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Abstract

Automation of brain matter segmentation from MR im-

ages is a challenging task due to the irregular bound-

aries between the grey and white matter regions. In ad-

dition, the presence of intensity inhomogeneity in the MR

images further complicates the problem. In this paper, we

propose a texture and vesselness incorporated version of

the ScatterNet Hybrid Deep Learning Network (TS-SHDL)

that extracts hierarchical invariant mid-level features, used

by fisher vector encoding and a conditional random field

(CRF) to perform the desired segmentation. The perfor-

mance of the proposed network is evaluated by extensive

experimentation and comparison with the state-of-the-art

methods on several 2D MRI scans taken from the synthetic

McGill Brain Web as well as on the MRBrainS dataset of

real 3D MRI scans. The advantages of the TS-SHDL net-

work over supervised deep learning networks is also pre-

sented in addition to its superior performance over the

state-of-the-art.

1. Introduction

Brain matter segmentation is an important task that is es-

sential for the study of various ailments like Alzheimer and

Parkinson disease [18] etc. It is typically done by skilled

professionals who manually label white and grey matter in

the Magnetic Resonance (MR) images of the brain. The

images also often contain noise incurred through acquisi-

tion defects and errors [37] that further adds to the com-

plexity of the problem. Manual labeling leads to errors and

inconsistencies thus requiring the need for automatic label-

ing. This task has been performed in three different ways

over the years.

The first class of methods utilized hand-engineered

features extracted using filters designed to capture edge

and texture representations [13, 1, 9, 30]. For example,

SIFT [19] features were used in the application of recon-

structing tractograms of whole brain [34]. These hand-

engineered features are easy to design but are constrained

by marginally good performance.

The second class of methods used deep networks for

brain matter segmentation as demonstrated in multiple

works [4, 11]. Deep networks have achieved the state-

of-the-art performance by learning discriminative class-

specific features. However, deep networks suffer from over-

whelming complexity of trainable parameters and design of

optimal configurations. Thus, training with limited sized

datasets, common in medical imaging, still remains a diffi-

cult task.

The third class of methods used hand-crafted features

to first extract low-level edge features which are further

used by supervised or unsupervised learning methods to

learn higher levels of representations, thus resulting in a

hybrid network. For example, Zhang et al. [40] extracted

anisotropic features which were used by a CNN to learn

higher-level representations. Given the reduced parameter

set to be learned while training, these networks generally

perform better than normal deep neural networks on small

datasets with less training instance, a trait always seen in

brain segmentation datasets.

Singh et. al. [33] recently proposed a ScatterNet Hybrid
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Figure 1. The Illustration shows the proposed TS-SHDL network that captures Intensity (region boundaries and texture) and structural

(ridge like structures) properties of the brain matter with handcrafted (ScatterNet, Vesselness, and Texture) features which are concatenated

and used by four stacked layer of the PCANet to learn 40, 30, 20 and 10 filters at the first, second, third and fourth layers respectively, of

size 5 × 5. The filters capture a hierarchy of translation, rotation, and scale-invariant mid-level features. The invariant mid-level features

are encoded into a dense and compact representation Fisher vector encoding of 500 dimensions using 5 Gaussian mixtures. The encoded

features are used by the CRF to produce the desired segmentation.

Deep Learning (SHDL) network that first extracts Scatter-

Net handcrafted low-level descriptors which are used by

two layers of PCA-Net based unsupervised learning mod-

ule to learn hierarchical object specific mid-level features.

The mid-level features are finally used by a supervised mod-

ule composed of orthogonal least squares and support vec-

tor machine (SVM) to perform classification. Each layer of

the SHDL network is designed and optimized automatically

using cross-validation that produces a computationally effi-

cient architecture.

This paper proposes an improved texture and vesselness

incorporated ScatterNet Hybrid Deep Learning (TS-SHDL)

network for brain matter segmentation in the MR images.

The improved network incorporates the vesselness and tex-

ture hand-crafted features in addition to the two-layer Scat-

terNet descriptors to capture the intensity and structural

properties of brain matter as shown in Fig. 1. The ex-

tracted hand-crafted features are used by four stacked layers

of unsupervised learning based PCA-Net to learn transla-

tion, rotation and scale invariant mid-level features. The

mid-level features are used by the supervised Fisher encod-

ing (FK) to gradually reduce the dimensions of the feature

vector. The reduced feature vector is finally used by a con-

ditional random field (CRF) to perform the desired brain

matter segmentation. The contributions and reasoning for

the choosing the above-mentioned handcrafted features, un-

supervised, and supervised learning, module are discussed

below.

The main contributions of the paper are stated below:

• Hand-crafted Module: Texture and Veselness feature

are used jointly with ScatterNet hand-crafted descrip-

tors as they capture the intensity and structural prop-

erties of the brain matter. The intensity properties are

represented in the brain matter by region boundaries

and texture while the ridge-like structures correspond

to the structural properties of the matter as shown in

Fig. 1. Parametric DTCWT ScatterNet [32] and Tex-

ture [28] filters are used to represent the intensity prop-

erties of the brain while the structural properties were

extracted using a vesselness [16] filter. The intensity

and structural properties can appear at any position,

orientation and scale in the MR images. Hence, invari-

ance to translation, rotation, and scale is introduced in

each sub-feature.

• Unsupervised Learning Module: This module uses

four stacked PCA-Net [10] layers on the concate-

nated hand-crafted features to learn translation, rota-
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tion, and scale invariant robust hierarchical mid-level

features. The network is fast and easy to train as op-

posed to other unsupervised learning modules such au-

toencoders or RBMs as the minimization of the loss

function (Eq. 6) can be obtained in its simplistic form

as the eigen decomposition. This makes PCA-Net a

good method for learning mid-level features.

• Supervised Learning Module: The features obtained

from the PCA-Net module are reduced to a more com-

pact and dense representation using Fisher Encoding

(FV) [27]. The reduced dimensions results in faster

learning of the Conditional Random Field (CRF), used

to perform the desired segmentation.

• Advantages over Supervised Deep Networks: The pro-

posed network makes use of unsupervised learning to

learn a hierarchy of mid-level features that are utilized

to perform the desired brain matter segmentation. Sim-

ilar hierarchical features can be also learned using su-

pervised deep networks. However, supervised deep

networks requires large amounts of annotated training

data to learn these features which may not available for

many applications [29, 12, 25], especially for medical

image applications. The proposed TS-SHDL network

can be a potential alternative to deep networks for ap-

plications with small training datasets.

The proposed framework is used to perform brain mat-

ter segmentation on 2D synthetic and 3D real brain MRI

datasets. The average segmentation accuracy for each class

for both datasets is presented. In addition, an extensive

comparison of the proposed pipeline with other deep brain

matter segmentation methods is demonstrated.

The paper is divided into the following sections. Section

2 briefly presents the proposed TS-SHDL network. Section

3 presents the experimental results while Section 4 draws

conclusions.

2. TS-SHDL Network

This section details the texture and structure feature in-

corporated ScatterNet Hybrid Deep Learning Network (TS-

SHDL) used for brain matter segmentation. The first sub-

section explains the mathematical formulation of the Scat-

terNet, texture and structure, sub-features, combined to

form the hand-crafted features module. The second sub-

section details the mathematical formulation of the four lay-

ers unsupervised learning based PCA-Net framework that

utilizes the hand-crafted features to extract translation, ro-

tation, and scale invariant features. The final sub-section

details the supervised Fisher vector encoding that produces

a compact and dense feature vector finally used by the Con-

ditional Random Field to produce the desired brain matter

segmentation. The TS-SHDL network is presented in Fig.

1.

2.1. Hand­crafted Features

This section details the hand-crafted features extracted

from the MR images that capture the intensity and structure

features as shown in Fig. 1.

2.1.1 DTCWT ScatterNet

The parametric log based DTCWT ScatterNet [32] is an im-

proved version (both on classification error and computa-

tional efficiency) of the multi-layer Scattering Network [5,

24, 31, 23] that extracts relatively symmetric translation in-

variant representations from a multi-resolution image us-

ing the dual-tree complex wavelet transform (DTCWT) [14]

and parametric log transformation layer. Below we present

the formulation of the parametric DTCWT ScatterNet for a

single input image which may then be applied to each of the

multi-resolution images.

The first layer is involved in filtering the input signal x

using dual-tree complex wavelets ψj,r at different scales

(j). Six pre-defined orientations are fixed for this opera-

tion - 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦. Point-wise L2

non-linearity is applied to the filtered signal, to build more

translation invariant representation as described below:

U [λm=1] = |x ⋆ ψλ1
| =

√

|x ⋆ ψa
λ1
|2 + |x ⋆ ψb

λ1
|2 (1)

After this a parametric log transformation layer is applied

to all the oriented representations (U [j]). This extracts rep-

resentations at a particular scale j with a parameter kj , and

reduces the effect of outliers by introducing relative symme-

try. A local average is then computed on the transformation:

|U1[λm=1]| that aggregates the coefficients to build the de-

sired translation-invariant representation:

S[λm=1] = |U1[λm=1]| ⋆ φ2J ,

U1[j] = log(U [j] + kj), U [j] = |x ⋆ ψj |,
(2)

The above transformation leads to loss of high frequency

components due to smoothing. These are thus retrieved by

cascades wavelet filtering performed in the second layer.

However, these retrieved components are not translation

invariant, which is restored by first applying the L2 non-

linearity of eq(2) to obtain the regular envelope:

U2[λm=1, λm=2] = |U1[λm=1] ⋆ ψλm=2
| (3)

A local-smoothing operator is then applied to the regular

envelope (U2[λm=1, λm=2]) to extract the desired second

layer (m = 2) translation invariant coefficients:

S[λm=1, λm=2] = U2[λm=1, λm=2] ⋆ φ2J (4)
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Figure 2. Demonstrates the pipeline of vesselness features at 3 scales. For each feature map extracted at each scale, a 20 × 20 patch is

selected. Here only 3 scales are shown as opposed to 10 used in our experiments owing to space restrictions. Finally, Max operation is

performed across scales to achieve scale invariance.

Finally, the scattering coefficients obtained at each layer

are:

S =
(

x ⋆ φ2J , U1[λm=1] ⋆ φ2J , U2[λm=1, λm=2] ⋆ φ2J
)

(5)

2.1.2 Vesselness

Traits of ridge-like and tubular structures depicting struc-

tural properties can enhance segmentation tasks. The brain

matter contains these structures that can be exploited for

superior segmentation. In the recent past, these structures

have been extracted using eigen-decomposition of the Hes-

sian calculated at each pixel [3, 16]. These filters ξj , for

10 different scales (j), were used to identify narrow ves-

sels in low contrast. The Vesselness filter uses the Hessian

matrix and decomposes its eigenvalues into pre-defined (3)

orthonormal directions. Scale invariance is obtained using a

filter patch of size 10× 10 at different scales j, followed by

a max operator across the scales to obtain the final estimate

of vesselness. This process is presented in Figure 2.

2.1.3 Texture

Brain Matter typically demonstrates different texture prop-

erties for grey and white matter. Grey matter generally

present a rougher texture as compared to white matter. In

this paper, we use MR8 filter [28] to achieve rotations and

scale invariance while extracting texture information. The

filter consists of a Gaussian and a Laplacian of Gaussian fil-

ter, an edge filter Ω1

j,r at 3 scales (j) and a bar filter Ω2

j,r

at the same 3 scales (j). The later two filters are oriented

at 6 directions (r). We take the maximum response across

orientations to achieve rotational invariance. This reduces

the number of filter responses from 38 (6 orientations at 3

scales for 2 oriented filters, plus 2 isotropic) to 8 (3 scales

for 2 filters, plus 2 isotropic). Following this, max opera-

tion is performed on these features across scales to get scale

invariance (similar to invariance in the previous section).

2.2. Unsupervised Learning: PCANet

The features extracted using ScatterNet, vesselness, and

texture, as described in the previous section, are concate-

nated and fed to the stacked four-layer PCANet [10]. The

PCANet at each layer learns a translation, rotation, and

scale invariant mid-level representation using unsupervised

learning from the features of the previous layer. The in-

variant mid-level features are learned by cropping patches

of size 5 × 5 from all the feature as x1, x2, ..., xmn. Af-

ter this, patch mean is subtracted from each patch to obtain

X̄ = [x̄1, x̄2, ..., x̄mn], where x̄j is a mean-removed patch.

The objective of the layer PCANet is to minimize the

reconstruction error within a family of orthonormal filters.

This can be seen in the following equation,

min
V ∈Rz1z2×K

‖X − V V T X‖2F , s.t. V
TV = IK , (6)

where,

X = [X̄1, X̄2, ..., X̄N ] ∈ Rz1z2×N . (7)

N is the number of training images, IK is identity matrix

of size K ×K. Here K is the number of filters comprising

of the leading K principal eigenvectors capture the main

variance amongst the patches for each layer.

2.3. Supervised Fisher Encoding

The Fisher Kernel [27], is used to transform the PCA fea-

tures obtained from the unsupervised learning module into a

compact and dense Fisher vector encoding using supervised

learning. The output from the PCA layer is unrolled to get

a vector X = {x1, x2, ...xT }. Assuming a probability den-

sity function uλ which models the generation process of X .

The kernel is the described as:

K(X,Y ) = GX′

λ F−1

λ GY
λ (8)

here Fλ is the Fisher information matrix, K is the Fisher

Kernel on the gradients of log-likelihood. The dimension-

ality of the Fisher Vector depends on the number of pa-
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Figure 3. Qualitative Comparison with previous state of the art methods. Column 1: Original images. Column 2: Ground Truth. Column

3: Leemput et al.’s method [36]. Column 4: Wang et al.’s method [38]. Column 5: Madiraju et. al.’s method [20] and Column 6: Proposed

TS-SHDL. The regions with the difference are highlighted with red boxes.

rameters λ. Further, Fλ being symmetric and positive defi-

nite, can be decomposed as Fλ = L
′

λLλ, which inturn en-

ables the Fisher Kernel to be re-written as the dot product of

Hλ = LλG
X
λ . Here Hλ is the Fisher Vector corresponding

to input X .

2.4. Supervised CRF Segmentation

The Fisher vector (FV) features are used by the Con-

ditional Random Field (CRF) to achieve the desired brain

matter segmentation. CRF is typically a probabilistic

framework that establishes a relationship between the pixel

labels and extracted features [8]. It is an undirected graphi-

cal model that uses 4 pairwise connected grids having finite

vertices or nodes and corresponding edges connecting the

vertices. Here, each node represents a random variable X

and the edges define the neighbourhood relation between

these unobserved random variables. To perform the im-

age segmentation, a clique loss function is used with Tree-

Reweighted [8] inference which uses LBFGS optimization

algorithm. During training, after each iteration, the loss

value is checked and if bad search direction is encountered,

L-BFGS is reinitialized [8].

3. Experimental Results

This section provides details of the experiments per-

formed on a 2D synthetic datasets (the McGill Brain Web

[15]) and a 3D real dataset (MRBrainS website [22]). The

qualitative and quantitative comparison is presented with

the state of the art brain segmentation methods on both

datasets. The images used in the experimentation have a

brain images of intensity non-uniformity(INU) = 100% and

noise level of 3%.

3.1. Synthetic Image Dataset

A total of 300 brain MRI images are chosen from the

McGill Brain Web 1 [15]. The dataset, split into 140 | 60 |
100 images for train | validation | test sets, contains

realistic MRI images of the human brain produced by an

MRI simulator based on two anatomical models: normal

and multiple sclerosis (MS). We provide both qualitative

(Fig. 1) and quantitative (Table. 1) comparison to evalu-

ate the performance of our proposed method with the state

of the art.

3.2. Real Image Dataset

Multisequence 3T MRI scans of twenty people available

on the MRBrainS website 2 [22] is used as the real image

dataset. In the dataset, the subjects were selected to have

varying degrees of atrophy and white matter lesions. All

the scans have manual segmentations into Grey (GM) and

White Matter (WM). 5 subject’s scans are used as the train

1http://mcgill.ca/bic
2http://mrbrains13.isi.uu.nl/
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Table 1. The table shows comparison of average Jaccard (J ) values of grey matter and white matter of our algorithm with current state of

the art algorithms on the 2D synthetic MRI brain dataset [15]. Grey: Best Results and Bold: TS-SHDL Results.

Method
FSL SPM MAP with Decision Forest HDF TS-SHDL

[41] [2] histograms [39] Classifier [41] [20]

J of Grey Matter 0.7562 0.7902 0.814 0.838 0.89 0.907

J of White Matter NA NA 0.710 0.731 0.91 0.921

set and the remaining used as test set. We provide extensive

quantitative results on this dataset as presented in Table. 2.

3.3. TS­SHDL Parameters

This section presents the parameters for the (i) hand-

crafted, (ii) unsupervised ,and (iii) supervised block used

for the experiments.

• Hand-crafted Module: The ScatterNet used 2 DTCWT

scales, 10 scales were used for the vesselness filter

while 3 scales and 6 orientations were used for the tex-

ture filter.

• Unsupervised Learning Module: The number of filter

learned in the first, second, third and fourth, PCA-Net

layer are 40, 30, 20 and 10, respectively.

• Supervised Learning Module: The number of GMM

cluster for the Fisher encoding are chosen as 5 and the

dimension of the final feature vector to be encoded is

chosen to be 500.

3.4. Qualitative Analysis

Figure 3 provides the qualitative comparison of our pro-

posed method with other state of the art methods. We per-

form these analyses on the synthetic image dataset. Being

2-dimensional images, it aids visualization and qualitative

inspection. Upon close observation, it can be inferred that

our method provides superior segmentation and better cor-

relation with ground truth. In the axial image section (first

row), it can be seen that our method correctly segments the

central grey lobes which was missing in Madiraju et. al.’s

method [20]. Also in the coronal (second row) image, the

grey matter segmentation is best represented in our method

as compared to the other methods. This shows a qualitative

improvement over both grey and white matter segmentation.

3.5. Quantitative Analysis

To provide emphasis over the effectiveness of our

method, we also provide quantitative evidence using the

Jaccard similarity [37] metric on the 2D synthetic brain

MRI dataset and more robust Dice coefficient [7] (DC),

95th percentile of Hausdorff distance [7] (HD), and Abso-

lute Volume Difference [7] (AVD) metrics on the 3D real

brain MRI [22] dataset for both grey and white matter.

3.5.1 2D MRI Synthetic Dataset

Jaccard similarity is used to evaluate the performance of

the proposed TS-SHDL network on the 2D MRI Synthetic

Dataset [15]. Jaccard similarity measures the similarity of

the segmented regions with the ground truth:

J (G,S) =
|G ∩ S|

|G ∪ S|
(9)

value of J lies between 0 and 1. Higher the value of J
accurate the segmentation.

Table. 1 presents an extensive comparison with other

brain matter segmentation algorithms applied on the syn-

thetic dataset. Here our method outperforms the state of

the art methods in both grey and white matter segmenta-

tion. The model also surpasses the recent state of the art

method of Madiraju et. al. [20] thus showing its superior

performance.

The proposed TS-SHDL network is also compared

with the supervised deep Fully Convolutional Network

(FCN) [17] with 8-pixel stride for Brain matter segmenta-

tion. The training data fine-tunes the FCN trained on Ima-

geNet and then test on the brain MR image test to achieved a

Jaccard index of 0.87 and 0.88 for the grey and white matter

respectively. The FCN underperformed because the training

data is not sufficient to fine-tune the FCN learned on the Im-

ageNet.

3.5.2 3D MRI Real Dataset

The performance of the proposed TS-SHDL is evaluated on

the 3D MRI Real Dataset [22] using three robust evaluations

metrics: (i) Dice coefficient [7], (ii) Hausdorff distance [7],

and (iii) Absolute Volume Difference [7].

Dice coefficient [7] measures the spatial overlap between

the ground truth and the predicted segmentation. It is de-

fined as,

D(G,S) =
2|G ∩ S|

|G|+ |S|
.100% (10)

Here, G is the ground truth while S is the segmentation. A

higher value of the Dice coefficient signifies higher segmen-

tation accuracy.

Hausdorff distance [7] measures the distance between

segmentation results and ground truth. In-order to be in-
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Table 2. The table shows comparison of different methods (DC: %, HD: mm, AVD: %) of grey matter and white matter of our algorithm

with current state of the art algorithms on the 3D real MRI brain dataset [22]. Grey: Best Results and Bold: TS-SHDL Results.

Method
3D U-net PyraMID VoxResNet Mahbod et. al. Pereira et. al. TS-SHDL

[7] [35] [6] [21] [26]

Grey Matter

DC 85.44 84.82 86.15 84.77 84.50 86.01

HD 1.58 1.70 1.45 1.71 1.70 1.40

AVD 6.60 6.77 6.60 6.02 7.10 6.46

White Matter

DC 88.86 88.33 89.46 88.45 88.04 89.49

HD 1.95 2.08 1.90 2.34 2.12 1.88

AVD 6.47 7.05 6.05 7.67 7.74 5.99

sensitive to outliers, we use the Kth ranked distance,

h95(S,G) =
95 Kth

s∈S min
g∈G

||g − s|| (11)

HD(G,S) = max{h95(S,G), h95(G,S)} (12)

Unlike Dice coefficient, a smaller HD denotes higher ac-

curacy.

Finally, we calculate Absolute Volume Difference [7]

which is defined as,

AVD(G,S) =
|Vs − Vg|

Vg
.100% (13)

where, Vs, Vg are the volume of segmentation results and

ground truth. Similar toHD, lesser value ofAVD signifies

better accuracy. All the three metrics are applied for both

grey and white matter in the real image dataset.

We have compared our method with both state of the

art deeplearning based models that include 3D U-net [7],

PyraMID-LSTM [35], VoxResNet [6] and hand-crafted fea-

ture based models such as [21, 26] etc. 3D U-net ex-

tracts volumetric feature representation from the 3D im-

ages, PyraMID paralellises multi-dimensional RNNs in

a pyramid fashion and VoxResNet provides a voxelwise

residual network for performing the segmentation. On the

other hand, methods based on hand-crafted features use dif-

ferent techniques that involve histogram based features [21]

and gradients [26] etc. As seen in Table 2, our model is able

to outperform all these methods in the real image dataset.

4. Conclusion

The paper presents the ScatterNet Hybrid Deep Learning
Network (SHDL) with Texture and Structure Features that
capture the intensity and structural properties of the brain
matter. Four layers of the PCANet are used to learn hier-
archical invariant mid-level features from the concatenated
hand-crafted features. Fisher Encoding is used on the mid-
level feature to obtain a compact and dense representation
that is finally used by the CRF is used to achieve the desired
brain matter segmentation. The proposed network outper-
formed the state-of-the-art on both qualitative and quantita-
tive measures. In addition, the proposed network can be the

potential model choice for applications with small datasets
as deep supervised learning network may not be trainable
because of insufficient the training dataset.
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