
Efficient Convolutional Network Learning using

Parametric Log based Dual-Tree Wavelet ScatterNet

Amarjot Singh, Nick Kingsbury

Signal Processing Group, Department of Engineering, University of Cambridge, U.K.

as2436@cam.ac.uk, ngk10@cam.ac.uk

Abstract

We propose a DTCWT ScatterNet Convolutional Neural

Network (DTSCNN) formed by replacing the first few lay-

ers of a CNN network with a parametric log based DTCWT

ScatterNet. The ScatterNet extracts edge based invariant

representations that are used by the later layers of the CNN

to learn high-level features. This improves the training of

the network as the later layers can learn more complex

patterns from the start of learning because the edge rep-

resentations are already present. The efficient learning of

the DTSCNN network is demonstrated on CIFAR-10 and

Caltech-101 datasets. The generic nature of the ScatterNet

front-end is shown by an equivalent performance to pre-

trained CNN front-ends. A comparison with the state-of-

the-art on CIFAR-10 and Caltech-101 datasets is also pre-

sented.

1. Introduction

Deep Convolutional Neural Networks (DCNNs) have

made great advances at numerous classification [14] and

regression [28] tasks in computer vision and speech appli-

cations over the past few years. However, these models

produce state-of-the-art results only for large datasets and

tend to overfit [17] on many other applications such as the

analysis of hyperspectral images [22], stock market predic-

tion [11], medical data analysis [21] etc due to the small

training datasets.

Two primary approaches have been utilized to train

DCNNs effectively for applications with small training

datasets: (i) Data augmentation and synthetic data gener-

ation, and (ii) Transfer Learning. Training CNNs on syn-

thetic datasets may not learn potentially useful patterns of

real data as often the feature distribution of synthetic data

generated shifts away from the real data [33]. On the other

hand, transfer Learning aims to extract the knowledge from

one or more source tasks and applies the knowledge to a tar-

get task. The weights of the CNN are initialized with those

from a network trained for related tasks before fine-tuning

them using the target dataset [23]. These Networks have

resulted in excellent embeddings, which generalize well to

new categories [24].

This paper proposes the DTCWT ScatterNet Convolu-

tional Neural Network (DTSCNN) formed by replacing the

first convolutional, relu and pooling layers of the CNN with

a two-layer parametric log based DTCWT ScatterNet [27].

This extracts relatively symmetric translation invariant rep-

resentations from a multi-resolution image using the dual-

tree complex wavelet transform (DTCWT) [12] and a para-

metric log transformation layer. These extracted features,

that incorporate edge information similar to the first layers

of the networks trained on ImageNet [31], [10], are used by

the middle and later CNN layers to learn high-level features.

This helps the proposed DTSCNN architecture to converge

faster as it has fewer filter weights to learn compared to its

corresponding CNN architecture (Section 2). In addition,

the CNN layers can learn more complex patterns from the

start of learning as it is not necessary to wait for the first

layer to learn edges as they are already extracted by the

ScatterNet.

The performance of the DTSCNN architecture is evalu-

ated on (i) Classification error and, (ii) Computational ef-

ficiency and the rate of learning with over 50 experiments

performed with 14 CNN architectures. The efficient learn-

ing of the DSTCNN architectures is demonstrated by their

ability to train faster and with lower classification error on

small as well as large training datasets, generated from the

CIFAR-10 dataset. The DTCWT ScatterNet front-end is

also shown to give similar performance to the first convo-

lutional pre-trained layers of CNNs which capture prob-

lem specific filter representations, on Caltech-101 as well

as CIFAR-10 datasets. A comparison with the state-of-the-

art is also presented on both datasets.

The paper is divided into the following sections. Sec-

tion 2 presents the parametric log based DTCWT Scatter-

Net Convolutional Neural Network (DTSCNN). Section 3

presents the experimental results while Section 4 draws con-

clusions.

1140

Figure 1: The proposed DTSCNN architecture, termed as AS-1, formed by replacing the first convolutional, ReLu, and pool-

ing layer of A-1 (Table. 1) CNN architecture with the two-layer parametric log based DTCWT ScatterNet. The ScatterNet

extracts relatively symmetric translation invariant representations from a multi-resolution image that are processed by the

CNN architecture to learn complex representations. However, the illustration shows the feature extraction only for a single

image due to space constraints. The invariant information (U [λm=1]) obtained for each R, G and B channel of an image is

combined into a single invariant feature by taking an L2 norm of them. Log transformation is applied with parameter k1 =

1.1 for scale j = 1. The representations at all the layers (m = 0(3), m = 1(12) and m = 2(36)) are concatenated to produce

51*2 (two resolutions) = 102 image representations that are given as input to the mid and back layers of the CNN.

2. Proposed DTSCNN Network

This section details the proposed DTCWT ScatterNet

Convolutional Neural Network (DTSCNN) composed by

combining the two-layer parametric log based DTCWT

ScatterNet with the later layers (middle and back-end) of

the CNN to perform object classification. The ScatterNet

(front-end) is first briefly explained followed by the details

regarding the (back-end) CNN architecture.

The parametric log based DTCWT ScatterNet [27] is an

improved version (both on classification error and computa-

tional efficiency) of the multi-layer Scattering Networks [4,

19, 26, 18, 5] that extracts relatively symmetric translation

invariant representations from a multi-resolution image us-

ing the dual-tree complex wavelet transform (DTCWT) [12]

and parametric log transformation layer. This network ex-

tracts feature maps that are denser over scale from multi-

resolution images at 1.5 times and twice the size of the in-

put image. Below we present the formulation of the para-

metric DTCWT ScatterNet for a single input image which

may then be applied to each of the multi-resolution images.

The invariant features are obtained at the first layer by

filtering the input signal x with dual-tree complex wavelets

ψj,r at different scales (j) and six pre-defined orientations

(r) fixed to 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦. To build a

more translation invariant representation, a point-wise L2

non-linearity (complex modulus) is applied to the real and

imaginary part of the filtered signal:

U [λm=1] = |x ⋆ ψλ1
| =

√

|x ⋆ ψa
λ1
|2 + |x ⋆ ψb

λ1
|2 (1)

The parametric log transformation layer is then applied to

all the oriented representations extracted at the first scale

j = 1 with a parameter kj=1, to reduce the effect of outliers

by introducing relative symmetry of pdf, as shown below:

U1[j] = log(U [j] + kj), U [j] = |x ⋆ ψj |, (2)

Next, a local average is computed on the envelope

|U1[λm=1]| that aggregates the coefficients to build the de-

sired translation-invariant representation:

1141

Table 1: Experiments are performed with CNN architectures (derived from LeNet [15]) designed for CIFAR-10 dataset that

contain convolutional (CV) layers (L1 to L5) with b number of filters of size a × a, denoted as L-F: a, b. The max pooling

is performed for a layer within a region of size c × c, denoted as PL-R: [c, c]. The network also contains fully connected

layers (FCN) that feed the final CNN outputs to a softmax loss function. The architectures are: (i) A-1: 2CV-1FCN (ii) A-2:

3CV-2FCN (iii) A-3: 4CV-3FCN (iv) A-4: 5CV-3FCN.

Architecture Layers

L1-F PL1-R L2-F PL2-R L3-F PL3-R L4-F L5-F FCN1 FCN2 FCN3

a,b [c,c] a,b [c,c] a,b [c,c] a,b a,b a,b a,b a,b

A-1 5,32 [3,3] 5,64 [6,6] – – – – 1,10 – –

A-2 5,32 [3,3] 5,32 [6,6] 5,64 [4,4] – – 1,32 1,10 –

A-3 5,32 [3,3] 5,32 [3,3] 5,64 [3,3] 4,64 – 1,32 1,16 1,10

A-4 5,32 [3,3] 5,32 [3,3] 5,64 – 4,64 4,64 1,32 1,16 1,10

Table 2: Parameter values used by the architectures mentioned in Table. 1 for training are: Learning rate = 0.001, Number of

Epochs = 300, Weight Decay = 0.0005 and Momentum = 0.9. The batch size is changed according to the number of training

samples as mentioned below.

Training Data Sample Size 300 500 1000 2000 5000 10000 25000 50000

Batch Size 5 5 10 20 50 100 100 100

S[λm=1] = |U1[λm=1]| ⋆ φ2J (3)

The high frequency components lost due to smoothing are

retrieved by cascaded wavelet filtering performed at the sec-

ond layer. The retrieved components are again not transla-

tion invariant so invariance is achieved by first applying the

L2 non-linearity of eq(2) to obtain the regular envelope:

U2[λm=1, λm=2] = |U1[λm=1] ⋆ ψλm=2
| (4)

and then a local-smoothing operator is applied to the reg-

ular envelope (U2[λm=1, λm=2]) to obtain the desired sec-

ond layer (m = 2) coefficients with improved invariance:

S[λm=1, λm=2] = U2[λm=1, λm=2] ⋆ φ2J (5)

The scattering coefficients for each layer are:

S =





x ⋆ φ2J

U1[λm=1] ⋆ φ2J
U2[λm=1, λm=2] ⋆ φ2J





j=2

(6)

Next, the proposed DTSCNN architectures (AS1 to

AS4) are realized by replacing the first convolutional layer

of the A-1 to A-4 CNN architectures with the ScatterNet

(described above), as shown in Fig. 1. The four CNN

architectures (A-1 to A-4, shown in Table. 1) are derived

from the LeNet [15] architecture because they are relatively

easy to train due to its small memory footprint. In addi-

tion to the derived architectures, the DTSCNN is also real-

ized by using ScatterNet as the front-end of three standard

deep architectures namely; Network in Network (NIN) [16]

(A-5), VGG [25] (A-6), and wide ResNet [30] (WResNet)

(A-7). The DTSCNN architectures (AS-5, AS-6, AS-7) for

the standard architectures (NIN (A-5), VGG (A-6), WRes-

Net (A-7)) are again obtained by removing the first con-

volutional layer of each network and replacing it with the

ScatterNet. The architectures are trained in an end-to-end

manner by Stochastic Gradient Descent with softmax loss

until convergence.

3. Experimental Results

The performance of the DTSCNN architecture is demon-

strated on CIFAR-10 and Caltech-101 datasets with over

50 experiments performed with 14 CNN architectures of

increasing depth on (i) Classification error and, (ii) Com-

putational efficiency and the rate of learning. The generic

nature of the features extracted by the DTCWT ScatterNet

is shown by an equivalent performance to the pre-trained

CNN front-ends. The details of the datasets and the results

are presented below.

3.1. Datasets

The CIFAR-10 [13] dataset contains a total of 50000

training and 10000 test images of size 32×32. The efficient

learning of the proposed DTSCNN network is measured on

8 training datasets of sizes: 300, 500, 1000, 2000, 5000,

10000, 25000 and 50000 images generated randomly by se-

lecting the required number of images from the full 50000

training dataset. It is made sure that an equal number of

images per object class are sampled from the full training

dataset. For example, a training dataset sample size of 300

will include 30 images per class. The full test set of 10000

images is used for all the experiments.

1142

Table 3: Classification error (%) on the CIFAR-10 dataset for the original CNN architectures and their corresponding

DTSCNN architectures.

Architectures Classification Error

Derived from LeNet [15] Training Data Sample Size

300 500 1000 2000 5000 10000 25000 50000

A-1: 2Conv-1FCon 77.8 73.2 70.3 66.7 61.3 54.9 45.3 38.1

AS-1: DTS-1Conv-1FCon 69.4 65.8 60.1 58.9 52.7 54.7 40.4 38.7

A-2: 3Conv-2FCon 66.8 62.0 57.5 52.8 46.1 40.1 32.7 27.3

AS-2: DTS-2Conv-2FCon 63.7 55.1 49.5 43.7 39.1 40.0 33.8 28.3

A-3: 4Conv-3FCon 62.2 57.4 51.0 46.8 40.1 35.1 29.2 24.2

AS-3:DTS-3Conv-3FCon 56.8 54.9 50.9 45.3 39.7 34.9 28.7 24.1

A-4: 5Conv-3FCon 58.4 54.4 47.4 41.8 35.0 32.2 25.7 22.1

AS-4: DTS-4Conv-3FCon 59.8 54.0 47.3 41.3 38.4 31.8 25.2 22.0

Standard Deep Architectures Training Data Sample Size

A-5: NIN [16] 89.2 84.4 45.5 34.9 27.1 18.8 13.3 8.1

AS-5: DTS-NIN 83.2 80.1 41.0 32.2 25.3 18.4 13.4 8.2

A-6: VGG [25] 89.9 89.7 89.1 59.6 36.6 28 16.9 7.5

AS-6: DTS-VGG 83.5 82.8 81.6 56.7 34.9 27.2 16.9 7.6

A-7: WResNet [30] 87.2 53.2 43.2 31.1 18.8 13.6 10.1 3.6

AS-7: DTS-WResNet 81.2 49.8 41.2 30.1 18.6 13.5 9.9 3.6

Caltech-101 [9] dataset contains 9K images each of size

224×224 labeled into 101 object categories and a back-

ground class. The classification error on this dataset is

measured on 3 randomly generated splits of training and

test data, so that each split contains 30 training images per

class, and up to 50 test images per class. In each split, 20%

of training images were used as a validation set for hyper-

parameter selection. Transfer learning is used to initialize

the filter weights for the networks that are used to classify

this dataset because the number of training samples are not

sufficient to train the networks from a random start.

3.2. Evaluation and Comparison on Classification
Error

The classification error is recorded for the proposed

DTSCNN architectures and compared with the derived (A-1

to A-4) as well as the standard (A-5 to A-7) CNN architec-

tures, for different training sample sizes, as shown in Table.

1. The parameters used to train the CNN architectures are

shown in Table. 2. The classification error corresponds to

the average error computed for 5 repetitions.

It can be observed from Table. 3 that the difference in

classification error for the derived CNN architectures (A-1

to A-4) is at around 9% for the small training datasets with

≤ 1000 training images. This difference in error reduces

with the increase in the size of the training dataset and with

increase in the depth of the architectures as shown in Table.

3. In fact, the deeper CNN architectures such 5CV-3FCN

(A-4) outperformed their corresponding DTSCNN architec-

tures by a small margin.

A similar trend in classification error is also observed

for the standard more deeper CNN architectures (A-5 to A-

7). The difference in classification error is large between

the DTSCNN (AS-5 to AS-7) and the original (A-5 to A-

7), architectures for small training datasets while both class

of architectures produce a similar classification error for

datasets with large training size. In fact, the wide ResNet

(WResNet) (A-7) and its corresponding DTSCNN architec-

ture (AS-7) result in the same classification error of 3.6%.

3.3. Analysis on Computational Efficiency and
Learning

This section compares the efficient and faster learning

of the proposed DTSCNN architectures against the CNN

architectures (A-1 to A-4) derived from LeNet [15] as well

as the standard (A-5 to A-7) deep learning architectures for

a range of small and large training dataset sizes.

The DTSCNN architectures have a higher rate of learn-

ing or faster converge than the original CNN architectures

because the numbers of filter weights required to be learned

are smaller but also because the ScatterNet extracts edge

representations that allow the later CNN layers to learn

high-level features from the first epoch onwards. The faster

convergence is shown for both the derived (A-1 to A-4) and

standard deep architectures (A-5 to A-7) as shown in Fig.

2 and Fig. 3, respectively. An architecture is considered

to have converged at a specific epoch when the error value

for the subsequent epochs changes within 2% of the error

value at that specific epoch. The convergence is marked on

the epoch axis using an orange dotted line for the DTSCNN

1143

(a) Training dataset sample size: 300 (b) Training dataset sample size: 1000

(c) Training dataset sample size: 10000 (d) Training dataset sample size: 50000

(e) Computational time for convergence for 5000 training size (f) Computational time for convergence for 50000 training size

Figure 2: Graphs show the faster convergence and rate of learning of the DTSCNN derived architectures (AS-1 to AS-

4) compared to the CNN (A-1 to A-4) architectures for a range of small and large training data sizes. An architecture is

considered to have converged at a specific epoch when the error value for the subsequent epochs changes within 2% of

the error value at that specific epoch. The convergence is marked on the epoch axis using an orange dotted line for the

DTSCNN architecture and a purple dotted line for the CNN architectures. The orange line has a lower epochs value as

compared to the purple line indicating the faster convergence. Computational time for convergence for the original CNN and

the corresponding DSTCNN networks measured to within 2% of the final converged error value is also shown for a small

(5000) and large (50000) training dataset.

architecture and a purple dotted line for the CNN architec-

tures. As observed from Fig. 2 and Fig. 3, the orange line

has a lower epoch value as compared to the purple line in-

dicating the faster convergence.

The time required for training the original and their cor-

responding DSTCNN architectures is presented for a small

1144

(a) Network in Network (NIN) (b) Visual Geometry Group (VGG) Network

(c) Wide Residual Network (WResNet)
(d) Computational time for convergence.

Figure 3: Graphs show the faster convergence and rate of learning of the DTSCNN standard deep architectures (AS-5 to

AS-7) compared to the CNN (A-5 to A-7) architectures for a small (5000) and large (50000) training dataset. An architecture

is considered to have converged at a specific epoch when the error value for the subsequent epochs changes within 2% of the

error value at that specific epoch. The convergence is marked on the epoch axis using an orange dotted line for the DTSCNN

architecture and a purple dotted line for the CNN architectures. The orange line has a lower epochs value as compared to the

purple line indicating the faster convergence. Computational time for convergence (hours) for NIN (A-5) and VGG (A-6)

standard deep architectures and corresponding DTSCNN architectures for a small (5000) and a large (50000) training dataset

is also presented.

(5000) and large training dataset (50000) for both the de-

rived (A-1 to A-4) and standard deep architectures (A-5 to

A-6), as shown in Fig. 2 and Fig. 3, respectively. The time

for convergence is again measured to within 2% of the fi-

nal converged error value. As observed from both figures,

the training time is higher for the original networks than

the DTSCNN networks because of the reasons mentioned

above.

The networks are trained using the MatConvNet [29]

package on a server with a NVIDIA GeForce 7800 GTX

card.

3.4. Comparison with Pre­trained CNN First Lay­
ers

The classification performance of the DTCWT Scatter-

Net front-end is compared with the first pre-trained convo-

lutional layer for the Network in Network (NIN) [16] and

the Visual Geometry Group convolutional (VGG) [25] ar-

chitectures, on Caltech-101 and CIFAR-10 datasets. The

filter weights for both the NIN and the VGG networks are

initialized with the weights obtained from their models pre-

trained on ImageNet (found here [1]). The first layers for

both the architectures are fixed to be the ScatterNet and the

pre-trained convolutional layer, while the filter weights only

in later layers are fine-tuned using the training images of

CIFAR-10 and Caltech-101. The ScatterNet front-end gives

similar performance to the pre-trained first convolutional

layer on classification error for both datasets as shown in

Table. 4. For this experiment, dropout, batch normalization

and data augmentation with crops and horizontal flips were

utilized [2]. The use of the NIN network is preferred as it

gives similar performance to the VGG network while being

4 times faster.

Table 4: Table shows the comparison on classification er-

ror (%) between the DTCWT ScatterNet (DTS) front-end

and the first convolutional layer pre-trained on ImageNet

for NIN [16] and VGG [25] architectures for Caltech-

101 and CIFAR-10 datasets.T-NIN: Transfer-NIN, T-VGG:

Transfer-VGG

Dataset State-of-the-art Architectures

T-NIN DTS-NIN T-VGG DTS-VGG

Caltech-101 12.3 12.26 8.78 9.23

CIFAR-10 8.25 8.34 8.31 9.02

3.5. Comparison with the state­of­the­art

This section compares the architectures that produced

the best classification performance with the state-of-the-art

on CIFAR-10 and Caltech-101. The DTS-WResNet (AS-

1145

7) and DTS-VGG (AS-6) resulted in the best classification

performance on CIFAR-10 and Caltech-101 with 3.6% and

8.08% classification error, respectively.

The DTS-WResNet (AS-7) architecture is compared

with the state-of-the-art CNN architectures on CIFAR-10.

DTS-WResNet outperformed these architectures as shown

in Table 5.

Table 5: Table shows the comparison on classification er-

ror (%) between the DTCWT ScatterNet ResNet (DTS-

WResNet) Architecture with the state of the art architec-

tures on the CIFAR-10 dataset. DW: DTS-WResNet, NIN:

Network in Network [16], VGG [25], DSN: Deeply Super-

vised Networks [7], MON: Max-Out Networks [8], E-CNN:

Exemplar CNN [6]

Dataset State-of-the-art Architectures

DW VGG E-CNN NIN DSN MON

Cifar-10 3.6 7.5 8.0 8.1 8.2 9.3

Next, the DTS-VGG (AS-6) architecture is compared

against the state-of-the-art CNN architectures for the

Caltech-101 dataset. On this dataset, the DTS-VGG out-

performed some of the architectures while produced a

marginally lower classification performance for others (Ta-

ble 6).

Table 6: Table shows the comparison on classification er-

ror (%) between the DTCWT ScatterNet VGG (DTS-VGG)

Architecture with the state of the art architectures on the

Caltech-101 dataset. DTS-VGG: DV, SPP: Spatial Pyramid

Pooling [3], VGG [25], E-CNN: Exemplar CNN [6], EP:

Epitomic Networks [20], ZF: Zieler and Fergus [32]

Dataset State-of-the-art Architectures

DV SPP VGG E-CNN EP ZF

Caltech-101 8.78 6.6 7.3 8.5 12.2 13.5

4. Conclusion

The proposed DTSCNN architectures, when trained

from scratch, outperforms the corresponding original CNN

architectures on small datasets by a useful margin. For

larger training datasets, the proposed networks give simi-

lar error compared to the original architectures. Faster rate

of convergence is observed in both cases for shallow as well

as deep architectures.

The DTCWT scattering front-end is mathematically de-

signed to deal with all edge orientations equally and with

2 or more scales, as required. The generic nature of the

DTCWT scattering front-end is shown by its similar classi-

fication performance to the front-end of learned networks,

on two different datasets. The generic features are likely

to give it wide applicability to both small and large image

datasets as it gives lower (small dataset) or similar classifi-

cation error (large dataset), with faster rates of convergence.

Future work includes extending the DTCWT Scattering

Network front-end for other learning frameworks, with a

view to improving learning rates further.

References

[1] https://github.com/bvlc/caffe/wiki/model-zoo.

[2] http://torch.ch/blog/2015/07/30/cifar.html. 2015.

[3] H. at al. Spatial pyramid pooling in deep convolutional

networks for visual recognition. ArXiv:1406.4729v2,

2014.

[4] J. Bruna and S. Mallat. Invariant scattering convolu-

tion networks. IEEE Transaction on Pattern Analysis

and Machine Intelligence, 35:1872 –1886, 2013.

[5] F. Cotter and N. Kingsbury. Visualizing and improving

scattering networks. Axiv, 2017.

[6] A. D. et al. Discriminative unsupervised feature

learning with exemplar convolutional neural networks.

ArXiv:1406.6909, 2014.

[7] C. L. et al. Deeply-supervised nets. ArXiv:1409.5185,

2014.

[8] I. G. et al. Maxout networks. ICML, 2013.

[9] L. Fei-Fei, R. Fergus, and P. Perona. Learning genera-

tive visual models from few training examples: an in-

cremental bayesian approach tested on 101 object cat-

egories. IEEE. CVPR Workshop on Generative-Model

Based Vision, 2004.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and

se- mantic segmentation. arXiv:1311.2524, 2013.

[11] S. Jain, S. Gupta, and A. Singh. A novel method to

improve model fitting for stock market prediction. In-

ternational Journal of Research in Business and Tech-

nology, 3(1), 2013.

[12] N. Kingsbury. Complex wavelets for shift invariant

analysis and filtering of signals. Applied and compu-

tational harmonic analysis, 10:234–253, 2001.

[13] A. Krizhevsky and G. Hinton. Learning multiple lay-

ers of features from tiny images. 2009.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. Im-

agenet classification with deep convolutional neural

networks. NIPS, 2012.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[16] M. Lin, Q. Chen, and S. Yan. Network in network.

arXiv:1312.4400, 2013.

1146

[17] R. Mao, H. Zhu, L. Zhang, and A. Chen. A new

method to assist small data set neural network learn-

ing. Proceeding of the sixth International Conference

on Intelligent Systems Design and Applications, pages

17–22, 2006.

[18] S. Nadella, A. Singh, and S. Omkar. Aerial scene un-

derstanding using deep wavelet scattering network and

conditional random field. European Conference on

Computer Vision (ECCV) workshops, 9913:205–214,

2016.

[19] E. Oyallon and S. Mallat. Deep roto-translation scat-

tering for object classification. IEEE Conference

on Computer Vision and Pattern Recognition, pages

2865–2873, 2015.

[20] G. Papandreou. Deep epitomic convolutional neural

networks. ArXiv:1406.6909, 2014.

[21] A. Pasini. Artificial neural networks for small dataset

analysis. Journal of Thoracic Disease, 7(11):2278–

2324, 2015.

[22] J. Plaza, A. Plaza, R. Perez, and P. Martinez. On the

use of small training sets for neural network-based

characterization of mixed pixels in remotely sensed

hyperspectral images. Pattern Recognition, 42:3032–

3045, 2009.

[23] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y.

Ng. Self-taught learning: Transfer learning from unla-

beled data. 24th International Conference on Machine

Learning, pages 759–766, 2007.

[24] A. Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. Cnn features off-the-shelf: an astounding base-

line for recognition. IEEE conference on Computer

Vision and Pattern Recognition, pages 512–519, 2014.

[25] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition.

International conference on learning representation,

2015.

[26] A. Singh and N. Kingsbury. Multi-resolution dual-

tree wavelet scattering network for signal classifica-

tion. 11th International Conference on Mathematics

in Signal Processing, 2016.

[27] A. Singh and N. Kingsbury. Dual-tree wavelet scat-

tering network with parametric log transformation for

object classification. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2622–2626, 2017.

[28] A. Toshev and C. Szegedy. Deeppose: Human

pose estimation via deep neural networks. CoRR,

abs/1312.4659, 2013.

[29] A. Vedaldi and K. Lenc. Matconvnet. University of

Oxford, 2015.

[30] S. Zagoruyko and N. Komodakis. Wide residual net-

works. ArXiv:1605.07146, 2016.

[31] M. Zeiler and R. Fergus. Visualizing and understand-

ing convolutional neural networks. arXiv:1311.2901,

2013.

[32] M. D. Zeiler and R. Fergus. Visualizing and under-

standing convolutional networks. ECCV, 2014.

[33] X. Zhang, Y. Fu, S. Jiang, L. Sigal, and G. Agam.

Learning from synthetic data using a stacked multi-

channel autoencoder. Axiv:1509.05463, 2015.

1147

