinema or other designated
places is a video annotated with physical effects such as mo-
tion, vibration, wind, flashlight, water spray, and scent. In
order to automate the time-consuming and labor-intensive
process of creating such videos, we propose a new method
to classify videos into 4D effect types with shot-aware frame
selection and deep neural networks (DNNs). Shot-aware
frame selection is a process of selecting video frames across
multiple shots based on the shot length ratios to subsample
every video down to a fixed number of frames for classifi-
cation. For empirical evaluation, we collect a new dataset
of 4D effect videos where most of the videos consist of mul-
tiple shots. Our extensive experiments show that the pro-
posed method consistently outperforms DNNs without con-
sidering multi-shot aspect by up to 8.8% in terms of mean
average precision.

1. Introduction

4D technology has been widely adopted in the entertain-
ment industry to provide more immersive experience. A 4D
movie is a term when a movie synced along with physi-
cal effects during its show time at the theater. Physical ef-
fects may include motion and vibration on chairs, as well
as wind, water spray, scent, and flashlight. Although the
4D movie is extensively played at the cinema, the annotat-
ing process of movies is very time-consuming and labor-
dependent work. Encouraged to automate and fasten anno-
tating process, we propose a new method to classify videos
into 4D effect types. Two major steps required to classify
4D effect videos are providing the right dataset and devel-
oping proper models. In this paper we present a solution for
both dimensions.

From a dataset perspective, the available datasets
commonly used on video classification are KTH [17],
Weizzman [2], HMDB [11]], UCF Sports [20], Hollywood-

Figure 1. Visual examples of frames consisting of motion effect in
our dataset.

2 [12]], UCF-50 [14], and UCF-101 [21]. These datasets
mainly focus on action recognition and human motion
recognition. There are also datasets that focus on specific
activities such as MPII Cooking [135], Breakfast [[10], and
Sports-1M [7] datasets. To the best of our knowledge,
dataset that consists of 4D effect videos is still unavail-
able. No previous work addresses such classification task.
Therefore, we collect a new dataset of 4D effect videos
with at least one annotation for each video. The videos
in the dataset are trimmed videos from several movies.
The dataset has several effect types such motion, vibration,
wind, scent, spraying, fog, smoke, and flashlight. Figure T]
depicts examples of frames consisting of motion effect in
our dataset. The shortest video has only two frames and the
longest one has 672 frames. The average number of video
frames is 125 frames. An effect type has different types of
object and places across videos. One notable aspect of our
dataset is that most of the videos consist of multiple shots.
Therefore, it makes our dataset even more challenging and
richer than other datasets as summarized in Table [1l

From a modeling standpoint, we are interested in build-
ing appropriate models to conduct classification task on
such challenging dataset. A 4D effect classification is more
complicated than image scene recognition because movie
consists of many related sequences and several hundred
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Table 1. Comparison of several datasets to 4D effect dataset [23].

Dataset Detection | Untrimmed | Open world | Multi-label | Multi-shot
KTH-action - - - - -

UCF101 - - yes - -
HMDB5S51 - - yes - -
SportsIM - yes yes - -

Cooking yes yes - - -
Breakfast yes yes - - -
THUMOS yes yes yes - -
MultiTHUMOS | yes yes yes yes -

Our Dataset yes yes yes yes yes

shots. Since our dataset consists of trimmed videos from
movies, it is unavoidable that most of the videos in our
dataset have multiple shots, which makes every single video
appear visually distinctive across frames. With this obser-
vation, we hypothetically consider that we need to carefully
select frames across multiple shots in a video because using
simple step-size sampling method may lose critical frames
from the video for effect classification. Therefore, we tackle
the problems of multi-shot 4D effect video classification
by using shot-aware frame selection and different DNN
models including 3D Convolutional Neural Networks (3D
CNN), Convolutional Recurrent Neural Networks (CRNN),
and Long Short-Term Memory (LSTM). Shot-aware frame
selection is a process of selecting video frames across mul-
tiple shots based on the shot length ratios to subsample ev-
ery video down to a fixed number of frames for classifica-
tion. To provide fair comparison how the shot-aware frames
contribute to our model, we conduct simulations using the
same network parameters for shot-aware frame selection
and step-size sampling method.
Our main contributions can be summarized as follows:

1. We introduce a 4D effect dataset based on real-world
application.

2. We propose shot-aware frame selection and deep neu-
ral networks to classify videos into 4D effect types.

3. The proposed method outperforms the classification
task using deep neural networks without considering
multi-shot existence in terms of mean average preci-
sion (mAP).

2. Related Work

We review recent works on existing dataset and well-
known methods on video classification task.

Dataset. There are various public datasets commonly
used for video classification. KTH [17] was used to rec-
ognize human action and contains six types of human ac-
tions, walking, jogging, running, boxing, hand waving and
hand clapping, performed several times in four different

scenarios, outdoors, outdoors with scale variation, outdoors
with different clothes, and indoors. All videos were taken
over similar backgrounds with a static camera and only con-
tainend single-shot videos. The HMDB [11]] was collected
from various sources, mostly from movies, YouTube and
Google videos. The dataset contains 6849 videos divided
into 51 action categories and each class includes at least
101 clips. Hollywood-2 [12] is a dataset with 12 classes
of human actions and 10 classes of scenes collected from
69 movies. The dataset is distributed over 3669 video clips
and approximately 20.1 hours of video in total. The UCF-
101 [21] consists of 13,320 videos with 101 classes and tar-
gets an action recognition data set of realistic action videos,
collected from YouTube. The videos in 101 action cate-
gories are grouped into 25 groups, where each group can
consist of 4-7 videos of an action. However, the videos on
UCF 101 mostly consist of single action class. MultiTHU-
MOS dataset [25]] contains dense, multilabel, frame-level
annotations for 40 hours across 400 videos. MPII Cook-
ing focuses on cooking activity, Breakfast dataset comprises
of 10 actions related to breakfast preparation, and Sports-
1M is 1 million YouTube videos consisting 487 classes of
sport activities. Different from the previous dataset, our new
collected dataset has untrimmed videos, trimmed videos,
multi-label videos, and multi-shot videos which make it
more challenging.

Deep learning models. Recently, deep learning meth-
ods show major breakthrough on video classification. It
was started from AlexNet [9] on image classification task.
Since then, researchers have extended the work into video
classification. [[19] utilized not only spatial information
but also optical flow for CNNs named two-stream CNNs.
[7]] investigated 1M-Sports dataset to learn spatiotemporal
information on video classification and tried to speed up
simulations. While [24] provided thorough investigation
of 3D CNNs that learn spatiotemporal information on ac-
tion recognition. Long-term Recurrent Convolutional Net-
works (LRCN) [[6] were developed to investigate a recurrent
convolutional architecture which is suitable for large-scale
visual learning and demonstrating good results on bench-
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mark video recognition tasks, image description and re-
trieval problems, and video narration. Taking advantages of
how previous research solve video classification problems,
we build own model based on 3D CNNs, convolutional re-
current neural networks (CRNN) which are networks with
end-to-end learning manner, and feature extraction using
CNNs combined with Long Term-Short Memory (LSTM).

Effect type: Motion

— mﬁrl

Effect type: Vibration

i

Effect type: Wind

. T S R

Figure 2. An overview of video clips contained 4D effects in our
dataset. There are three types of effect: motion, vibration, and
wind. Our dataset is very challenging due to high intra-class varia-
tion but low inter-class visual variation. Different effect type may
consist of similar objects and events on the frame level. The ef-
fect may occur in any event, any place, any object, and any ac-
tivity. For example, vibration effect probably occurs on fighting,
cooking, walking, flying activity, indoor and outdoor with multiple
concepts from objects like in beach while people are sailing.

3. Dataset

In this section, we describe our collected dataset includ-
ing the collecting process and detail information regarding
the dataset. Until now, no particular dataset can be used
for research on 4D effect video classification based on real-
world application. Our dataset comprises of 500 video clips
labeled at least with an effect type. We hired human ex-
perts to annotate movies according to real effects occurred
when watching movies in the cinema. Workers were pro-
vided with the possible type of effects and asked to anno-

tate start and end time of effects happened in the movies. A
physical effect may be visible in anytime during the show-
time. After having the recorded time, we annotated start
and end frames of these effects. Once we have annotation
list, we trimmed the movie into video clips according to
their annotation. Then, we divide the group of videos into
training, validation, and testing dataset by 70%, 10%, and
20%. Our dataset has high inter-class visual variation but
low intra-class visual variation. Also, most of the videos
have multiple shots. Different effect type may consist of
similar objects and events on the frame level. The effect
may occur in any event, place, object, and activity. For ex-
ample, vibration effect probably occurs on fighting, cook-
ing, walking, flying activity, indoor and outdoor with mul-
tiple concepts form object such as taken at the beach while
people are sailing. Figure [2] depicts visual appearance of
each class in our dataset and Figure [3] provides an exam-
ple of all physical effects occurred in a movie consisting of
180,000 frames.

4. Proposed Method

Unlike a video with a single shot, a video with multi-
ple shots contains richer information and visually distinct
across frames making it harder to classify. In this sec-
tion, we elaborate how we develop our proposed method
to classify videos into 4D effect types. First, we explain
the shot-aware frame selection. Second, we give details of
4 different models that we build: 2D CNN as a baseline,
3D CNN, convolutional recurrent neural networks (CRNN),
and CNN+LSTM. Detail architecture of these models can
be found in Figure 3}

4.1. Shot-aware frame selection

A single shot is a sequence of frames running for an
uninterrupted period and recorded from a single camera.
Also, a single shot in a movie is the continuous footage
or sequence between two edits or cuts. Usually, a two-
hour movie has several hundred thousand shots in it because
shots are used to demonstrate different aspects of a film’s
setting, scenes, characters, stories, ideas, and themes. There
are several types of shots such as extreme long shot, long
shot, full shot, mid shot, close up, and extreme close up.
Since our dataset consists of trimmed videos from movies, it
is unavoidable that most videos in our dataset have multiple
shots, which makes every single video appear visually dis-
tinctive across frames. With this observation, we hypotheti-
cally consider that we need to carefully select frames across
multiple shots in a video because using a simple step-size
sampling method may lose critical frames from the video
for effect classification.

Our shot-aware frame selection method consists of two
steps: detecting shots and selecting frames from these shots.
We name the selected frames as shot-aware frames. We de-
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Figure 3. An example of effects occurred in a movie.

tect shots between scenes in a movie by finding the bound-
aries where difference between two consecutive frames ex-
ceeds certain threshold. Given a single video with N num-
ber of frames and M number of shots, s,,, for1 <m < M,
let the length of shot s,,, be denoted as |s,,|. That is, a shot
Sm consists of |s,,| number of frames. Assume that we re-
quire K number of frames to represent the given video, we
define that a single shot s,,, contributes K X |s,,,| /n frames
out of K frames. Then, we select K X |s,,| /n number of
frames from the shot s,,, by using step-size sampling start-
ing from the first frame within the shot. Therefore, the num-
ber of contributed frames from a shot depends on its length.
Figure ] shows the comparison between evenly subsampled
frames and shot-aware frames. The odd number rows are
the shot-aware frames selected from a video and the even
number rows are the frames selected using simple step-size
sampling. Even though some frames are visually similar, in
this example there are consecutive frames that are not se-
lected by step-size sampling method which may essential to
classification task.

4.2. 2D CNN

2D CNN is a single-frame baseline architecture to under-
stand the contribution of a static image to classification task.
In this paper, we use transfer learning to retrain certain lay-
ers of InceptionV3 model on our collected dataset. Incep-
tionV3 is 2015 of Google’s Inception architecture for im-
age recognition pre-trained on ImageNet dataset [16]. The

model uses a network-in-network approach, stacking Incep-
tion modules to build a network layer. InceptionV3 takes a
single image to be passed through multiple Inception mod-
ules, each of which applies in parallels. Details of Incep-
tionV3 can be found in [23].

4.3. 3D CNN

3D CNN is one of the networks that learns spatiotem-
poral features by modeling temporal information using 3D
convolutional and 3D pooling operations [24]]. The main
difference from 2D CNN is that convolution and pool-
ing operations are performed spatiotemporally while in 2D
CNN both are done only spatially. Hence, temporal infor-
mation of the input is ignored right after the convolutional
operation. In this paper, we design a 3D CNN that has
three convolutional layers and three pooling layers (a pool-
ing layer immediately follows a convolutional layer), two
fully connected layers and a softmax loss layer as the
last layer. The input of the network is 80 x 80 x 3 video
frame. Each convolutional layer yields 32, 64, and 128 fea-
ture maps, respectively. The number of neurons in each
fully connected layer is set to 256. Additionally, the out-
put of the last layer is set according to the number of effect
types in the classification task. Every convolution layer has
different filter size followed by a max pooling layer. Filter
size of Tx7x7,3x3x3,and 2 x 2 x 2 with stride 1 are used
to result in conv1, conv2, and conv3, respectively. All pool-
ing layers are max pooling with kernel size 1 x 2 x 2 and
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Figure 4. The odd number rows are selected frames from shot-aware frame selection while the even number rows are results from step-size
sampling method. There are consecutive frames that are not sampled by step-size sampling method which may essential to classification

task.

stride 1 x 2 x 2. Dropout is implemented after each
fully connected layer for regularization. Rectified Linear
Unit (ReLU) is used as the activation function for all
convolutional layers. However, the last layer uses softmax
regression and acts as multi-classifier to predict 4D effect
classification.

4.4. CRNN

The idea of CRNN is proposed by [18]] for scene text
recognition which integrates feature extraction, sequence
modeling, and transcription into a unified framework in
end-to-end learning. One of the advantages of CRNN is that
it naturally handles sequences in arbitrary lengths. There-
fore, CRNN is suitable for a video classification task. In
this paper, we re-design the CRNN to satisfy our purpose
by keeping the end-to-end learning fashion. And instead
of using a general RNN, we implement LSTM to be inte-
grated with CNNs. The overall structure of CRNN has eight
convolutional layers, four max pooling layers (one pooling
layer after two convolution layers), an LSTM layer, a fully
connected layer, and a softmax output layer. The frame size
of input is 80 x 80. The number of filters for eight convo-
lutional layers from 1 to 8 are 32, 32, 48, 48, 64, 64, 128,
and 128, respectively. Rectified Linear Unit (ReLU) is used
as the activation function for all convolutional layers. Fur-
thermore, all pooling layers are max pooling. The LSTM
layer has 1024 hidden units that return a sequence for each
32-frames clip. We add a fully connected layer that yields
2048 outputs followed by a dropout as regularization.

4.5. CNN+LSTM

Different from CRNN, CNN+LSTM is integrating two
networks together by separately training each network. The
CNNs are employed to extract feature maps to be used as
input of LSTM. In this paper, we extract feature maps from
final pooling layer of CNN using InceptionV3 pre-trained

on ImageNet without fine-tuning process. The LSTM has
two layers with 1024 hidden units in the first layer and 512
hidden units in the second layer followed by dropout in each
layer. After two LSTM layers, we add a fully connected
layer and a softmax loss layer to predict the 4D effect clas-
sification.

5. Performance Evaluation

We explain our experimental setting and evaluate our
model using own dataset. The comparison between step-
size sampling method and shot-aware frames is measured
using mean average precision (mAP).

5.1. Dataset

We evaluate our proposed method, shot-aware frame se-
lection and deep neural networks, using the new collected
dataset as discussed in Section 3. We divide the dataset into
3 groups: 70% training, 10% validation, and 20% testing
data. Furthermore, we only consider effect types that have
more than 100 videos and exclude videos that consists of
less than 32 frames. By doing so, we yield 3 effect types:
motion, vibration, and wind.

5.2. Experimental Setting

For shot-aware frame selection, we use PySceneDetect
to detect shots in videos from our dataset. During train-
ing, 2D CNN is trained in the similar method to image
recognition task. We do transfer learning of the pre-trained
InceptionV3 model on ImageNet without its top layers with
our dataset and add a new fully connected layer with neu-
rons of 2048. The model is trained using the Adam opti-
mizer [8]] with a learning rate of 0.001 for ten epochs. Then,
we retrain the network by fine-tuning the top 2 inception
blocks using stochastic gradient descent (SGD) with a
batch size of 128, a learning rate of 0.0001, and momentum
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Figure 5. Detail layers from different DNN models.

1153




Ground truth: Motion
30 CHN;
CRNN: Motio!

CNN+LSTM: Motion (D.40). Vibration (0.42)

¥ Ground tuth Motion
30 CNN: Motio
CRNM: Motion {D4E),

{060}, WRbration {0-25) Wind (0.15)

CRANN: Motion {0.21), Vibration

CNN+LETM: Motion (0.28), Vibration {0.45), \

Figure 6. We only show some frames from total shot-aware frames. We compare the ground truth with prediction results from each model.
Highlighted colors are prediction labels with highest scores.

Table 2. Mean average precision (mAP) for 4D effect classification

Model Step-size sampling \ Shot-aware frames | # of Parameters
2D CNN 0.301 23.7M
3D CNN 0.467 0.493 14.9M
CRNN 0.454 0.494 72.2M
CNN+LSTM | 0.464 0.505 15.7M

0.9. The other networks are trained in video-level classifi-
cation basis. We re-scale all video clips using shot-aware
frame selection to yield 32 input frames. Adam optimizer
is used with learning rate set to 10~°. All experiments were
carried out on NVIDIA GTX TITAN X 12GB GPU using
Keras [3]].

5.3. Result

The results of 4D effect classification on testing data are
summarized in Table P} As can be seen from the table,
the baseline network, 2D CNN, achieves 0.301 mAP, lower
compared to other networks. Even though deep neural net-
works without considering multi-shot existence in videos
result in better performance than the baseline, implementing
shot-aware frame selection and deep neural networks con-
sistently outperforms these network. The shot-aware frame
selection leads to substantially different results on classifi-
cation despite our networks only see 32 sampled frames.

The 3D CNN, CRNN, and CNN+LSTM using step-size
sampling method bring 0.467, 0.454, and 0.464 mAP. The
shot-aware frame selection and DNNs achieve 0.493, 0.494,
and 0.505 for 3D CNN, CRNN, and CNN+LSTM, respec-
tively. Figure [f] visualizes the performance of 3 different
models using shot-aware frame selection. From the figure,
we can see that models mistakenly predicts motion as vibra-
tion and vibration as motion. From these results, we realize
that motion and vibration effect are very similar and diffi-
cult to distinguish. Besides, the wind effect is more difficult
to predict than other effect types. This problem is arguably
caused by number of videos that have wind effect is smaller
that motion and vibration.

6. Conclusions

This paper proposed a new 4D effect video classification
method using shot-aware frame selection and deep neural
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networks. We emphasize that our dataset is challenging
since it consists of multi-shot videos and has high inter-
class yet low intra-class visual variation. After collecting
a new 4D effect video dataset, we built different models of
DNNs and fed these models with shot-aware frames. We
showed that our shot-aware frame selection and deep neural
networks consistently achieved better results than only us-
ing deep neural networks with a step-size sampling method
by up to 8.8% in terms of mean average precision. For fu-
ture work, we hope to incorporate different types of input
such as shot metadata extracted from videos to further im-
prove classification performance.
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