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Abstract

Subspace learning and reconstruction have been wide-
ly explored in recent transfer learning work and generally
a specially designed projection and reconstruction trans-
Sfer matrix are wanted. However, existing subspace recon-
struction based algorithms neglect the class prior such that
the learned transfer function is biased, especially when da-
ta scarcity of some class is encountered. Different from
those previous methods, in this paper, we propose a nov-
el reconstruction-based transfer learning method called
Class-specific Reconstruction Transfer Learning (CRTL),
which optimizes a well-designed transfer loss function with-
out class bias. Using a class-specific reconstruction ma-
trix to align the source domain with the target domain
which provides help for classification with class prior mod-
eling. Furthermore, to keep the intrinsic relationship be-
tween data and labels after feature augmentation, a project-
ed Hilbert-Schmidt Independence Criterion (pHSIC), that
measures the dependency between two sets, is first proposed
by mapping the data from original space to RKHS in trans-
fer learning. In addition, combining low-rank and sparse
constraints on the class-specific reconstruction coefficient
matrix, the global and local data structures can be effective-
ly preserved. Extensive experiments demonstrate that the
proposed method outperforms conventional representation-
based domain adaptation methods.

1. Introduction

Image classification methods aim to build a classifica-
tion model from training samples and then apply it to clas-
sify test samples. Generally, with the fundamental assump-
tion of machine learning, the fixed model can work well if
the test samples are with similar distribution of the training
samples [23]. Yet, in real world, it is impossible to guaran-
tee that those samples of similar semantics have the same
data distribution. Various sampling associated factors can
lead to different distributions such as resolutions, illumina-
tions, background, etc. Therefore, conventional methods
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Figure 1: Different distributions from different domain
subjects

fail in handling such issues that the basic assumption of sim-
ilar distribution the data should hold in machine learning is
violated. Fig.1 shows some images whose distributions are
different. In this case, if the images in the first set are used
to train a classifier model, the model cannot work well when
classifying other images.

To solve the problem, one straightforward method is to
collect a large amount of labeled source data that have the
same distribution with test data and use them to retrain the
model, that is data-driven. However, collecting and la-
beling sufficient data is tedious and difficult, which con-
sumes a lot of labor costs. The other effective method is
transfer learning by leveraging a number of data from tar-
get domain, that is model-driven. Transfer learning tend-
s to transfer the knowledge from source domain to target
domain by exploiting their structural and similar high-level
semantic relationship. In that case, one can use distribu-
tion different yet relevant data to enhance the classification
performance. While combining deep learning and transfer
learning is another quite effective method, but it is not the
focus of this paper. Generally, when facing with classifi-
cation tasks in a given source domain, transfer learning is
often proposed to leverage the prior knowledge in other d-
ifferent but related domain data, which is also referred as
domain adaptation [13, 24,26, 29, 30, 35]. The domain
data generally share the same task yet different distribution-
s [34]. In order to address the problem of different distri-
butions, previous work on domain adaptation and transfer
learning have made great contributions. The methods can
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Figure 2: Illustration of our proposed Class-specific Reconstruction Transfer Learning (CRTL)

be divided as two categories: (1) methods of changing the
data representation; (2) methods of modifying the trained
classifier [31].

In this paper, we focus on the former, i.e. a class-specific
reconstruction transfer learning model is proposed. The
proposed method aims at constructing a class-specific and
statistical dependence preserved model across domains in
reproducing kernel Hilbert space (RKHS), such that the pro-
jected feature distribution can be aligned between domain-
s. The idea of the proposed CRTL method is described in
Fig.2, where the correspondence matrix Z is class-specific.

Maximum Mean Discrepancy (MMD) [11], acts as a dis-
crepancy metric across domains, has been used in many un-
supervised domain adaptation methods. The information
of categories is neglected. Inspired by classifier adapta-
tion, to enhance the correlation between the projected fea-
ture and labels, a statistical method that can describe such
intrinsic relationship regardless of the modeling is wanted.
Hilbert-Schmidt Independence Criterion (HSIC) [12] pro-
posed based on Hilbert-Schmidt norm in RKHS was used
to measure the dependency between two sets. Therefore, in
this paper, the HSIC, instead of MMD is modeled for do-
main adaptation, by projecting the data from original space
RP to RKHS H, that is defined as ¢ : RP — H.

Due to the domain difference between the source and
target domain, a latent projection [8] was wanted for pro-
jecting the source and target data into a common subspace.
However, learning a common subspace without data cor-
respondence across domains constrained the domain trans-

fer performance. To this end, we propose a joint learning
method for pursuit of latent subspace P and also a recon-
struction (correspondence) matrix Z [8], simultaneously.

In order to obtain a better subspace, many method-
s [27,31] attempt to make P discriminative by construct-
ing some regularizer and discriminative constraints, rather
than considering the class-specific characteristic of the re-
construction matrix Z [33]. These methods generally ig-
nore class prior distributions [14,27,31,37] that is benefi-
cial to construct a well-designed reconstruction transfer loss
function without class bias. Different from those methods,
we have an idea to make Z class-specific, such that the low-
rank and sparsity constraints can be relaxed. For example,
the sparsity constraint on Z expects that the source data
of class ¢ can reconstruct the target data of the same class
(e.g. collaborative representation). For reducing the bur-
den of the regularizer during learning, a class-specific re-
construction transfer loss function is constructed, such that
the learnt transfer matrix is more structural and analytic.
Essentially, when labeled data is arrayed by categories, the
correspondence matrix Z shows a intrinsic block-diagonal
structure [6,20].

Low-rank representation (LRR) [19] was suggested to
get the block diagonal solution for subspace segmentation.
Different from LRR, sparse subspace clustering (SSC) [5]
was suggested for data points that lie in a union of low-
dimensional subspaces, which not only handles the data
points near the intersections of subspaces, but also avoids
the trivial solution. Due to the benefits of both regulariza-
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tion constraints, LRR and SSC based constraints have been
exploited in the model for capturing the global and local
structures during domain correspondence.

In summary, the main contribution and novelty of this
work are threefold:

e To keep the intrinsic relationship between domain da-
ta and labels, Hilbert-Schmidt Independence Criterion
(HSIC) instead of the unsupervised MMD criterion is
modeled to measure the dependence in reproducing k-
ernel Hilbert space (RKHS). Also, a projected HSIC
(pHSIC) is proposed for feature augmentation.

e In order to model the class prior distributions rather
than domain distribution, a class-specific reconstruc-
tion transfer loss function and a pHSIC-based common
subspace learning are proposed, which can be joint-
ly learned for class associated and structural subspace
transfer. In this case, the pressure of regularizer for
structural Z is significantly relaxed.

e Using both LRR and SSC regularization constraints,
the global and local structures are effectively preserved
with better block diagonal characteristic and robust-
ness to outliers.

The rest of paper is organized as follows. In Section 2 we
review the related work in domain adaptation. In Section 3
we present the proposed CRTL method and optimization.
In Section 4 the experimental results by using benchmark
datasets are presented. In Section 5 we discuss the proposed
model, and finally Section 6 concludes this paper.

2. Preliminaries and Related Work

In recent years, a number of transfer learning methods
have been proposed and it can be summarized as two cate-
gories: methods of classifier adaptation and methods of fea-
ture adaptation. For the former, one representative method
called ASVM proposed by Yang et al. [16] tends to learn
the perturbation term for adapting the source classifier to
the target classifier. Xue et al. [32] proposed a method ex-
ploiting the common knowledge to share model parameters
across domains based on dirichlet process prior. Zhang et al.
[21] proposed a domain adaptation ELM method for clas-
sifier adaptation, and also a robust extreme domain adap-
tation method [36] by using Laplacian graph regularization
for local structure preservation and shared domain classifier.
Duan et al. [4] proposed an adaptive multiple kernel learn-
ing (AMKL) to recognize consumer from annotated web
videos. Since it is impossible to eliminate the domain dis-
parity between the source and target domain by using classi-
fier adaptation, for the latter, the feature adaptation methods
were proposed for domain disparity elimination. Subspace
projection and coding is a appropriate way to achieve the

goal, and the classifier trained by the projected source da-
ta is also adaptive to the projected target data. Shekhar et
al. [28] proposed a shared domain dictionary learning (SD-
DL) method, which assumes that one joint dictionary can be
learned for both domains, and representation based classifi-
er was considered. Xu et al. [31] proposed a discriminative
transfer subspace learning via low-rank and sparse repre-
sentation by jointly learning the reconstruction and classifi-
er. This paper is closely related with our work. However,
the method is modeled on the whole source data distribution
and the class prior distributions are not considered. Also,
the subspace P is regularized by using a least square based
classifier and the statistical dependence across domains that
HSIC shows is not considered. Zhang et al. [37] proposed
a latent sparse domain transfer (LSDT) method for visual
adaptation by using both the source and target data for laten-
t subspace and domain correspondence. This paper is also
closely related with our work, but still does not include the
merits of the proposed CRTL method. Shao et al. [27]pro-
posed a LTSL method for reconstruction transfer based on
low-rank constraint, in which the subspace and reconstruc-
tion matrix are learnt separately, and the near-optimal trans-
fer is achieved. Gong et al. [9] proposed a GFK method by
using geodesic flow kernel to modeling domain shift. But it
is quite different from our method that it is an unsupervised
domain adaptation method.

2.1. HSIC Criterion

Hilbert-Schmidt Independence Criterion [12] is an in-
dependence criterion based on the eigenspectrum of cross-
covariance operators in reproducing kernel Hilbert space.
HSIC is used to measure the dependency between two sets
X and Y. Let k; and k, denote the kernel function with
respect to the RKHS F and G. According to [12], HSIC
independence Criterion is shown in Equation (1).

HSIC(X,Y,F,g)
=[| Cxy lrs= (N — 1)’ Tr(KxHKyH) (1)
stH=T-N '"1y,,1%,,

where NN denotes the size of set X and Y, || Cxy ||%g
is Hilbert-Schmidt norm of the cross-covariance operator.
K x and Ky are two kernel Gram matrix w.r.t 7 and G in
RKHS, respectively. H is the centering matrix. With char-
acteristic kernels k,, and k,, it can be proved that the value
of HSIC is zero if and only if X" and Y are independent [12].

HSIC consists of an empirical estimation of the Hilbert-
Schmidt norm of the cross-covariance operator and it has
remarkable simplicity advantage compared with previous
kernel-based independence criteria. Also, HSIC do not suf-
fer from slow learning rate. In this paper, a projected HSIC
criterion is proposed for improving the dependency between
enhanced features and labels during transfer.
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2.2. Sparse plus Low-rank based Transfer

The traditional methods have difficulty in capturing the
intrinsic structures of data owning to the different distribu-
tions such as the local and global structure [31]. As men-
tioned before, low-rank representation is advantageous in
getting the block diagonal solution for subspace segmenta-
tion, so that the global structure can be preserved. Differ-
ent from LRR, sparse constraint can make relevant samples
from different domains more interlace than irrelevant sam-
ples, and the local structure of data is thus preserved. When
the training data is used for building the model, the noisy
data included in the training data are treated equally which
is harmful to transfer model. With the sparse coding, the
outliers from the source data can be selectively treated in
reconstructing the target data and avoid the trivial solution.

2.3. Deep Transfer Learning

Deep learning, as a data-driven transfer learning method,
has witnessed a great achievements in many fields. Howev-
er, when solving domain data problems by using deep learn-
ing technology, massive labeled training data are required.
The data amount is increased with the increase of convolu-
tional neural network (CNN) parameters [2]. For the tasks
of small data, deep learning may not work well. Construct-
ing joint data-driven and model-driven deep transfer learn-
ing is an effective way to face with domain data challenge.
The number of required data is not as much as deep learning
by exploiting transfer learning method [22]. On one hand,
a network with fewer parameters and smaller structure can
be re-trained. On the other hand, a large number of data
always cause overfitting, while transfer learning allows the
model to see different domain data.

Following experiments in 4DA dataset with fine-tuned
CNN features prove that the proposed CRTL method is also
useful for deep feature adaptation.

3. Class-specific Reconstruction Transfer
3.1. Notations

In this paper, the source and target domain are defined
by subscript S and 7". The training set of source and target
domain is defined as X'g € R™*"S and X1 € R™*"T
, where m denotes dimension of data, ng and ny denote
the number of samples in source and target domain, respec-
tively. Let P € R™*4(m > d) be the discriminative basis
transformation that maps the original data space dimension
m of source and target domain into subspace dimension d
respectively. Z € R™S*"T represents reconstruction co-
efficient matrix, and I denotes the identity matrix. || o ||,
and || e || ¢ denote [, -norm and Frobenius norm respective-
ly, || ® ||« denotes nuclear norm. The superscript T denotes
the transpose operator, and Tr(e) denotes the trace operator
of matrix.

In RKHS, the transformation P is used instead of P
in raw space. The kernel Gram matrix /C is defined
as [K], . =< o(x),0(xj) >u= oxi)To(xj) =
k(x;,x;), where k is a kernel function.

3.2. Projected HSIC

What we expect is that after projection, the intrinsic con-
tact between the augmented features and labels can be well
preserved for better dependency. Thus, the observation-
s Zg = {(z1,l1)...(zn,1l,)} can be used to construct
Hilbert-Schmidt Independency Criterion after feature aug-
mentation. Specifically, we call the HSIC with feature aug-
mentation as projected HSIC (pHSIC), which is constructed
with the same principle but different from HSIC, a projec-
tion P is integrated for knowledge transfer. As described
in [12], the proposed pHSIC can be formulated as

pHSIC(Zy. F,G) = (N — 1) *Tr(KHLH)
= (N = 1) Tr(k(P"¢[Xs,X1], P ¢[Xs, X7|)HLH)
stH=1-N"11y,,1%,,

2

where IC, L € RN, K;; = k(af,2), Lij =
Uyi,y;), Hij = 8;; — N7'. k(e) and [(e) denote ker-
nel functions. KK = k(X’.X'), X' = [X, X’] denote
the projected data, £ = [(Y,Y). Y denotes the data la-
bels. H is a centering matrix. ¢ is a nonlinear function for
feature augmentation, which maps the data from original s-
pace R? to RKHS H as ¢ : RP — H. By using kernel
trick, the nonlinear function ¢ does not need to be explicit,
which will be presented in section 3.4. Thus, by maximiz-
ing pHSIC, the dependency between features and labels
can be well improved for domain classification.

3.3. Transfer Loss Function

As described in Fig.2, a better reconstruction matrix
Z under the discriminative subspace P is expected. By
leveraging class prior, we wish to learn a structural and
class-specific reconstruction matrix Z, instead of learning
a shared reconstruction matrix Z based on the whole data
distribution of all classes. Specifically, we wish that the da-
ta of class ¢ in target domain can only be represented by the
data of the same class in source domain using Z7, so that
a more structured reconstruction matrix Z can be obtained.
Thus, the transfer loss between source domain and target
domain with respect to each class can be constructed.

For all the labeled X7 and X' g, we prospect that af-
ter projection P and nonlinear ¢ mapping, the source and
target data of the same classes can be closely linked be-
tween X7 and X'y, while the the data of different classes
have no connections at all. Therefore, the data of class ¢
in target domain is expressed by the data of the same class

952



in source domain via minimizing the reconstruction error
81 || PTo(x5) — PTo(XS)ZS [%. where X5 repre-
sents the target data of class ¢, X' represents the source
data of class ¢, and Z¢ represents the class-specific repre-
sentation coefficient with respect to class c. Furthermore,
for avoiding the impact during transfer from the data of oth-
er classes, we also consider to minimize the representation
between classes. That is, we wish the target data of class
c cannot be expressed by the source data of class k (ex-
cluding class c). Therefore, this item can be constructed

as Y. Ba || PTo(XS)ZE ||%, where Z§ represents
k=1,k#c
the reconstruction coefficient from the source data of class

c to the target data of class k. With the above analysis, the
transfer loss function can be formulated as follows.

E(XS7XT3,P72)

C
=Y B PTo(x7) - PTo(XS) 2L |I7)
c=1

c c
+Z Z B || PTo(X5) 25, |17

3

3.4. Model Formulation

As mentioned in [31,37], the sparsity constraint is help-
ful to preserve the local structure of data such that each tar-
get sample can be well reconstructed by a few very associ-
ated samples from the source domain. Furthermore, the SS-
C method can account for the noise in data corruption and
remove outliers with their intrinsic relatedness preserved.
In addition, SSC ensures that the data from different do-
mains can be well interlaced and significantly reduce the
disparity of the domain distributions. Different from sparsi-
ty constraint, low-rank constraint is helpful to preserve the
global structure of data, and it is advantageous to reveal a
block-diagonal structure. In constructing the reconstruction
matrix Z in this paper, a joint sparse and low-rank regu-
larizer is used to better account for the local and global
characteristics simultaneously. Eventually, we have cho-
sen sparse+low-rank constraints on the reconstruction ma-
trix Z. By considering the HSIC and loss function, the ob-
jective function of the proposed CRTL method can be for-
mulated as follows.

win B(Xs, X1.P, Z) - pHSIC(Zy, X, £)

T+ Z+x | 21 4)
stPTP=LX >0,i=1,2

Further, by combining the pHSIC criterion in Equation
(2) and the transfer loss function in Equation (3), the model

(4) can be rewritten as:

C
gmzlzwl I PTo(X5) = P o(X$) 2L |I7)
’ 1

C C
+Z Z Ba || PP o(X) 2 |7
c=1k=1,k#c
1
————Tr(k(PTo(x), P (X)) HLH
17 (E(P"o(X), P (X)) )
+M [ Z [+ 21
sEPTP =1 X = [Xg, Xp], 115 2 = 11X
)

Generally, the optimal mapping P* can be represented
as (P*)T = ®Tp(X)7, that is, the projection P is for-
mulated by linearly representing the data ¢(X’) by using a
matrix ®. Therefore, based on kernel trick, the objective
function (5) can reformulated as

C
: T ycc Ty-c =z
g{uzlcg_l(ﬁl | TS — dTKLZE %)

¢ c
+Y.) Bll®TKE |F
=1 k=1,k#c (6)

- ;Z’I‘r(QTKJHLZHKl@)
(N-1)

A Z [ +X |l Z [l
st BTK® =111 "5 Z =

11><nT

3.5. Optimization

Although it seems that three variables are involved in
model (6), both Z¢ and Zj, can be expressed by Z using
some easily designed constant matrix. Therefore, two vari-
ables ® and Z are involved in (6). To solve the problem,
we use alternating optimization strategy, i.e. solving one
variable while fixing the other one is considered. With two
updating steps for ® and Z, the complete optimization of
the proposed method is illustrated in Algorithm 1.

3.6. Classification

For classification, the projected source data and target
data can be represented as X' = ®7p(X)T (X s) and
X1 = ®Tp(X)Tp(Xr). Then general classifiers (e.g.
SVM, least square method, SRC) can be used based on
the augmented training data [Xg', X' 7] with label Y =
[Ys, Yr]. Notably, for the COIL-20 experiment, in order
to keep the same experiment setting with DTSL [31], the
classifier is trained only on X g’ with label Y. Finally,
the predicted labels of unlabeled target test data X7, =
&7 o(X)Tp(X1,) are obtained accordingly.
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Algorithm 1 The Proposed CRTL

Input: X5 € R™*"S, Xp € RMXNT [ Yg € RSXL,
YV € RPTXL By, B2, A1, Az

Procedure:

1. Compute Ko = (X)Tp(X1). Ks = o(X)Tp(X ).
X =[X5,X7], K = p(X)Tp(X)

2. Construct constant matrixs A, Ay, B, there is
Zc = ZAC
Z; =B 2, =B.ZA,;,
ZE=B.Z.=B.ZA.

3.Initialize: add auxiliary variable J, G, where Z2 = J =G

add Lag-multipliers R 1, R2, R3 and penalty parameter .

4. While not converge do
4.1 Stepl: Fix J, G and Z, and update @ by solving
eigenvalue decomposition.
4.2 Step2: Fix ®, and update Z using ADMM;
Fix Z and G, and update J by using the singular
value thresholding (SVT) [1]operator.
Tky1=ming . A\ | Tk ||«
+HEE || Tk — (2x + B |13
Fix Z and J, and update G by shrinkage operator
G i1 = shrink(Z + B2k 22)
Fix J and G, and update Z according to
Gradient descent operator

— (2)
ZK+1 —ZK —(XQ%

4.3 Update the multipliers R1, R2 and R3
Ri=Ri1+uw(Z2-7T)
Ro=Ro+u(Z-9)

Rz =Rz + p(11xNs 2 — 11xN1)

4.4 Update the parameter p
w=min(p x 1.01, max,)

4.5 Check convergence

end while
Output: @ and Z.

4. Experiments

In this section, the experiments on benchmark DA tasks,
including cross-domain object recognition: 4DA-CNN ob-
ject dataset and COIL-20 object dataset, cross-pose face
recognition: Multi-PIE face dataset, and cross-domain
handwritten digit recognition: USPS dataset, SEMEION
dataset and MNIST dataset, have been conducted for eval-
uation. Several closely related methods, such as SGF [10],
GFK [9], SA [7], LTSL [27], DTSL [31], and LSDT [37]
have been compared.

4.1. Cross-domain Object Recognition

The benchmark 4DA-CNN office datasets and COIL-20
object dataset have been considered in this section.

Results on 4DA-CNN dataset (Amazon, DSLR, Web-
cam! and Caltech 2562) [3,9]: In 4DA-CNN dataset, four
domains simplified as A, D, W, and C are included, with
each 10 object classes are contained. The features are ex-

http://www.eecs.berkeley.edu/-mfritz/
domainadaptation/

2http: //www.vision.caltech.edu/Image_Datasets/
Caltech256/

tracted by feeding the raw 4DA data into the well trained
convolutional neural network (AlexNet) on ImageNet [17],
with 8 layers consisting of 5 convolutional layers and 3 ful-
ly connected layers. The features with dimension of 4096
from the 6th and 7th layers (e.g. DeCAF [3]) are explored.
In the experiment, a standard configuration and protocol is
used by following [9]. Specifically, 20 samples per class
are selected from Amazon and 8 samples per class from D-
SLR, Webcam and Caltech are randomly chosen when they
are treated as source domain. 3 samples per class are cho-
sen when they are used as target domain, while the rest data
in target domain is used for performance test. The experi-
mental results are shown in Table 1, from which we can ob-
serve that the average recognition accuracy of the proposed
method shows the best performance, and the superiority is
demonstrated in representation based DA methods.

Results on COIL-20 data: Columbia Object Image
Library [25]: The COIL-20 dataset® contains 20 objects
with 1440 gray scale images (72 multi-pose images per ob-
ject). Each image has 128 x 128 pixels with 256 gray levels
per pixel. In the experiment, by following the experimen-
tal protocol in [31], the size of each image is cropped as
32 x 32. The dataset is divided into two subsets C1 and C2,
with each 2 quadrants are contained. Specifically, the C1 set
contains quadrants 1 and 3 and the C2 contains quadrants 2
and 4. The two subsets are distribution different but rele-
vant in semantic, and form a DA problem. The experimen-
tal results of cross-domain recognition are shown in Table
2, from which our proposed method achieves a significantly
better performance over other related methods.

4.2. Cross-poses Face Recognition

The cross-pose face recognition, as a standard DA prob-
lem, is conducted. The CMU Multi-PIE face dataset* is
a popular dataset with 337 subjects, which contains 4 dif-
ferent sessions with 15 poses, 20 illuminations, and 6 ex-
pressions. In our experiment, we select the first 60 subjects
from Session 1 and Session 2. As a result, a smaller session
1 (S1) with 7 images with different poses per class under
neutral expression and a smaller session 2 (S2) that is sim-
ilar to S1 but under smile expression are constructed. The
experimental configurations are as follows.

S1: One frontal face per subject is used as source training
data, one 60° posed face is used as the target training data,
and the rest 5 face images are used as the target test data.

S2: The experimental configuration is the same as S1.

S1+S2: The two frontal faces and the two 60° posed
faces under neutral and smile expression are used as source
training data and target training data, respectively. The rest

3http://www.cs.columbia.edu/CAVE/software/
softlib/coil-20.php

4http://www.cs.cmu.edu/afs/cs/project /PIE/
MultiPie/Multi-Pie/Home.html
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Tasks SourceOnly Naive Comb SGF [10] GFK [9] SA [7] LTSL [27] LSDT [37] CRTL

fo fr fe fr fo f7 fo f7 fe f7 fo f7 fo f7 fo f7
A— D 80.8 81.3 94.5 94.1 90.5 92.0 92.6 94.3 94.2 92.8 95.5 94.5 96.4 96.0 96.4 95.8
C — D 76.6 77.6 92.9 92.8 93.1 924 92.0 91.9 93.0 92.1 93.6 93.5 95.4 94.6 95.2 94.8
W — D 96.1 96.2 99.1 98.9 97.7 97.6 97.8 98.5 98.6 98.5 99.1 98.8 99.4 99.3 99.4 99.3
A—=C 79.3 79.3 84.0 83.4 77.1 774 78.9 79.1 83.1 83.3 85.3 85.4 85.9 87.0 86.2 87.0
W —C 59.5 68.1 81.7 81.2 74.1 76.8 71.5 76.1 81.1 81.0 82.3 82.6 83.1 84.2 83.6 84.9
D —C 67.3 74.3 83.0 82.7 75.9 78.2 78.8 71.5 82.4 82.9 84.4 84.8 85.2 86.2 85.5 86.4
D— A 77.0 81.8 90.5 90.9 88.0 88.0 88.9 90.1 90.4 90.7 91.1 91.9 92.2 92.5 92.5 92.7
w— A 66.8 73.4 90.1 90.6 87.2 86.8 86.2 85.6 89.8 90.9 90.6 91.0 91.0 91.7 91.3 92.2
C— A 85.8 86.5 89.9 90.3 88.5 89.3 87.5 88.4 89.5 89.9 90.4 90.9 92.1 925 92.0 92.5
C—-WwW 67.5 67.8 91.6 90.6 89.4 87.8 87.7 86.4 91.2 89.0 91.8 90.8 93.3 93.5 92.7 93.1
D—W 954 95.1 97.9 98.0 96.8 95.7 97.0 96.5 97.5 97.5 98.2 97.8 98.7 98.3 98.7 98.5
A=W 70.5 71.6 90.4 91.1 87.2 88.1 89.5 88.6 90.3 87.8 92.2 91.5 92.1 92.9 92.3 93.0
Average 76.9 79.4 90.5 90.4 87.1 87.5 87.9 87.8 90.1 89.7 91.2 91.1 92.1 92.4 92.2 92.5

Table 1: Recognition accuracy (%) of different domain adaptation over 10 object categories on 4DA-CNN with deep feature

representation
Tasks SVM TSL RDALR [15] LTSL [27] DTSL [31] LSDT [37] CRTL
Cl—C2 82.7 80.0 80.7 75.4 84.6 81.7 87.0
C2—C1 84.0 75.6 78.8 72.2 84.2 81.5 86.5
Average 83.3 77.8 79.7 73.8 84.4 81.6 86.8

Table 2: Recognition accuracy (%) of different domain adaptation on COIL-20

10 face images are used as target test data.

S1 — S2: The faces in S1 are used as source training
data, the frontal and 60° posed faces in S2 are used as the
target training data, and the rest data are used as test data.

With above settings, the recognition accuracies of dif-
ferent methods have been shown in Table 3. It is obvious
that the proposed method performs significantly better over
other DA methods in handling such pose change based non-
linear transfer problem.

4.3. Cross-domain Handwritten Digits Recognition

Three handwritten digits datasets: MNIST (M)°, USPS
(U)® and SEMEION (S)” with 10 classes from digit0 ~ 9
are used for evaluating the proposed CRTL method. The
MNIST dataset consists of 70,000 instances with image size
of 28 x 28, the USPS dataset consists of 9298 examples with
image size of 16 x 16, and the SEMEION dataset consists of
2593 images with size of 16 x 16. In experiments, we crop
the MNIST dataset into 16 x 16. For DA experiment, each
dataset is used as the source and target domain alternatively,
and 6 cross-domain tasks are obtained. Also, 100 samples
per class from source domain and 10 samples per class from
target domain randomly are selected for training. 5 random
splits are used, and the average classification accuracies are
reported in Table 4. From the results, we observe that our

Shttp://yann.lecun.com/exdb/mnist/

Shttp://www-1i6.informatik.rwth-aachen.de/
~keysers/usps.html

Thttp://archive.ics.uci.edu/ml/datasets/
Semeion+Handwritten+Digit
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Figure 3: Visualization of reconstruction matrix 2

CRTL outperforms other representation based DA methods.
The superiority is therefore proved.

5. Discussion
5.1. Parameter Setting

In our method, the trade-off coefficients 31, 52, A1 and
Ao are fixed as 1 in experiments. The Gaussian kernel func-
tion k(x;,x;) =exp(— || x; — x; ||* /20?) is used, where
o can be tuned for different tasks. e.g. ¢ = 1.2 for 4DA-
CNN, ¢ = 0.5 for COIL-20, o = 0.2 for CMU Multi-PIE
and 0 = 1.0 for handwritten digits. The SVM classifier is
used in COIL-20 experiment, and least square classifier is
used in other domain adaptation experiments.
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Tasks Naive Comb A-SVM SGF [10] GFK [9] SA [7] LTSL [27] LSDT [37] CRTL
S1(0° — 60°) 61.0 57.0 53.7 56.0 51.3 56.0 59.7 65.7
S2 (0° — 60°) 62.7 62.7 55.0 58.7 62.7 60.7 63.3 69.0

S1+S2 (0° — 60°) 60.2 60.1 53.8 56.3 61.7 60.7 61.7 68.5
S1—S2 93.6 94.3 92.5 96.7 98.3 96.7 95.8 98.7
Average 69.4 68.5 63.8 67.0 68.5 68.5 70.1 75.5

Table 3: Recognition accuracy (%) of different domain adaptation on face recognition across poses
Tasks Naive Comb A-SVM SGF [10] GFK [9] SA[7] LTSL [27] LSDT [37] CRTL

M —U 78.8 78.3 79.2 82.6 78.8 83.2 79.3 854

S—U 83.6 76.8 717.5 82.7 82.5 83.6 84.7 86.2

M — S 51.9 70.5 51.6 70.5 74.4 72.8 69.1 76.2

U—S 65.3 74.5 70.9 76.1 74.6 65.3 67.4 82.6

U—M 71.7 73.2 71.1 74.9 72.9 71.7 70.5 82.0

S =M 67.6 69.3 66.9 74.5 72.9 67.6 70.0 78.4

Average 69.8 73.8 69.5 77.0 76.0 74.0 73.5 81.8

Table 4: Recognition accuracy (%) of different domain adaptation on handwritten digits recognition

5.2. Visualization

Fig.3 shows the visualization of the reconstruction ma-
trix Z in 4DA-CNN and CMU Multi-PIE datasets, from
which the block-diagonal structure of matrix Z can be
clearly observed. The proposed method is effective in p-
reserving the class-specific characteristic of Z. It becomes
robust even when data is badly corrupted [18].

5.3. Convergence

The convergence of CRTL with iteration number ¢ on
PIE (S1+4S2) and COIL-20 (C1 — (C2) recognition tasks
are shown in Fig.4, from which we see that the algorith-
m can converge, but small perturbation still exists. This is
not strange in non-convex optimization, because there is no
closed-form solution of Z which also can be seen in con-
vergence curves of the /; -norm and nuclear norm of Z.

5.4. Computational Complexity Analysis

The computational complexity of Algorithm 1 is p-
resented. The algorithm includes two steps: update Z
and update ®. The computation of ® involves eigen-
decomposition and matrix multiplication, and the complex-
ity is O(N?3). The computation of updating Z involves
updating of J, G and Z. Thus the complexity of com-
puting Z is O(N?) + O(N?) + O(N?). Suppose that the
number of iterations in Algorithm 1 is 7', then the total
computational complexity of CRTL can be expressed as
O(TN3) + O(TN?) + O(TN?) + O(TN?). Note that
the complexity of kernel Gram matrix computation is not
included here, which is outside the optimization loop.

6. Conclusion

In previous work [27, 31, 37], the sparse and low-rank
constraints are considered for learning a structured Z for

300 1000
F . . |
min min
200 L1 .
nulear 500 nulear
100
0 0

0 50 100 -0 50 100
Convergence of PIE ~ Convergence of COIL-20
Figure 4: Convergence curve of the objective function

domain adaptation. All of them neglect the class prior distri-
bution in modeling, and the statistical dependency between
features and labels are also forgotten. To address them,
we propose a class-specific reconstruction transfer learn-
ing (CRTL) method, which aims at constructing a feature
augmented model without class bias. F'irst, we cast the
transfer learning problem by a class-specific reconstruction
matrix Z modeling and optimization problem. Second, in
order to keep the intrinsic statistical dependency between
the domain data and labels after feature projection, a Pro-
jected Hilbert-Schmidt Independency Criterion (pHSIC)
in RKHS is explored in CRTL. T'hird, for better insight
of the global and local structure in Z, the joint low-rank
and sparse constraints are imposed. Extensive experiments
on benchmark DA datasets demonstrate the superiority the
proposed method over other related methods.
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